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ABSTRACT: A key step for any modeling study is to compare model-

produced estimates with observed/reliable data. The original index of 

agreement (also known as original Willmott index) has been widely 

used to measure how well model-produced estimates simulate 

observed data. However, in its original version such index may lead 

the user to erroneously select a predicting model. Therefore, this 

study compared the sensibility of the original index of agreement 

with its two newer versions (modified and refined) and provided an 

easy-to-use R-code capable of calculating these three indices. First, 

the sensibility of the indices was evaluated through Monte Carlo 

Experiments. These controlled simulations considered different 

sorts of errors (systematic, random and systematic + random) 

and errors magnitude. By using the R-code, we also carried out a 

case of study in which the indices are expected to indicate that the 

AGROMETEOROLOGY - Article

On the performance of three indices of 
agreement: an easy-to-use r-code for 
calculating the Willmott indices
Heloisa Ramos Pereira, Monica Cristina Meschiatti, Regina Célia de Matos Pires, 
Gabriel Constantino Blain*
Instituto Agronômico - Centro de Ecofisiologia e Biofísica - Campinas (SP), Brazil.

*Corresponding author: gabriel@iac.sp.gov.br

Received: Feb. 15, 2017 – Accepted: May 29, 2017

empirical Thornthwaite’s model produces poor estimates of daily 

reference evapotranspiration in respect to the standard method 

Penman-Monteith (FAO56). Our findings indicate that the original 

index of agreement may indeed erroneously select a predicting 

model performing poorly. Our results also indicate that the newer 

versions of this index overcome such problem, producing more 

rigorous evaluations. Although the refined Willmott index presents 

the broadest range of possible values, it does not inform the user if a 

predicting model overestimate or underestimate the simulated data, 

resulting in no extra information regarding those already provided 

by the modified version. None of the indices represents the error as 

linear functions of its magnitude in respect to the observed process.
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model performance.
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INTRODUCTION

The great capacity of modern personal computers has 
enabled the use of complex models to simulate and describe 
increasing numbers of natural and man-made processes. In 
this view, numerical models of environmental, hydrological 
and agro-meteorological systems have grown in number and 
complexity (Willmott et al. 2012). Accordingly, the evaluation of 
model performance, i.e., to compare model-produced estimates 
with observed/reliable values, is a fundamental step for model 
development and use (Willmott et al. 1985; Willmott et al. 2012). 
This validation process commonly includes a criteria definition 
that relies on mathematical measurements of how well model-
produced estimates simulate the observed values (Willmott 
et al. 1985; Krause et al. 2005; Willmott et al. 2012). 

Willmott (1981; 1982) and Willmott and Wicks (1980) 
proposed and used an index of agreement – currently referred 
to as ‘the Willmott index’, ‘the original d index’ or simply 
‘the d index’ (dorig) – that is intended to be a dimensionless 
measurement of model accuracy. The dorig is bounded by 0, 
meaning no agreement, and 1, meaning a perfect fit (Willmott 
1984). Authors such as Legates and McCabe (1999) stated 
that dorig represented a remarkable improvement in respect 
to the coefficient of determination. In this view, the dorig index 
has been used in several meteorological, agrometeorological 
and hydrological studies (e.g. Wu et al. 2005; Meschiatti and 
Blain 2016). In spite of this widespread use, Willmott et al. 
(1985) noted that the use of squared differences in its calculation 
algorithm might result in high values of this index (dorig ≈ 1) 
even in the presence of large errors. In addition, sums-of-
squares-based measurements vary in response to both variability 
and central tendency within a set of deviations (Willmott 
et al. 2009). On such background, Willmott (1984) proposed a 
modification in the dorig index that replaces the square function 
by the modulus of the deviations. This modified version is 
frequently referred to as the modified index of agreement (dmod). 
The advantages of dmod over dorig is that errors and differences 
are given their appropriate weighting factors (e.g. Willmott 
et al. 1985; Willmott et al. 2009). The dmod may be regarded as 
a more rigorous method than dorig (Bardin-Camparotto et al. 
2013) because when these two indices are applied to the same 
validation process, dmod tends to approach its maximum value 
more slowly as the predicted values approach the observed 
data (Legates and McCabe 1999; Willmott et al. 2012).

In spite of the advantages of dmod over its original version, 
Willmott et al. (2012) stated that the overall range of dorig and 

dmod [0:1] is narrow to adequately represent the great variety 
of forms that predicted values can differ from observed data. 
Therefore, these authors proposed a new index, referred to as the 
refined index of agreement (dref), that is bounded by –1.0 and 
1.0. Willmott et al. (2012) claimed that the dref is more rationally 
related to model accuracy than dorig and dmod (Willmott et al. 2012).  

Despite the above-mentioned efforts to improve the original 
version of the dorig index, an overview on the scientific literature 
indicates that the use and evaluation of dmod and dref still need 
to be enhanced. This statement is particularly true for tropical 
developing countries that use dorig as a tool for crop modeling 
and other agrometeorological studies. Therefore, in order to 
motive the use of the two modified versions of the index of 
agreement, the goals of this study were (i) to evaluate and 
compare the performance of dorig, dmod and dref to different 
sorts of errors (systematic, random and systematic+random) 
and (ii) to provide an easy-to-use R-code capable of calculating 
the three indices. 

MATERIAL AND METHODS

The performance of the three indices was evaluated 
(i) by means of controlled Monte Carlo experiments, and (ii) by 
means of a well-documented case of study in which the empirical 
Thornthwaite’s model is used to estimate daily amounts of 
reference evapotranspiration (ETo). As it will be further described, 
the indices are expected to inform the user that this empirical 
model tends to produce poor estimates of daily ETo values. The 
Willmott indices (dorig, dmod and dref) can be calculated as follow:

(1)

(2)

(3)

when
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where P and O are, respectively, the predicted and observed 
values and the 95% confidence interval of each index value were 
estimated through the bootstrap approach, as recommended 
by Willmott et al. (1985). 

Monte Carlo Simulation: Systematic errors

All sets of Monte Carlo simulations were performed 
using a sample size N = 100. This N value was adopted to 
avoid the influence of different sample sizes on the outcomes 
of the simulations. Naturally, the effect of different N values on 
dorig, dmod and dref should be addressed in future studies. The 
first set of simulations evaluated the performance of the three 
indices in the presence of systematic errors. In order to cover a 
great range of behaviors commonly found in agrometeorological 
variables (Blain 2014), the observed values (oi) were generated 
using the gamma 2-parameter distribution (expression 4). 
As highlighted by authors such as Wilks (2011), the gamma 
distribution can assume several shapes, depending on the value 
of its parameters. This flexible distribution either can assume 
the exponential form or can approach the bell-shaped form of 
the Gaussian distribution (Wilks 2011). Therefore, the shape (α) 
and scale (β) parameters of this distribution were respectively 
set to the following values: G(1,30); G(1,50); G(2,30); G(2,50); 
G(4,30); G(4,50). Within the R-software environment, gamma-
distributed variables can be generated as follows.

errors”. However, instead of systematic deviations, we added 
normally distributed random errors proportional to the process 
mean value, as described in expression 6. The change factor 
assumed the same values as those of the section “Systematic 
errors” (p and o have the same mean value). 

o = as.vector(rgamma(N, α,1/β))	  	     	        (4)

The predicted data (pi) were generated from the observed 
values adding a systematic error proportional to the mean 
value of the oi series (mean (oi); expression 5) so that 
the magnitude of the systematic deviations, in respect to the 
mean oi values, were 10%, 20% and 30%.  

p = as.vector(o+(mean(o)*CF))			   (5.1)

p = as.vector(o-(mean(o)*CF))			   (5.2)

where CF is the change factor and it was set to the values 
of 0.1, 0.2 and 0.3.

Monte Carlo Simulation: Random errors

In this section, the predicted data were generated from 
the same observed values generated in section “Systematic 

p = as.vector(o+(rnorm(N,0,1)*(mean(o)*CF)))          (6.1)

p = as.vector(o-(rnorm(N,0,1)*(mean(o)*CF)))           (6.2)

Monte Carlo Simulation: Random and 
Systematic errors

In this section, the predicted values were generated from 
the same observed values described in section Systematic 
errors” . Both systematic and random deviations were added 
according to expression 7. The change factor assumed the 
same magnitudes as those of the two previous sections.

p = as.vector(o+(rnorm(N,0,1)*(mean(o)* 
    (change/2)) + (mean(o)*(change/2))))   

p = as.vector(o-(rnorm(N,0,1)*(mean(o)* 
    (change/2))-(mean(o)*(change/2))))

All Monte Carlo simulations were performed considering 
errors equal to or lower than 30% of the process mean 
value. This limit was adopted based on the assumption 
that models leading to errors equal to or larger than this 
threshold would be dismissed without the need to use a 
measurement of agreement. A simple visual analysis of the 
estimated values would indicate that the prediction model 
is performing poorly. 

Easy-to-use R-code

In order to motive the use of the Willmott’s indices, 
we developed a computational algorithm by using the 
R-software, which is a free environment for graphics and 
statistical computing (www.r-project.org). The code was 
developed so that practically no previous knowledge about 
the software is required. Naturally, advanced users can 
easily modify the code according to their needs. The code 
is described in Table 1.

(7.1)

(7.2)
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Table 1. R-code for calculating the Willmott’s indices.

setwd("C:/Mydatafile") #set a working directory called Mydatafile.
#data.txt is a 2 column data file.
#The 1st column is the observed while the 2nd column is the predicted values.
data=as.matrix(read.table("data.txt", head=T)) # If the data file has no head head=F
o=as.matrix(data[,1])
p=as.matrix(data[,2])
N=length(o)
databoot=matrix(NA,N,2)
Nboots=10000
dorigboot=matrix(NA,Nboots,1)
drefboot=matrix(NA,Nboots,1)
dmodboot=matrix(NA,Nboots,1)
MAEboot=matrix(NA,Nboots,1)
alfa=0.05 #significance level: e.g. 0.05 for 5%; 0.1 for 10%
# MAE
MAE=sum((abs(p-o)))/N
Num=sum(abs(o-p)); Numorig=sum((o-p)^2)
Den=sum(abs(p-mean(o))+abs(o-mean(o)))
Denorig=sum((abs(p-mean(o))+abs(o-mean(o)))^2)
# Original Willmott index
dorig=1-((Num^2)/Den^2)
# Modified Willmott index
dmod=1-(Num/Den)
# Refined Willmott's index
if (abs(sum(p-o))<=2*sum(abs(o-mean(o)))){
dref=1-((sum(abs(p-o)))/(2*sum(abs(o-mean(o)))))} else
{(dref=((2*sum(abs(o-mean(o))))/sum(abs(p-o)))-1)}
# Bootstraping
alfa1=alfa/2
for (i in 1:Nboots){
databoot=data[sample(nrow(data),replace=TRUE),]
oboot=as.matrix(databoot[,1])
pboot=as.matrix(databoot[,2])
# MAE
MAEboot[i,1]=sum((abs(pboot-oboot)))/N
Numboot=sum(abs(oboot-pboot)); Numorigboot=sum((oboot-pboot)^2)
Denboot=sum(abs(pboot-mean(oboot))+abs(oboot-mean(oboot)));
Denorigboot=sum((abs(pboot-mean(oboot))+abs(oboot-mean(oboot)))^2)
# Original Willmott index
dorigboot[i,1]=1-((Numboot^2)/Denboot^2)
# Modified Willmott index
dmodboot[i,1]=1-(Numboot/Denboot)
# Refined Willmott’s index
if (abs(sum(pboot-oboot))<=2*sum(abs(oboot-mean(oboot)))){
drefboot[i,1]=1-((sum(abs(pboot-oboot)))/(2*sum(abs(oboot-mean(oboot)))))} else
{(drefboot[i,1]=((2*sum(abs(oboot-mean(oboot))))/sum(abs(pboot-oboot)))-1)}}
#Defining confidence intervals
MAE_CIinf=quantile(MAEboot, probs=alfa1, na.rm=T)
MAE_CIsup=quantile(MAEboot, probs=(1-alfa1), na.rm=T)
dorig_CIinf=quantile(dorigboot, probs=alfa1, na.rm=T)
dorig_CIsup=quantile(dorigboot, probs=(1-alfa1), na.rm=T)
dmod_CIinf=quantile(dmodboot, probs=alfa1, na.rm=T)
dmod_CIsup=quantile(dmodboot, probs=(1-alfa1), na.rm=T)
dref_CIinf=quantile(drefboot, probs=alfa1, na.rm=T)
dref_CIsup=quantile(drefboot, probs=(1-alfa1), na.rm=T)
ModelAcuracy=cbind(MAE_CIinf,MAE,MAE_CIsup,dorig_CIinf,dorig,dorig_CIsup,d
mod_CIinf,dmod,dmod_CIsup,dref_CIinf,dref,dref_CIsup)
print(ModelAcuracy)

As a case of study, this code was applied to compare the 
performance of the empirical Thornthwaite’s model (TW) 
in estimating daily amounts of reference evapotranspiration 

(ETo) in Campinas, State of São Paulo, in respect to those 
estimated from physically-based Penman-Monteith method 
(Allen et al. 1998). The Climatic variability in this location 
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is influenced by monsoon system (Carvalho et al. 2004), 
in which the wet season occurs during the austral summer 
associated with the South Atlantic Convergence Zone. In the 
winter, the high pressing system of the South Atlantic leads 
to climatically dry conditions. Regarding the performance 
of the two above-mentioned models, it is well documented 
that the TW model is not suited for estimating ETo values at 
daily scale (Carvalho et al. 2011). On the other hand, due to 
its solid physical fundamentals, the PM model (Allen et al. 
1998) is regarded as the standard method for estimating EP 
amounts at daily scale. Therefore, the Willmott’s indices should 
indicate significant differences between ETo values estimated 
from these two methods. The Willmott indices were applied 
to daily ETo values (December 2007 to November 2009; 
Campinas-SP) within each season – Summer (December 
to February), Fall (March to May), Winter (June to August) 
and Spring (September to November).

RESULTS AND DISCUSSION

The analysis of the Monte Carlo simulations must first take 
into account an important difference between dorig and the 
other two versions of the Willmott’s indices. As can be noted 
from Equations 1, 2 and 3, only the original index (Equation 1) 
squares the errors (oi – pi). However, when applied to large 
errors magnitude, the square function increases the influence 
of these deviations on the sum-of-squared errors (Willmott 
1982; 1984; Willmott et al. 1985; Legates and McCabe 
1999; Willmott et al. 2012). In practical terms, the result of 
such feature is that high dorig values may be obtained in the 
presence of relatively large errors. Considering all Monte 
Carlo Simulations performed in this study, no dorig value 
lower than 0.80 was observed. This statement holds for 
all sorts of errors evaluated in this study (Figures 1 to 4), 
indicating that relatively high dorig values may be observed 
in the presence of a prediction model performing poorly 
(Willmott et al. 1985; Legates and McCabe 1999; Willmott 
et al. 2012; Bardin-Camparotto et al. 2013). Therefore, the 
findings of this study support the statement that both dref 
and dmod are more rigorous than dorig, and that they should 
be preferred over their original version.

The results of the Monte Carlo simulation also indicated 
that errors with the same magnitude but opposite signs 
(expressions 4.1 against 4.2; 5.1 against 5.2; 6.1 against 6.2) 
lead both dmod and dorig to assume a unique value. This feature 

Figure 1. Performance of the original (dorig black dots), modified (dmod 
red dots) and refined (dref blue dots) indices of Agreement subjected 
to (positive) systematic errors. The observed values were generated 
from a 2-parameter gamma distribution [G(.)] with shape parameter 
set to 1 and 4 and scale parameter set to 30 and 50.
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Figure 2. Performance of the original (dorig black dots), modified (dmod 
red dots) and refined (dref blue dots) indices of Agreement subjected 
to (positive) random errors. The observed values were generated 
from a 2-parameter gamma distribution [G(.)] with shape parameter 
set to 1 and 4 and scale parameter set to 30 and 50.

Figure 3. Performance of the original (dorig black dots), modified (dmod 
red dots) and refined (dref blue dots) indices of Agreement subjected 
to (positive) random+systematic errors. The observed values were 
generated from a 2-parameter gamma distribution [G(.)] with shape 
parameter set to 1 and 4 and scale parameter set to 30 and 50.
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holds for all types of error and is exemplified in Figure 4. 
This is a natural behavior of indices developed to vary 
between zero and one, using the modulus and/or the square 
function in their calculation algorithm. On the other hand, 
considering that dref was developed to vary between –1.0 and 
1.0, one could expect that errors with same magnitude but 
opposite signs would lead to different dref values. However, 
as demonstrated in Willmott et al. (2012), negative values 
of dref only indicate large predictive errors. This is the reason 
why Monte Carlo simulations revealed that the three indices 
presented similar behaviors in such cases (Figures 3 and 4). 
Therefore, as dmod and dorig, a given dref does not indicate 
that a predicting model overestimate or underestimate the 
simulated data. 

The outcomes of the Monte Carlo Simulations also 
indicated that the three indices may assume different 
values for a particular errors magnitude (Figures 1 to 4) 
in respect to the process mean value. For instance, considering 
a gamma distribution with shape parameter equal to 1 and 
scale parameter equal to 30 [G(1,30)], dorig, dmod and dref 
respectively ranged from ~0.95 to ~098, ~0.78 to ~0.85 
and ~0.78 to ~0.85 when the systematic errors were set to 
20% (Figure 1). This feature implies that none of the three 
indices can be directly used to evaluate the average error 
of the predicted/estimated values in respect to the real/
observed process average value. This statement is further 
supported by the fact that the three indices are affected by 
the parameters of the distribution from which the observed 
data were drawn. As previously described, dmod ranged from 
~0.78 to ~0.85 when the systematic error were set to 20% 
and the Gamma distribution G(1,30) were used to generate 
the observed data. Considering the same errors magnitude, 
dmod ranged from ~0.63 to ~0.77 when G(4,50) were used to 
generate the observed data. This latter statement holds for 
the three indices and all sorts of errors.

Case Study

It is worth mentioning that atmospheric water demand is 
mainly driven by the following variables: incoming solar radiation, 
air temperature, wind speed and vapor pressure deficit (Vicente-
Serrano et al. 2014; among many others). The PM equation 
has two components (energetic and aerodynamic) that seek 
to represent the contribution of all these variables to a given 
ETo value. In general, the energetic component contribution 
to an ETo daily amount is higher than the aerodynamic factor 

Figure 4. Performance of the original (dorig black dots), modified (dmod 
red dots) and refined (dref blue dots) indices of Agreement subjected 
to (negative) random+systematic errors. The observed values were 
generated from a 2-parameter gamma distribution [G(.)] with shape 
parameter set to 1 and 4 and scale parameter set to 30 and 50.
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contribution (Penman 19481; Vicente-Serrano et al. 2014; 
Matsoukas et al. 2011). However, the significance of this latter 
component to a particular daily ETo value tends to increase in 
dry regions and/or during dry period/seasons (Matsoukas et al. 
2011; McVicar et al. 2012). In other words, a relative decrease in 
the energetic component tends to be associated with an increase 
in the significance of the aerodynamic component. Finally, it 
is also worth emphasizing that the TW model considers only 
variables related to the energetic component of the atmospheric 
water demand, i.e., air temperature and those related to the 
photoperiod. On such theoretical background and considering 
the climate conditions of Campinas, the level of agreement 
between ETo daily amounts derived from both TW and PM 
models is expected to vary over the seasons, reaching its lower 
level during the austral winter (dry) season. Likewise, a particular 
index used to evaluate model performance is expected to indicate 
that the TW model cannot be applied to estimate ETo daily 
amounts in Campinas-SP.
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The seasonal variability of the three indices calculated 
through the R-code is consistent with the above-mentioned 
theoretical background. In addition, the results depicted in 
Figure 5 also agree with those of the Monte Carlo simulations 
that indicated that both dref and dmod are more rigorous than 
dorig, and hence they should be preferred over their original 
version. This statement is particularly true for the summer 
season when, considering the 95% confidence interval, the 
results of Figure 5 indicated that dorig may reach values as high 
as 0.80 in the presence of absolute mean errors larger than 
0.80 mm·day-1. Considering that dorig=1 indicates a perfect 
model, the original version of the Willmott index may lead 
the user to erroneously accept that the TW model is (at least) 
suitable for estimating daily ETo amounts in Campinas during 
summer seasons. On the other hand, the upper limits (95% 
confidence interval) of all dmod values remained lower than 
0.60 in all seasons. Naturally, the dmod values are consistent 
with the above-mentioned theoretical background, indicating 

Figure 5. Original (dorig black dots), modified (dmod red dots) and refined (dref blue dots) indices of Agreement (left axis). The blue bars (right 
axis) represent the Absolute Mean Error (AME; a and b) and the ratio between AME and the mean value of the daily process [AME/Mean(o)]. 
The dashed lines represent the 95% confidence interval. 
1Penman, H.L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society a Mathematical, Physical and Engineering 
Sciences, 193, 120-145. http://dx.doi.org/10.1098/rspa.1948.0037
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that the TW model cannot be applied to estimate ETo daily 
amounts in Campinas-SP, regardless the season. 

For the summer season, dref presented similar values 
as those shown by dmod. However, dref assumed negative 
values in the winter of 2008. Considering that the Monte 
Carlo Simulations indicated that a particular dref does not 
inform the user if a predicting model overestimate or 
underestimate the simulated data, this negative value only 
indicates that the TW model had its worst performance 
in the winter of 2008. Finally, none of the three indices 
can be regarded as linear functions of AME/Mean(PM). 

FINAL REMARKS 

Considering the errors magnitude adopted in the Monte 
Carlo Simulations as well as the case of study, our findings 
indicate that the original version of the Willmott index may 
lead the user to erroneously select a predicting model that 
generates poor estimates. This statement is consistent with 
previous studies. Our results also indicate that the two newer 
versions of this index (modified and refined) overcome 
such problem, leading to more rigorous evaluations of the 

predicting models. Therefore, they should be preferred over 
the original version. 

Although the refined Willmott index presents the broadest 
range of possible values [–1.0:1.0], it does not inform the 
user if a predicting model overestimate or underestimate the 
simulated data. Therefore, it added no extra information in 
respect to those already provided by the modified version 
of the agreement index. Naturally, this statement holds for 
the simulations and case of study carried out in this paper. 
None of the indices represents the error as linear functions 
of its magnitude in respect to the observed process.
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