
ABSTRACT: Brazil is one of the world’s largest producers of guava (Psidium guajava L.), a very promising fruit in the northern region of the 

state of Rio de Janeiro. Despite this, no guava cultivar has been developed for the region. Thus, this study proposed to examine a population 

of guava full sibs using microsatellite markers and to identify which genotypes are the most divergent for future crosses, to select cultivars 

better adapted to the soil and climatic conditions of northern Rio Janeiro. Ninety-six superior genotypes were selected according to their 

agronomic traits, which were characterized using 45 microsatellite markers. The genetic distance between the analyzed genotypes, their 

clustering pattern and the genetic structure of the population were estimated. Hierarchical cluster analysis by the neighbor joining method 

indicated the formation of three distinct groups. The use of molecular information revealed the existence of moderate genetic variability 

between the genotypes of the full-sib families. Bayesian analysis separated the genotypes into only two groups, as the individuals shared 

most of the analyzed genomic regions. The most genetically divergent guava genotypes, that is, those allocated to different groups, such 

as genotypes 5 and 85, should be recommended for future crosses to obtain segregating populations, thus giving continuity to the guava 

breeding program.
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INTRODUCTION

Guava (Psidium guajava L.) is a fruit tree native to South America. Brazil is among the world’s largest producers of guava, 
having large areas where soil-climatic conditions are favorable to the production of the fruit (Almeida et al. 2009). Guava 
growing is a promising activity in the northern region of the state of Rio de Janeiro, which, in addition to being close to 
port facilities, holds the potential to boost the local economy through fruit farming (Gomes Filho et al. 2010).

Despite this, Brazilian producers currently face a problem: the low number of available cultivars adapted to producing 
regions. Only 18 cultivars are registered in the National Cultivar Registry (Registro Nacional de Cultivares–RNC), and 
no guava cultivar has been developed or recommended for the state of Rio de Janeiro so far. One of the goals of the 
breeder is to obtain productive cultivars adapted to their producing region (Ramalho et al. 2010), besides acceptance 
by the consumer market.

In this respect, guava has high genetic diversity, which is favored by cross-pollination (Silva et al. 2017). Knowing the 
genetic variability of cultivars is an essential factor for breeding programs, as it allows the optimization of the breeding 
strategy to be applied (Silva et al. 2020).

A very important aid tool for understanding genetic variability used in breeding programs are molecular markers. 
Microsatellite markers (SSR) are highly polymorphic, providing a large amount of genetic information per locus. They are 
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abundant in the genome, multiallelic and easy to automate, in addition to being affordable (Turchetto-Zolete et al. 2017). 
SSR are also widely used in different countries as an efficient tool for the characterization of germplasm and in the study 
of genetic diversity in different Psidium species (Kareem et al. 2018).

Understanding the genetic structure of the population is essential for plant breeding. With a well-structured population, 
it is possible to select genotypes with desired and complementary characteristics. When the sharing of alleles between 
individuals is known, we are able to select more divergent genotypes for crosses, in order to generate a greater genetic 
variability and to look for a heterosis effect, which is useful in breeding programs (Bezerra et al. 2020).

This study aimed to characterize 96 pre-selected guava genotypes through 45 microsatellite loci, to estimate 
genetic variability in the population, and to identify and indicate the best crosses between genotypes with greater 
genetic distance.

MATERIAL AND METHODS

Evaluated population

The evaluated population was trained in the experimental area at the Antônio Sarlo School of Agriculture, Universidade 
Estadual do Norte Fluminense Darcy Ribeiro (UENF), located in Campos dos Goytacazes, northern region of Rio de 
Janeiro, Brazil (21º08’02’’ S and 41º40’47’’ W, 88 m above sea level). The climate in the area is the Aw type (tropical sub-
humid and dry), with average annual temperature ranging from 22 to 25°C and average annual precipitation between 
1,200 and 1,300 mm. The study was developed at the Plant Breeding Laboratory (Laboratório de Melhoramento Genético 
Vegetal–LMGV) at UENF.

Paiva et al. (2016), who selected the best genotypes in 17 full-sib families of guava using restricted maximum likelihood/
best linear unbiased prediction method (Table 1), indicated the 96 individuals genotyped in this study.

Table 1. Origin and identification of 17 full-sib families of guava.

Description Crossings Total number of genotypes Number of selected 
genotypes

Family 1 UENF 1834 × UENF 1833 24 12

Family 2 UENF 1831 × UENF 1830 24 12

Family 3 UENF 1831 × UENF 1832 24 1

Family 4 UENF 1831 × UENF 1837 24 0

Family 5 UENF 1831 × UENF 3839 24 0

Family 6 UENF 1833 × UENF 1832 24 11

Family 7 UENF 1834 × UENF 1839 24 1

Family 8 UENF 1835 × UENF 1834 24 16

Family 9 UENF 1834 × UENF 1836 24 0

Family 10 UENF 1836 × UENF 1835 24 15

Family 11 UENF 1833 × UENF 1836 24 2

Family 12 UENF 1831 × UENF 1835 24 10

Family 13 UENF 1833 × UENF 1835 24 5

Family 14 UENF 1832 × UENF 1833 24 0

Family 15 UENF 1834 × UENF 1837 24 5

Family 16 UENF 1834 × UENF 1831 24 0

Family 17 UENF 1832 × UENF 1835 24 6

Total 96
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Genomic DNA extraction and polymerase chain reaction

Samples of young leaves of the selected genotypes were collected in the experimental area, forwarded to the LMGV at 
UENF. The samples were macerated in liquid nitrogen, and genomic DNA was extracted using the procedure proposed by 
Doyle and Doyle (1990), with adaptations (Supplementary Material).

After extraction, the DNA was quantified by analysis on 1% agarose gel with 1X TAE buffer (Tris, sodium acetate, EDTA, 
pH 8) using the 100-bp (100 ng) Lambda (λ) marker (100 ng·μL-1) (Invitrogen, Carlsbad, CA, United States of America). The 
DNA samples were stained using a mixture of GelRedTM and Blue Juice (1:1), and the image was captured by the Loccus 
L-PIX EX gel documentation system. Based on the obtained images, the DNA concentration was estimated relative to the 
100-bp marker, and the DNA samples were diluted to a working concentration of 10 ng·μL-1.

To test the polymerase chain reaction (PCR) conditions, 192 primer pairs (GuavaMap 2008) designed to amplify SSR 
loci in P. guajava were tested in 10 individuals, with a temperature gradient ranging from 48 to 60 °C. After screening, a set 
of 45 primers was selected for the amplification reactions (Table 2).

Table 2. Sequence of 45 pairs of microsatellite primers used in the analysis of 96 genotypes of Psidium guajava L.

Locus Sequence (5’ 3’) Annealing temperature (ºC) Reference

mPgCIR027 F: AGCACTTAGGGACACAAATTCA
R: CTCACTCTCCTCCATTCAAG 50 GuavaMap2008

mPgCIR029 F: CTCGCTTCAATCTCCATCTA
R: AGCGACACAGACTCTTCATT 54 GuavaMap2008

mPgCIR030 F: CTCAAAGCACTATCATGTCG
R: CCTTGTGGGTTCTCTTTTG 53 GuavaMap2008

mPgCIR035 F: TTGACCTGGCATTAACAGA
R: CATTGGGAAAGGGAAGAA 56 GuavaMap2008

mPgCIR037 F: GCGACGTTGTTGACTGAT
R: AGTGCGATAAAGACATTCAC 53 GuavaMap2008

mPgCIR038 F: AGCCTGTTTTACGCCTTC
R:CGGCTGCTCTATTGTTATTT 53ºC GuavaMap2008

mPgCIR040 F: TGAATCTCCAGTGTCTTATCG
R: TGATTTCAACTGCGTATGTC 55 GuavaMap2008

mPgCIR042 F: CTCACCCAAATCTACACAAG
R: AAGGGACTGGACGATGTT 50 GuavaMap2008

mPgCIR094 F: CAACCTTCCCGTGATTATT
R: CTAGCTTCTTCAGTGGGAAC 54 GuavaMap2008

mPgCIR096 F: ACGCTGCAAACGATACTAAT
R: AACTCACACGAGCACAGAG 55 GuavaMap2008

mPgCIR099 F: TCAAAGTCCAAAACTCATGC
R: GGGATGGAGTAAAGATGAAA 54 GuavaMap2008

mPgCIR102 F: AATTGGTGTAGCATCTGGA
R: GCCTACCATGAACAGAGAAA 53 GuavaMap2008

mPgCIR106 F: GACTCGACAGGAAGGTCTC
R: CAGCTTTGTATATCGCAAGA 54 GuavaMap2008

mPgCIR111 F: CAACCTCGTTTGAGTCTTCT
R: AACATCATTGGGACCATTC 53 GuavaMap2008

mPgCIR131 F: GAGGTTGAGAGTTCAAGGT
R: GGTTTGCTCTTGAAATCACTC 51 GuavaMap2008

mPgCIR135 F: CAGATAGCAAAACTGCCTCT
R: ATATCCCTCTCGCCTTCTT 54 GuavaMap2008

mPgCIR138 F: GGTGAGACCACTGAGTTCC
R: GAAAGACCAATGAAATCGAC 54 GuavaMap2008

mPgCIR140 F: GTGGTGAAGGAGTAAAGCTG
R: GCAGTATAAAGCAACAGATGG 54 GuavaMap2008

mPgCIR143 F: TCTGGATTTTCTCCAATGC
R: GTATGCACCACCATCTGC 54 GuavaMap2008

continue...
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Table 2. Continuation...

Locus Sequence (5’ 3’) Annealing temperature (ºC) Reference

mPgCIR147 F: ACTGACATCTCTGACCATAGC
R: GATTGCCATAGGAACTGAAA 54 GuavaMap2008

mPgCIR149 F: CTTCGTGGAAGAGGATGAC
R: AATATAAACATCGCCACAGG 51 GuavaMap2008

mPgCIR153 F: GCCTCTGGTAAATCTGTTGA
R: ACATACGGATCAAGTCCAAA 54 GuavaMap2008

mPgCIR160 F: TGGCTATAAGAATGGGAGAT
R: GACGAGCTTAGCCTCTGAAT 56 GuavaMap2008

mPgCIR161 F: TCTCAAGGACCAACAAGAAG
R: AGGACTTAGCTTGGGTTTTC 54 GuavaMap2008

mPgCIR163 F: TCTTTGCACATCAAACTCG
R: CATGGTATCAATAGGTCAAGC 53 GuavaMap2008

mPgCIR164 F: TCCCGTAAGTTGTTCTGTTT
R: CGTAAGAGATCGTGAAGGAG 54 GuavaMap2008

mPgCIR166 F: CTTTCCCATCAAAACGTAAG
R: CCAATTCATGCACTTAGACA 54 GuavaMap2008

mPgCIR169 F: TTCAGGCAGATCGTGTTACT
R: GTGCCTAACCTACACCCTAA 55 GuavaMap2008

mPgCIR180 F: CATGGATTCAACTCTTGTCG
R: CTACATTGGAAGCAGAATGG 55 GuavaMap2008

mPgCIR181 F: AGACACTACCTCACCGCTAT
R: ATAGAGAAGCCGAAGGAAAC 55 GuavaMap2008

mPgCIR184 F: AAGCTACAATCGACGAAAAC
R: CACTATTAGCGAACCTGCAT 55 GuavaMap2008

mPgCIR187 F: AACGCCTAATAATGCGAAGT
R: TCTTTCCCAGGATGGAGTA 52 GuavaMap2008

mPgCIR188 F: TACAGCGATTCTATCCCCTA
R: TTTGTGGGGAAGAAACTACTG 53 GuavaMap2008

mPgCIR191 F: GACCCTCCACTTATATTTTG
R: AAGCTGACATAACAGTCGAA 55 GuavaMap2008

mPgCIR193 F: GAACGTGGGTTACATACCAT
R: ATCACCGTCCTCCTAAATCT 52 GuavaMap2008

mPgCIR200 F: CCTTGCTTTGGTGAGGTC
R: GCTAATTCAGTCCTTCCAACT 51 GuavaMap2008

mPgCIR202 F:  CCATTAGAGCCGACAAAA
R: GACGAGAAACCCTAAACGTA 53 GuavaMap2008

mPgCIR204 F: GTCGGATCATGGAGAGATCA
R: GCGGCTAAAGAAATCTGC 58 GuavaMap2008

mPgCIR207 F: CAAGATTTGCCTCAAAGAAAC
R: AACTAAATAGCCTGCTGGTG 55 GuavaMap2008

mPgCIR209 F: CTAAAGCCACATCCAGCA
R: CTAACATTTGCCTTCTACAGC 54 GuavaMap2008

mPgCIR210 F: CTACGAGGGTGTAACGAAAA
R: CTACAACAGCCAACGTGAG 55 GuavaMap2008

mPgCIR221 F: CTAAGCCTGAAGTCCCAAAT
R: CCTCTTCTAAAGGCAACGAC 55 GuavaMap2008

mPgCIR227 F: GGGATGCTCAAAACTGTAAG
R: CCTGTTACATTGACGAATCA 51 GuavaMap2008

mPgCIR230 F: CACATTTGCTCCTGATTTTC
R: GCTCTTCAACGACCATCTT 55 GuavaMap2008

mPgCIR249 F: TTTGTCTGGTCGTCCTAGTT
R: CTTCAGTCCATCAGCAAAAT 53 GuavaMap2008

The PCR reactions were performed in thermocyclers from Applied Biosystems/Veriti 96 well, in a 38-cycle program. 
The final volume was 13 μL for each sample, which contained 2-μL DNA (10 ng·μL), 1.50-μL 10X Buffer (NH4SO4), 1.5-μL 



5

Genetic-molecular characterization in guava

Bragantia, Campinas, 81, e3322, 2022

MgCl2 (25 mM), 1.5-μL dNTPs (2 mM), 1-µL primer (R+F) (5 µM) and 0.12-µL Taq-DNA polymerase (5 U/µL) (Invitrogen, 
Carlsbad, CA, United States of America).

Amplification products were separated on 4% MetaPhor agarose gel, immersed in TAE buffer [90 mM Tris-acetate  
(pH 8) + 10 mM EDTA], stained with Gel RedTM and Blue Juice (1:1), visualized by the Loccus L-PIX EX gel documentation 
system and compared with the 100-bp High DNA Mass Ladder (0.5 μL-1) marker (Invitrogen, Carlsbad, CA, United States 
of America) during the runs to determine amplified fragments.

Statistical analysis

The data obtained from the amplification of 45 SSR were converted into numerical code for each allele per locus. The 
numerical matrix was developed by assigning values from 1 to the maximum number of alleles per locus, as described next: 
for a locus with three alleles, the representations of 11, 22 and 33 were used for the homozygous forms (A1A1, A2A2 and 
A3A3); and 12, 13 and 23 for the heterozygotes (A1A2, A1A3 and A2A3). From this numerical matrix, the genetic distance 
between the studied genotypes was calculated using GENES software (Cruz 2013).

Three indices were tested to calculate the similarity between genotype pairs (Table 3), namely: the unweighted index, 
the weighted index and the Smouse and Peakall index (Cruz et al. 2011).

Table 3. Distance indices and clustering methods tested to estimate the similarity between pairs of guava genotypes.

Distance 
measurements Grouping methods Cophenetic correlation 

coefficient Distortion (%) Stress (%)

Weighted index

UPGMA 0.9302 1.6583 12.8785

Neighbor joining 0.9229 46.2709 29.9213

Ward 0.4404 — —

Unweighted index

UPGMA 0.8745 3.754 19.3742

Neighbor joining 0.8627 72.015 49.4014

Ward 0.5551 — —

Smouse and Peakall 
Index

UPGMA 0.8733 6.9976 26.4531

Neighbor joining 0.8877 76.152 54.2757

Ward 0.5417 — —

UPGMA: unweighted pair-group method with arithmetic mean.

Three hierarchical clustering methods were tested (Table 3): unweighted pair-group method with arithmetic mean 
(UPGMA), which uses arithmetic means of dissimilarity measures, avoiding characterization through extreme values 
(Cruz et al. 2011); the neighbor joining method, proposed by Saitou and Nei (1987), which groups the closest individuals 
with data from the distance matrix; and the Ward method, in which the similarity measure used in the cluster is the sum 
of squares between two clusters (Hair et al. 2009).

The use of different clustering methods for the same goal, without indicating the choice criterion, can make it difficult to 
compare results, since they are influenced by the method selected for the construction of the clustering matrix (Cerqueira-
Silva et al. 2009).

In this study, the selected method was the neighbor joining due to the high cophenetic correlation coefficient (CCC) 
and the similarity with the results obtained in Bayesian analysis.

The weighted index was chosen because it showed the highest cophenetic correlation, estimated by Eq. 1:

					            𝑆𝑆!!"#$
"𝑝𝑝%

&

%'#

𝑐𝑐%    � (1)
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in which (Eq. 2) 𝑝𝑝! =
𝑎𝑎!
𝐴𝐴   (2) = weight associated with locus j determined by aj = total number of alleles at locus j;  

A = total number of alleles studied, in which (Eq. 3) !𝑝𝑝!

"

!#$

= 1	  (3); and cj = the number of common alleles between the 
pairs of accessions i and i’.

The index deals with similarity measures, and in cluster analysis, it is recommended to use dissimilarity measures, 
defined by Eq. 4:

					             𝐷𝐷 = 1 − 𝑆𝑆 � (4)

After the generation of the distance matrix, the cluster analysis of individuals was performed via dendrogram, by applying 
the neighbor joining method, using Mega software version 6 (Kumar et al. 2008).

The diversity indices of the 96 genotypes were estimated using Genalex 6.5 software (Peakall and Smouse 2012), based on the 
following parameters: number of alleles per polymorphic locus (Na), number of effective alleles (Ne), observed heterozygosity 
(Ho), expected heterozygosity (He), information index or Shannon index (I), and fixation index or inbreeding coefficient (F).

The Ne, that is, those actually found in the population, can be calculated by Eq. 5:

						      𝑁𝑁𝑁𝑁 =
1
𝛴𝛴!"

  � (5)

in which: P2 = the sum of the frequency of homozygous and heterozygous alleles.

The information index, known as the Shannon index (I), is used to indicate diversity, which can be calculated by Eq. 6:

					     𝐼𝐼 = −1.&[𝑃𝑃𝑃𝑃. 𝐿𝐿𝐿𝐿(𝑃𝑃𝑃𝑃)]  � (6)

in which: Pi = allelic frequency for each of the alleles in question.
Ho is the proportion of heterozygous individuals observed in a studied population, calculated by Eq. 7:

						      𝐻𝐻𝐻𝐻 =
𝑁𝑁𝑁𝑁
𝑁𝑁   � (7)

in which: Ho = observed heterozygosity; Nx = number of heterozygotes; N = total number of individuals in the sample.
He can be defined as an estimated sum of all individuals that could be heterozygous for a locus (Eq. 8):

					           𝐻𝐻𝐻𝐻 = 1 −&𝑃𝑃!"  � (8)

in which: He = expected heterozygosity; Pi = frequency of allele i.
The fixation index (F), which can range from -1 to +1, estimates the mean coefficient of inbreeding, given by Eq. 9:

					           𝐹𝐹 =
𝐻𝐻𝐻𝐻 − 𝐻𝐻𝐻𝐻
𝐻𝐻𝐻𝐻   � (9)

in which: Ho = observed heterozygosity, which is the proportion of N samples that are heterozygous at a given locus;  
He = proportion of heterozygosity expected under random mating.

Analysis of the genetic structure of the population

To access the structure of the 96 genotypes, analyses were performed using the Bayesian method in Structure software 
version 2.3.4 (Pritchard et al. 2000).
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Considering that the present study was carried out with a population from plants obtained from controlled crosses, we 
adopted the “no admixture” model, correlated with the allelic frequencies of the population (Cerqueira-Silva et al. 2014, 
Silva et al. 2016).

The burn-in period and iteration number were set to 25,000 and 75,000, respectively, for each run. The number of groups 
(K) was varied systematically from 1 to 5, and 20 simulations were performed to estimate each K.

The ad hoc ΔK method described by Evanno et al. (2005), implemented in the online tool StructureHarvester (Earl and 
Vonholdt 2012), was used to estimate the most likely K for the population.

The threshold value of 0.60 was used as the maximum probability of association between the subgroups. Based on the 
posterior probability of association (q) of a given genotype belonging to a given group relative to the total number of groups 
(K), we classified individuals with q > 0.60 as members of a given cluster, whereas for clusters with an association (q) with 
values ≤ 0.60 the genotype was classified as mixed (Cerqueira-Silva et al. 2014).

RESULTS AND DISCUSSION

Diversity parameters via SSR 

Genetic variability was detected between the genotypes evaluated for the 45 markers used. The number of alleles per 
locus ranged between two and three, averaging 2.13, with a total of 96 alleles for all evaluated loci.

In a genetic characterization study of guava accessions from different municipalities in Pakistan for germplasm formation, 
Kareem et al. (2018) found 85 alleles from 18 SSR primers, with an average of 4.7 alleles per locus–a high number when 
compared with the one found in this study.

Costa and Santos (2013) analyzed genetic variability through 13 SSR in Psidium accessions from the Embrapa Semiárido 
germplasm bank and found the total of 183 alleles. The number of alleles per locus ranged from seven to 22, averaging 14.07.

Because the full-sib population evaluated in this study originates from previous selections, a low number of alleles 
is expected, and the high number of alleles observed in other studies is expected when evaluating accessions from 
germplasm banks.

The Ne ranged from 1.02 to 1.99 (Table 4). Ho values ranged from zero to 0.97, and He values ranged from 0.02 to 0.50 
(Table 4).

Table 4. Diversity parameters for 45 microsatellite markers evaluated in 96 guava genotypes: number of alleles per locus (Na), number of 
effective alleles (Ne), information index (I), observed heterozygosity (Ho), expected heterozygosity (He), and fixation index (F).

Locus Na Ne I Ho He F

mPgCIR027 2.000 1.951 0.681 0.816 0.488 -0.673

mPgCIR029 2.000 1.837 0.648 0.000 0.456 1.000

mPgCIR030 2.000 1.977 0.687 0.000 0.494 1.000

mPgCIR035 2.000 1.830 0.646 0.674 0.454 -0.485

mPgCIR037 2.000 1.169 0.275 0.000 0.145 1.000

mPgCIR038 2.000 1.067 0.143 0.000 0.062 1.000

mPgCIR040 2.000 1.264 0.363 0.000 0.209 1.000

mPgCIR042 2.000 1.067 0.144 0.000 0.063 1.000

mPgCIR094 2.000 1.162 0.267 0.000 0.139 1.000

mPgCIR096 2.000 1.749 0.620 0.621 0.428 -0.450

mPgCIR099 2.000 1.149 0.253 0.000 0.130 1.000

mPgCIR102 2.000 1.046 0.108 0.000 0.044 1.000

mPgCIR106 2.000 1.998 0.693 0.968 0.499 -0.938

mPgCIR111 3.000 1.150 0.275 0.083 0.130 0.360

continue...
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Table 4. Continuation...

Locus Na Ne I Ho He F

mPgCIR131 3.000 1.022 0.067 0.011 0.021 0.496

mPgCIR135 2.000 1.586 0.556 0.383 0.370 -0.036

mPgCIR138 2.000 1.675 0.593 0.488 0.403 -0.211

mPgCIR140 3.000 1.709 0.630 0.580 0.415 -0.397

mPgCIR143 2.000 1.212 0.318 0.000 0.175 1.000

mPgCIR147 3.000 1.199 0.336 0.181 0.166 -0.088

mPgCIR149 2.000 1.991 0.691 0.587 0.498 -0.179

mPgCIR153 2.000 1.170 0.276 0.074 0.145 0.493

mPgCIR160 2.000 1.875 0.659 0.355 0.467 0.240

mPgCIR161 2.000 1.815 0.641 0.000 0.449 1.000

mPgCIR163 2.000 1.112 0.208 0.000 0.101 1.000

mPgCIR164 2.000 1.865 0.657 0.043 0.464 0.907

mPgCIR166 2.000 1.530 0.530 0.315 0.346 0.090

mPgCIR169 2.000 1.996 0.692 0.957 0.499 -0.918

mPgCIR180 2.000 1.959 0.683 0.536 0.489 -0.095

mPgCIR181 2.000 1.316 0.404 0.000 0.240 1.000

mPgCIR184 2.000 1.830 0.646 0.427 0.454 0.059

mPgCIR187 2.000 1.240 0.344 0.000 0.194 1.000

mPgCIR188 2.000 1.180 0.287 0.000 0.153 1.000

mPgCIR191 2.000 1.870 0.658 0.458 0.465 0.015

mPgCIR193 2.000 1.115 0.211 0.000 0.103 1.000

mPgCIR200 2.000 1.338 0.420 0.121 0.253 0.522

mPgCIR202 2.000 1.762 0.624 0.000 0.433 1.000

mPgCIR204 2.000 1.999 0.693 0.923 0.500 -0.847

mPgCIR207 2.000 1.965 0.684 0.578 0.491 -0.177

mPgCIR209 2.000 1.112 0.208 0.000 0.101 1.000

mPgCIR210 3.000 1.249 0.417 0.152 0.199 0.237

mPgCIR221 3.000 1.771 0.653 0.012 0.435 0.972

mPgCIR227 2.000 1.418 0.471 0.000 0.295 1.000

mPgCIR230 2.000 1.838 0.648 0.297 0.456 0.348

mPgCIR249 2.000 1.997 0.693 0.250 0.499 0.499

Mean 2.133 1.536 0.476 0.242 0.312 0.416

The observed mean heterozygosity (0.24) was lower than the expected mean heterozygosity (0.31), possibly suggesting 
the presence of null alleles. When a mutation occurs in the primer-binding site, preventing allele amplification, the number 
of supposed homozygotes in plants heterozygous for the allele increases (Carvalho et al. 2010).

The information index (I) was used to indicate the genetic diversity of the population and ranged from 0.07 (mPgCIR131) to 
0.69 (mPgCIR106, mPgCIR149, mPgCIR204 and mPgCIR249), averaging 0.47 (Table 4). This result suggests moderate diversity 
in the population, and that primers mPgCIR106 and mPgCIR204 were the most efficient in discriminating genotypes with 
greater genetic diversity. These same primers obtained high Ho values, confirming the index information (Lacerda et al. 2001).

This index, also known as the Shannon index, started to be more commonly used in genetic analysis with the advent of 
bioinformatics (Sherwin et al. 2006). It varies from 0 to 1, with values closer to 0 denoting lower genetic diversity (Moura et al. 2005).

The fixation index (F), which corresponds to the inbreeding coefficient, was estimated for the entire population and 
averaged 0.42, ranging from -0.94 to 1 between loci (Table 4). Only 13 loci obtained negative values, which is expected in 
random mating and indicates excess heterozygosity. While substantial positive values indicate inbreeding or undetected 
null alleles, the presence of null alleles is a problem in microsatellite data analysis, as they can lead to a false interpretation 
of results (Souza et al. 2008).
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The loci with negative values are the same whose Ho was greater than expected, which indicates that the alleles for these 
loci are not being fixed by inbreeding. The remaining loci, with positive values, have excessive homozygosity, which may 
mean failure in allele amplification, since the population evaluated originates from cross-pollination, and negative fixation 
indices would be expected. However, it is important to emphasize that, because the population originates from previous 
selections, it is possible that positive values predominate. However, it is important to emphasize that, since the population 
comes from crosses between relatives and from previous selections, positive values may be predominant.

Dissimilarity by neighbor joining

Genetic dissimilarity was detected between the studied genotypes, and genotype 5 was the most divergent. The total 
mean dissimilarity was 0.26.

Once obtained the dissimilarity matrix, the evaluated genotypes were clustered into three distinct groups using the 
neighbor joining method. This method was chosen because it shows greater similarity with the Bayesian analysis than the 
UPGMA method, with both having a close and high CCC.

The cutoff point in the dendrogram was determined using the criterion of Mojena (1977), with cuts at 73 to 80% 
dissimilarity and k = 1.25. This is a statistical criterion in which the calculation is based on the relative size of the distance 
levels in the dendrogram, dispensing with prior knowledge of the conformation of the groups (Faria et al. 2012).

Genotypes 5, 14, 31, 38, 44 and 64 were clustered in the first group, highlighted by the green color (Fig. 1), which was 
the most distant. The greatest dissimilarity found (0.83) was between genotypes 5 and 85, which had 15 alleles in common 
in 31 of the 45 analyzed loci. All genotypes in this group exhibited greater dissimilarity with genotype 85.

Figure 1. Dendrogram generated by the neighbor joining method (cophenetic correlation coefficient = 0.92), from the distance matrix by 
the weighted index obtained by microsatellite markers, listing the selected guava genotypes.
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Group II, in red (Fig. 1), consisted of genotypes 18, 51 and 91. Like the genotypes in group I, genotype 18 was the most 
distant from genotype 85, with 0.74 dissimilarity and 22 shared alleles. Genotypes 51 and 91 were the most dissimilar to 
genotype 5, with dissimilarity values of 0.81 and 0.72, respectively.

Group III, in blue (Fig. 1), contained the largest number of individuals, with 87 genotypes in total (90.6%). This 
number of genotypes in the same group indicates that these individuals share the greatest number of alleles for the 
evaluated loci. Individuals 67 and 68 were the least dissimilar, that is, the closest, with 0.93 similarity and 84 alleles 
in common.

Silva et al. (2021) evaluated this same population for the traits of soluble solids content, fruit weight, pulp 
weight, number of fruits per plant and yield per plant. The individual with the highest yield per plant was 53. With 
this information, we may recommend its cross with individual 5, which, in addition to being the most genetically 
divergent, was also one of the individuals with high yield value per plant. The dissimilarity between them is 0.73, 
with 24 alleles in common.

Population genetic structure

Bayesian analysis suggested the formation of two groups (Fig. 2). This is a more rigorous analysis that allows observing 
the population structure in more defined groups, as it is less subjective than hierarchical methods, such as the neighbor 
joining method.
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Figure 2. Delta K (ΔK) for the respective number of groups (K).

Based on Evanno et al. (2005), the optimal delta K was observed when K = 2, suggesting that maximum structuring was 
observed when the sample was divided into two well-structured groups (Fig. 3).

A 60% probability of adhesion for belonging to a certain group was adopted. Thus, the evaluated population was separated 
as follows: group I, in red (Fig. 3), was formed by the majority of genotypes, with 88 in total (91.6%). This group contained 
most of the genotypes that belonged to the same group (III) in the analysis by the neighbor joining method (Tables 5 and 
6 of the Supplementary Material).

Most genotypes belonging to group I have 100% probability of adhesion. However, some genotypes have  
mixed probability. For example, genotype 20 has 80% probability of adhesion to the red group, but 20% adherence  
to the green group, indicating alleles shared with the genotypes in this group (Fig. 3, Tables 5 and 6 of the Supplementary 
material).
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Figure 3. Clustering and genetic structuring of the 96 genotypes of Psidium guajava L. by Bayesian inference (K = 2).

Eight genotypes (8.33%) were allocated to group II, in green (Fig. 3), namely 5, 14, 18, 31, 38, 44, 64 and 91. Genotypes 
5, 14, 18, 31, 38, 44 and 64 showed near 100% adhesion to the green group. The adhesion of genotype 91, which belonged 
to the green group, was just above 60%, but with alleles shared with the red group.

This structuring means that group I has a set of alleles that differentiates it from group II for the set of markers used, 
which are genomic markers that are not related to phenotypic traits.

A low number of groups was formed. This happens when individuals share most of the genomic regions analyzed, which 
can be explained by the genetic structure of the population. These individuals are related and structured as full-sib families, 
in addition to having been previously selected based on their superior agronomic traits.

Obtaining two groups is enough to help direct the next crosses between guava genotypes belonging to distinct groups. 
Thus, the 96 genotypes clearly comprise a defined set of genetic structure.

Considering the different types of analysis, preferential crosses are indicated for genotypes that are in different groups, 
as they are more genetically distant, which will increase vigor. Additionally, the number of alleles evaluated and shared 
among them should also be observed, by selecting the most divergent ones.

Furthermore, for selection purposes, these results should be combined with the agronomic data of the evaluated 
population, by selecting the individuals with the greatest agronomic potential and, thereby, increasing gains and the 
efficiency of the selection process.

CONCLUSION

The SSR used in this study were efficient in discriminating guava full-sib genotypes.
There was variability in the evaluated population, which was structured in three distinct groups by the neighbor joining 

hierarchical method and in two groups by Bayesian analysis.
The Shannon index indicated that the primers used in the study were efficient to estimate genetic divergence in the 

population, which was moderate.
It is possible to indicate the most genetically divergent genotypes, that is, those allocated to different groups, to be used 

in the guava breeding program to obtain segregating populations. Accordingly, crosses between individual 5 and genotypes 
85, 89, 45, 51, 8, 16, 19, 96, which were the most dissimilar to each other, are recommended.
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SUPPLEMENTARY MATERIAL. 

Adaptations to the Doyle and Doyle Protocol (1990) to Genomic DNA extraction to  
Psidium guajava L.

Young leaf samples of selected genotypes were collected and macerated in liquid nitrogen, and genomic DNA 
extraction was performed using the procedure proposed by Doyle and Doyle (1990), with some adaptations. Here’s the  
protocol: 900 μL of extraction buffer containing 2% CTAB, 2 mol L-1 NaCl, 20 mmol L-1 EDTA, and 100 mmol L-1  
Tris-HCl (pH 8) were added to the tubes containing the macerated samples, as well as 2% PVP and 2% mercaptoethanol, 
the latter two necessary for the removal of phenolic compounds. The material was incubated at 65°C for 40 minutes and 
gently homogenized by inversion every 10 minutes. 

After the samples reached room temperature, the tubes were centrifuged for 8 minutes at 14,000 rpm and poured into 
a new 2-mL tube. 800 μL chloroform:isoamyl alcohol (24:1) was added to carry out the deproteinization. This material 
underwent gentle inversions for approximately 10 minutes, until it became cloudy. 

The organic phase was separated by centrifugation at 14,000 rpm for 8 minutes. The supernatant was transferred to 
a properly identified 2-mL tube. These steps were repeated three more times, and the added chloroform must be 100 uL 
more than the volume of the supernatant in each step. Nucleic acids were precipitated by adding two-thirds (500 μL) of the 
volume of ice-cold isopropanol, and incubated for 30 minutes at -70°C or for 3 hours at -20°C. 

The precipitate was sedimented by centrifugation at 14,000 rpm for 10 minutes. The supernatant was discarded, and 
the precipitate washed twice with 500 μL of chilled 70% ethanol to remove the salt present and twice more with 500 μL of 
chilled 95% ethanol. After each wash, the material was centrifuged for 5 minutes at 14,000 rpm. 

After discarding the last supernatant, the material was taken to the dry bath apparatus, until all ethanol was removed. 
Then, the material was resuspended in 100 μL of TE solution (Tris-EDTA – 10 mmol L-1 Tris-HCl, 1 mmol L-1 EDTA,  
pH 8) with RNase at a final concentration of 10 μg mL-1 and incubated in a water bath at 37°C for 40 minutes. The material 
was then stored at 20 °C until use.
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Information on the origin of each genotype of the 17 full-sib families

Table 5. Coding of the Psidium guajava samples evaluated in this study. 

Genotyped samples Field coding* Genotyped samples Field coding*
1 F13 P3 B2 51 F2 P5 B1
2 F15 P11 B2 52 F2 P8 B1
3 F6 P11 B2 53 F15 P12 B1
4 F6 P6 B2 54 F15 P10 B1
5 F2 P7 B2 55 F15 P11 B1
6 F6 P3 B2 56 F10 P1 B2
7 F2 P12 B2 57 F10 P6 B2
8 F1 P10 B2 58 F10 P12 B1
9 F3 P11 B2 59 F10 P10 B1

10 F6 P11 B1 60 F17 P7 B2
11 F10 P3 B2 61 F17 P2 B2
12 F11 P11 B1 62 F17 P4 B2
13 F15 P2 B2 63 F17 P5 B2
14 F6 P5 B1 64 F17 P6 B2
15 F8 P1 B2 65 F17 P8 B2
16 F12 P4 B1 66 F10 P7 B1
17 F8 P4 B2 67 F10 P1 B1
18 F10 P5 B1 68 F10 P7 B2
19 F12 P11 B2 69 F10 P2 B1
20 F7 P9 B1 70 F10 P8 B1
21 F12 P12 B2 71 F10 P11 B1
22 F12 P9 B2 72 F10 P8 B2
23 F12 P3 B1 73 F10 P5 B2
24 F12 P10 B2 74 F10 P4 B2
25 F12 P5 B1 75 F1 P11 B2
26 F12 P8 B2 76 F1 P12 B2
27 F12 P6 B1 77 F1 P8 B2
28 F12 P1 B2 78 F1 P5 B2
29 F8 P10 B1 79 F1 P4 B2
30 F8 P2 B1 80 F1 P2 B1
31 F8 P1 B1 81 F1 P6 B1
32 F8 P5 B2 82 F1 P3 B2
33 F8 P12 B2 83 F1 P11 B1
34 F8 P7 B2 84 F1 P7 B1
35 F8 P6 B2 85 F1 P9 B2
36 F8 P8 B2 86 F13 P8 B2
37 F8 P3 B1 87 F13 P1 B1
38 F8 P11 B2 88 F13 P4 B1
39 F8 P10 B2 89 F13 P2 B2
40 F8 P12 B1 90 F11 P10 B2
41 F8 P9 B2 91 F6 P10 B1
42 F8 P3 B2 92 F6 P2 B2
43 F2 P4 B1 93 F6 P12 B2
44 F2 P8 B2 94 F6 P10 B2
45 F2 P5 B2 95 F6 P8 B1
46 F2 P10 B2 96 F6 P4 B2
47 F2 P9 B2
48 F2 P2 B2
49 F2 P10 B1
50 F2 P9 B1

*The genotype 1 is the plant 3 of the block 2 and from the family 13; F: family; P: plant; B: block.
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Table 6. Separation of genotypes and their respective families in each group suggested by Bayesian analysis.

Genotypes in group I Genotypes in group II

Family 1 8, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85 -

Family 2 7, 43, 45, 46, 47, 48, 49, 50, 51, 52 5, 44

Family 3 9 -

Family 6 3, 4, 6, 10, 92, 93, 94, 95, 96 14, 91

Family 7 20 -

Family 8 15, 17, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 
41, 42 31, 38

Family 10 11, 56, 57, 58, 59, 66, 67, 68, 69, 70, 71, 72, 73, 
74 18

Family 11 12, 90 -

Family 12 16, 19, 21, 22, 23, 24, 25, 26, 27, 28 -

Family 13 1, 86, 87, 88, 89 -

Family 15 2, 13, 53, 54, 55 -

Family 17 60, 61, 62, 63, 65 64


