
ABSTRACT: Heat stress can impact crop development and yield and amino acids play diverse essential roles in plants. This work aimed 

to study the long-term effects of foliar spray with L-arginine in antioxidant machinery, physiology, nutrition, productivity and fruit quality of 

tomato plants subjected to transient heat stresses. Six concentrations of L-arginine were sprayed on the plants: 0 (control), 0.10, 0.25, 0.50, 

1.0 and 2.0 g·L–1. The content of hydrogen peroxide (H2O2), a reactive oxygen species, decreased concurrently to the increasing arginine 

concentration. The ascorbate peroxide (APX) activity had an inverse behavior to that observed for H2O2 content (r = –0.79), not only indicating 

that arginine is able to modulate APX, but also suggesting that this enzyme plays an important role on the mitigation of H2O2 generation 

under heat stress. Ascorbate peroxide and catalase (CAT) activities had a positive correlation (r = 0.82), showing that these enzymes may 

work in tandem. The influence of arginine on photosynthesis activity and gas exchange was generally weak and depended mainly on the 

plant developmental stage. Yield was increased by 19.8 and 23.1% in plants that received 1.0 and 0.5 g·L–1 of arginine, respectively, when 

compared to control plants. In conclusion, the use of exogenous L-arginine can protect tomato plants against oxidative imbalance under 

transient heat within protected environments.

Key words: amino acids, antioxidant machinery, ascorbate peroxidase, catalase, oxidative stress, Solanum lycopersicum.

Exogenous arginine modulates leaf antioxidant enzymes 
and hydrogen peroxide content in tomato plants under 
transient heat stresses
Vivyan Justi Conceição1 , Simone Costa Mello1,* , Marcia Eugenia Amaral Carvalho2 , Salete 
Aparecida Gaziola2 , Ricardo Antunes Azevedo2 
1. Universidade de São Paulo – Escola Superior de Agricultura “Luiz de Queiroz” – Departamento de Produção Vegetal – Piracicaba (SP), Brazil.

2. Universidade de São Paulo – Escola Superior de Agricultura “Luiz de Queiroz” – Departamento de Genética – Piracicaba (SP), Brazil.

Received: Dec. 1, 2020 | Accepted: Mar. 10, 2021

Section Editor: Rafael Vasconcelos Ribeiro

*Corresponding author: scmello@usp.br

How to cite: Conceição, V. J., Mello, S. C., Carvalho, M. E. A., Gaziola, S. A. and Azevedo, R. A. (2021). Exogenous arginine modulates leaf 
antioxidant enzymes and hydrogen peroxide content in tomato plants under transient heat stresses. Bragantia, 80, e2621. https://doi.
org/10.1590/1678-4499.20200493

The world demand for tomato (Solanum lycopersicum L.) fruits rises every year due to their multiple utilizations 
(FAOSTAT 2020), that include in natura consumption and production of processed sauces and therapeutic compounds 
(Bergougnoux 2014). Therefore, several growers are using protected environments in order to mitigate effects of biotic and 
abiotic stressors on plants and, consequently, to improve tomato yield. However, some abiotic factors are still hard to manage 
even in protected environments during the summer. For instance, heat stress can be detected in plants from regions with 
hot seasons (Lang et al. 2020), despite the use of ventilators and water sprays (Ferrari and Leal 2015).

High temperature inhibits photosynthetic activity, alters cellular homeostasis, impairs growth of vegetative and 
reproductive organs and accelerates plant physiological maturity, frequently triggering reductions in the crop productivity 
while increasing fruit disorders and visual damages (Lang et al. 2020; Nagarajan and Nagarajan 2010; Singh et al. 2017; 
Wang et al. 2018). Most of such side effects are resulted from oxidative stress, which arises from a disproportion between 
production and elimination of reactive oxygen species (ROS) that can trigger protein oxidation, cytotoxicity and even DNA 
abandonment, hence threating the cellular viability (Soares et al. 2019).

In order to maintain the cell redox homeostasis, plants activate a powerful and multifaceted antioxidant system that is 
composed by enzymatic and nonenzymatic components. The enzyme superoxide dismutase (SOD) acts as the first line of 
plant cell defense, dismutating O2

– to H2O2 that can be subsequently scavenged by the antioxidant enzymes guaiacol peroxidase 
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(GPX), catalase (CAT) and ascorbate peroxidase (APX) (Soares et al. 2019). Bearing in mind the importance of the mitigation 
of oxidative stress to reduce crop losses, researchers and growers are using natural and/or artificial compounds that are able to 
enhance the plant antioxidant system, such as seaweed extracts and amino acids (Carvalho et al. 2018; Serciloto et al. 2014).

The use of amino acid-based products for alleviation of effects from high temperatures is not a new approach, but data originated 
from long-time application of amino acids are scarce. Therefore, this study aimed to evaluate the influence of foliar spray with 
different concentrations of the amino acid L-arginine on the antioxidant machinery, physiology, nutritional status, productivity and 
physicochemical features of fruits from tomato plants, which were grown in a protected environment, after their exposure to transient 
heat stresses. The hypothesis is that application of foliar sprays containing L-arginine on tomato plants could enhance responses of 
their antioxidant machinery against transitory heat stresses and, consequently, improve the fruit quality and yield in such conditions.

Seedlings of tomato cultivar Pizzadoro were used in the experiment carried out in a greenhouse located at Piracicaba, 
São Paulo, Brazil. In this region, the climate is Cwa, according to the Köppen’s classification (i.e., subtropical climate with 
dry months in winter — July to August — and rains in summer). During period of crop cultivation, the average temperature 
inside the greenhouse was 25 °C, reaching peaks of 35.1 °C (Fig. 1). The photosynthetic active radiation (PAR) ranged 
between 26.51 and 28.18 mol·m–2·day–1 with average value of 27.60 mol·m–2·day–1. The average, maximum and minimum 
relative humidity was 77, 98 and 42%, respectively.
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Figure 1. Average air relative humidity, and maximum and minimum temperatures during the experimental period.

Note. Red line indicates 30 °C, a temperature from which the side effects caused by heat on plant development and yield are potentially enhanced. Relative 
humidity = rel hum, maximum temperature = max temp and minimum temperature = min temp.

Six concentrations of L-arginine were applied through foliar spray (0, 0.1, 0.25, 0.50, 1.0 and 2.0 g·L–1), which was 
performed every 15 days from the beginning of blooming stage on the 21st, 39th, 59th, 79th and 99th days after transplantation 
(DAT) of seedlings. The volume used for sprays ranged from 500 to 1200 L·ha–1, according to the plant development. Plants 
were grown in pots filled with coconut fiber (Golden Mix, Amafibra). An automatized fertigation system (Irrigas), based 
on tensiometers, was used to control water and nutrient supply to the plants, according to their developmental stage. In the 
first growth period (from seedling transplantation to maturation of the first bunch), solution 1 was used in the fertigation 
system; afterwards, it was replaced by solution 2 (Table 1).

The net photosynthesis rate (A) and stomatal conductance (gs) were evaluated three days after application of arginine 
treatments. The evaluations were performed from 3 to 5 pm in a completely expanded leaf from one plant of each replication 
on the 38th and 52nd DAT of seedlings by using portable gas exchange system equipment (model LI-6400XT).

On the 40th DAT, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), boron (B), 
copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) concentrations were evaluated according to methodology of Malavolta 
et al. (1997). The fourth newly expanded leaf was collected from four plants that were used to estimate an average value in 
each of the three replications from each treatment.

Malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, as well as the activities of SOD (EC 1.15.1.1), CAT 
(EC 1.11.1.6) and APX (EC 1.11.1.11) were analyzed in the newly completely expanded leaves. In the greenhouse, the 
leaves were harvested on the 62nd DAT and placed in liquid nitrogen. Next, all samples were stored in a −80 °C freezer until 
analyses. Leaf tissues were grinded to a fine powder in liquid nitrogen before the analysis onset.
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Table 1. Nutritive solutions used for cultivation of tomato (S. lycopersicum ‘Pizzadoro’) plants during their vegetative and reproductive stages 
(solutions 1 and 2, respectively).

Fertilizer Solution 1 (mg·L–1) Solution 2 (mg·L–1)

Calcium nitrate 600 750

Potassium nitrate 0 0

Potassium sulphate 400 574

Magnesium sulphate 375 640

Monoammonium phosphate 0 0

Monopotassium phosphate 281.25 224.4

Magnesium nitrate 37.5 0

Ammonium nitrate 125 0

Iron (6.5%) 3 3

Boric acid 5 5

Conmicros* 25 25
* Composition (%): B (1.82); CuEDTA (1.82); FeEDTA (7.26); MnEDTA (1.82); Mo (0.36); Ni (0.36); ZnEDTA (0.73).

Table 2. Pearson’s correlation analysis among variables related to the activity of catalase (CAT), superoxide dismutase (SOD) and ascorbate 
peroxidase (APX); content of hydrogen peroxidase (H2O2) and malondialdehyde (MDA); fresh weight of commercial fruits (CF); and the rates 
of net photosynthesis (A) and stomatal conductance (gs) in tomato (S. lycopersicum ‘Pizzadoro’) plants treated six L-arginine concentrations 
(0, 0.1, 0.25, 0.50, 1.0 and 2.0 g·L–1).

 CAT SOD APX H2O2 MDA SF MF LF CF A gs

CAT - 0.72* 0.82*** -0.51* -0.09 0.02 -0.28 0.11 -0.18 -0.34 -0.31

SOD - 0.68*** -0.27 0.26 -0.04 -0.08 -0.10 -0.10 0.07 -0.06

APX - -0.79*** -0.05 0.02 -0.14 0.11 -0.07 -0.17 -0.20

H2O2 - 0.04 -0.09 -0.14 -0.11 -0.17 0.25 0.20

MDA - -0.03 0.28 -0.18 0.15 0.37 0.16

SF - 0.20 0.29 0.65** 0.20 0.29

MF - 0.15 0.85*** 0.29 0.20

LF - 0.43 -0.28 -0.35

CF - 0.25 0.21

A - 0.91***

gs -
***, **, * significant at 0.1, 1 and 5%, respectively.

Lipid peroxidation was measured as MDA content according to Heath and Packer (1968), and H2O2 content was 
determined as described by Alexieva et al. (2001). Protein content was determined by using bovine serum albumin as 
standard (Bradford 1976). The extraction of antioxidant enzymes was carried out according to Azevedo et al. (1998). 
Superoxide dismutase total activity was determined according to procedure of Cembrowska-Lech et al. (2015). Catalase 
activities were quantified by spectrophotometer, as described by Azevedo et al. (1998). Ascorbate peroxidase activity was 
analyzed following procedures of Nakano and Asada (1981).

Fruit harvests were performed from February 21 (DAT 61) to April 17 2017 (DAT 111). The total fruit production was 
the sum of both commercial and noncommercial fruits. For determination of commercial fruit production, the weight of 
small (50–65 mm), medium (66–80 mm) and large-sized (81–100 mm) fruits was taken into account.

Fruits with both less than 50 mm of diameter and visual damages (such as cracks and stains) were considered as 
noncommercial fruits. The total soluble solids (TSS), pulp pH, total titratable acid (TTA), TSS/TTA ratio and ascorbic acid 
content were determined in six fruits of each experimental unit at DAT 93 (Carvalho et al. 1990).
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The experimental design was randomized blocks with six treatments [0 (control), 0.1, 0.25, 0.50, 1.0 and 2.0 g·L–1 of 
arginine] that contained three replications with 10 plants per plot, from which only the six central potted plants were used 
for statistical analyses. The assumptions for the analysis of variance (ANOVA, i.e., normal distribution, variance homogeneity 
and error independence) were checked for every variable. Next, data were subjected to ANOVA (p ≤ 0.05) and means were 
compared by Duncan test (α ≤ 0.05) by using the statistical analysis system (SAS 2011) software. In addition, the Pearson’s 
correlation analysis was employed to evaluate relations among some of the studied variables.

The optimum temperature for tomato plant development varies from 21 to 26 °C, depended on crop stage (Rivero  
et al. 2004; Sadashiva et al. 2016). However, temperatures next to 30 °C were frequently detected in different stages of tomato 
development, reaching peaks of 35.1 °C (Fig. 1), so potentially increasing the occurrence of negative effects on pollen quality, 
fruit set and/or ripening (Jegadeesan et al. 2018; Singh et al. 2017). Most of these side effects are linked to oxidative stress, 
which is triggered by the increased generation of dangerous compounds, such as ROS, to the biological macromolecules 
(Frank et al. 2009; Soares et al. 2019). According to Wang et al. (2018), high temperature causes oxidative burst of superoxide 
anion and/or H2O2 in plants due to the inhibition of energy and electron transference in the photosystem II.

In order to cope with exacerbated ROS generation, tomato plants are able to modulate antioxidant machinery by enhancing 
the content of nonenzymatic antioxidants, such as carotenoids and sugars (Carvalho et al. 2020a; Zhou et al. 2017), and improving 
the activity of antioxidant enzymes like SOD, CAT and APX (Frank et al. 2009; Soares et al. 2019). An enhanced APX activity, 
which was related to the reduction of H2O2 content, was observed by increasing L-arginine concentration sprayed on plants  
(Fig. 2 and Table 2). This result not only suggests that exogenous arginine is able to modulate APX activity, but also indicates that 
arginine-driven APX activity plays an important role in the mitigation of H2O2 generation in tomato plants subjected to transient 
heat stresses. An inverse relation between H2O2 content and APX activity was also observed in arginine-treated tomato plants 
subjected to drought (Nasibi et al. 2011), reinforcing evidences that exogenous arginine can affect the performance of APX activity.
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Figure 2. Oxidative stress indicators and activity of antioxidant enzymes in tomato leaves.

Note. a) hydrogen peroxide content (H2O2) and ascorbate peroxidase activity (APX); b) malondialdehyde content (MDA); c) catalase activity (CAT); d) superoxide 
dismutase activity (SOD) in leaves of tomato (S. lycopersicum ‘Pizzadoro’) plants that received foliar spray with different L–arginine concentrations. Squares 
represent H2O2 content, and circles represent APX activity. Means followed by different letters, for each variable, differ by Duncan’s test (p ≤ 0.05) (n = 3).
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Data from the present study also indicate that APX and CAT activities may act in tandem in arginine-treated plants 
to mitigate ROS production (Fig. 2, Table 2). According to Wang et al. (2018), a diverse ROS-scavenging network 
functions in concert in chloroplasts, including mainly APX-glutathione cycle, to support the equilibrium between 
ROS generation and scavenging. One hypothesis to explain these plant responses may be linked to the action of 
nitric oxide synthase-like enzymes (that use arginine as substrate), which induce post-translational modifications 
in antioxidant enzymes, such as CAT, SOD and monodehydroascorbate reductase (MDHAR) (Corpas et al. 2019). 
In addition, it is known that arginine is a precursor of polyamines (PAs), which are potential scavengers of different 
ROS, like •OH and 1O2 (Das and Misra 2004).

The PAs have multiple roles in plant development, likely due to their ability to regulate DNA replication, 
transcription and translation; cell proliferation; enzyme activities; cellular cation-anion balance and membrane 
stability (Gill and Tuteja 2010). Because PAs synthesis is increased in plants facing environmental challenges, and 
the use of different approaches to enhance the production PAs also lead to an improved plant tolerance to stresses 
(Chen et al. 2019), PAs are considered natural alleviatory agents of the effects from nonoptimal environmental 
conditions on plants (Spormann et al. 2021). For instance, the foliar application of PAs on two wheat varieties under 
heat stress decreased both grain damages and MDA content while enhancing the activity of antioxidant enzymes, 
such as SOD and CAT (Jing et al. 2020). Modifications in APX activity also occur simultaneously to alterations 
in PAs content and type, evidencing close relation between PAs and antioxidant enzymes (Spormann et al. 2021). 
However, with the current data, the mechanism by which arginine modulates antioxidant machinery cannot be 
clearly established.

The foliar spray of arginine neither improved plant nutritional status (Table 3) nor changed the pH, TSS, TTA, 
TSS/TTA ratio and ascorbic acid content in fruits (data not shown). The effect of arginine on tomato physiology 
seems to be stronger in younger plants, since they were more responsible on the 38th than 52nd DAT. In this younger 
stage, the net photosynthesis and stomata conductance rates reached the lowest values at 0.1 g·L–1, while the other 
arginine concentrations provoked no alterations in relation to the control plants (Fig. 3). No significant differences 
were observed among treatments for plant productivity, despite increases by 23.1 and 19.8% in tomato yield after the 
application of this amino acid at 0.5 and 1.0 g·L–1 (Fig. 4). This increment can be agronomically and commercially 
important for growers, but further studies using large-scale tomato production should be carried out. It is also important 
to take into consideration the role of nutrients in eventual plant protective mechanisms to neutralize the side effects 
of abiotic stress (Carvalho et al. 2020b), but no major difference was noticed in treated plants, when compared to the 
control ones, for the concentration of essential elements (Table 3).

Table 3. Nutrients in the leaves of tomato (S. lycopersicum ‘Pizzadoro’) plants that received foliar sprays with different L-arginine concentrations 
(0, 0.1, 0.25, 0.50, 1.0 and 2.0 g·L–1).

Arginine N P K Ca Mg S Cu Fe Zn Mn B

0 45.50a 5.96a 25.90a 17.06a 2.87a 5.83a 49.33a 120a 58.00a 234.66a 43.33ab

0.1 45.50a 6.10a 26.86a 17.40a 3.10a 6.06a 38.00a 128a 61.33a 239.33a 45.66ab

0.25 46.66a 6.00a 27.40a 17.10a 3.00a 6.23a 36.00a 129a 60.33a 237.33a 43.66ab

0.50 45.96a 5.93a 27.90a 17.66a 3.16a 7.80a 50.66a 149a 66.66a 243.33a 56.66a

1.00 43.86a 6.43a 25.36a 16.40a 3.67a 5.83a 58.00a 136a 56.00a 240.00a 38.00b

2.00 45.50a 6.23a 25.36a 17.23a 3.01a 5.60a 54.00a 140a 58.33a 241.33a 40.00ab

Distinct letters denote different means by Duncan test (p ≤ 0.05) for comparison among treatments.

Overall, this study demonstrated that exogenous L-arginine can affect the performance of antioxidant enzymes and 
the content of ROS in tomato plants subjected to transient heat stresses within protected environment. However, these 
results should be validated in field trials, since the better understanding on the mechanisms that support plant response to 
challenging environments is necessary to guide both crop management and biotechnological programs for food security 
purposes in times of fast environmental changes.
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