
ABSTRACT: Metal contamination problems have become common everywhere with several known cases of metal toxicity in the agriculture 

sector. Metals including copper (Cu) are important to plant metabolism in trace amounts; however, excessive amounts can cause toxicity 

to the plants. The biochars have potential to absorb these trace elements in soil. A study was conducted to determine the characteristics 

and potential of different plant-based biochars to control Cu uptake and influence on the growth of maize (Zea mays L.). Five biochars 

from different agricultural waste materials, such as rice husk (RH1 and RH2), empty fruit bunches (EFB1 and EFB2) and oil palm kernel 

(OPK), were selected in the study. Each biochar was applied at 20 t·ha–1 on Cu contaminated soil, and maize was grown for 56 days in pots 

with 10 kg of acidic soil. The rice husk biochar (RH1) with a substantial number of heterogenic functional groups (alcohols and phenols, 

carboxylic acids and derivatives, amines, saline, alkynes) on its surface and more porous structure was able to retain more nutrients. It also 

give the best results in terms of reducing the Cu concentrations (1.61 mg·kg–1) in plants and plant uptake (10.15 µg·pot–1). Other than that, 

the highest plant growth parameters were also perceived in rice husk biochar applications. Hence, RH1 biochar had the most promising 

results in terms of controlling the plants Cu uptake and improved maize plant growth.
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INTRODUCTION

Zea mays, more commonly referred to as maize, is a member of the grass family Poaceae, or true grasses. Maize 
is thought to have been originated 55–70 million years ago in what is now Central or South America and has since 
diversified into nearly 10 000 nondomestic relatives. It has the greatest global production of any crop species, around  
800 million tons was produced worldwide in 2013, accounting for 32% of the total cereal production (Scott and Emery 2016).  
Zea mays ssp. are one of the world’s most important crop plants, as boosting a multibillion-dollars annual revenue. In 
addition to its agronomic importance, maize has been a keystone model organism for basic research for nearly a century. 
Within the cereals, which include other plant model species such as rice (Oryza sativa), sorghum (Sorghum bicolor), wheat 
(Triticum spp.) and barley (Hordeum vulgare), maize is the most thoroughly researched genetic system. Several attributes 
of the maize plant, including a vast collection of mutant stocks, large heterochromatic chromosomes, extensive nucleotide 
diversity and genic collinearity within related grasses, have positioned this species as a centerpiece for genetic, cytogenetic 
and genomic research (Strable and Scanlon 2009).

Globally, 14 billion metric tons of biomass are generated every year from the agricultural sector and most of them are 
either discarded or burnt (UNEP 2009; Asim et al. 2015). These biomass wastes include corn stalks, rice husks, straw, coconut 
shells, bagasse, nutshells and livestock manure. Even forestry residues, such as wood chips, bark, sawdust, timber slash 
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and mill scrap, can be considered as biomass waste. Instead of burning these wastes, which causes widespread ecological 
problems including greenhouse gasses, it is vital to find a sustainable method to manage them. In Malaysia, the bulk of 
agriculture biomass waste comes from the cultivation of tropical fruits, palm oil and paddy (Ghani et al. 2010). For oil 
palm production, 1 ton of oil palm fruit bunch process produces 0.07 ton of kernel shell, 0.146 ton of fiber and 0.2 ton of 
empty fruit bunch (EFB), whereas the cultivation of rice produces two types of residues: rice husk and rice straw. The husk 
accounts for 22% of paddy weight; however, the rice accounts for 78% (Umamaheswaran and Batra 2008).

Biomass waste generated from oil palm and rice cultivation can be used for biomass-based power generation. Alternatively, 
the recycling of these wastes into biochars is another way to manage them. Biochar is produced by the thermal decomposition 
of biomass under oxygen-limited conditions (pyrolysis), and it has been utilized in soil remediation over the recent years. 
It is a renewable, microporous and carbon (C) rich product that also contains nitrogen (N), hydrogen (H), oxygen (O) and 
ash (Lehmann et al. 2003).

The most important aspect of biochar is that it acts as a soil amendment and it increases the soil physicochemical 
properties. The characteristics of biochars depend on the original waste product and the condition of pyrolysis  
(Novak et al. 2009 b). Depending on these factors, it can have different surface areas, pore sizes, distribution of pores, pH, 
carbon structures, nutrient content and functional groups (Lehmann et al. 2003). Besides large amounts of biomass waste 
being produced in the agricultural sector, another major issue that befalls this sector is heavy metal contaminated soils. 
Although some heavy metals, such as copper (Cu) and zinc (Zn), are required by plants, they can become toxic in higher 
concentrations. Whereas heavy metals, such as arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg), can be toxic even 
in minimum concentrations. These heavy metals increase over time in agriculture soils due to continuous applications of 
fertilizers and pesticides (Neilson and Rajakaruna 2015). This is because some fertilizers are derived from waste materials  
that contain heavy metals, such as sewage sludge, fly ash and biosolids (Mench et al. 2010). Whereas, pesticides and herbicides 
contain heavy metals, like As, to kill off pests and weeds, and these heavy metals accumulate in the soil over time (Neilson 
and Rajakaruna 2015).

As mentioned previously, Cu is a micronutrient that is required by plants. It supports in seed production, disease 
resistance and regulation of water uptake. Despite being essential, it remains a highly reactive, major toxic metal (Sharma 
et al. 2007). High doses of Cu can cause a gradual accumulation of Cu in the soil and thereby increase Cu toxicity towards 
crops. This has become a prevalent issue in some plantations (Neilson and Rajakaruna 2015; Sharma et al. 2007). Recently, 
high concentrations of heavy metal in soils or groundwater have been reported in some countries, again proving it as a 
global issue (Sharma et al. 2007). Biochar may be a solution for the problem. It provides a sustainable approach to manage 
agriculture biomass waste, while having the potential to remediate contaminated soils (Paz–Ferreiro et al. 2014). Besides, 
it can also reduce dependency on inorganic fertilizers, while providing a cheap, organic soil amendment.

However, the efficiency and characteristics of biochar and its effects on plant growth performance and soil chemical 
properties remain a subject that requires further research. Based on previous study, biochar had the strongest sorbent 
compared with other organic materials, largely due to its characteristics of having high affinity and capacity for absorbing 
organic compounds (Yang and Sheng 2003). Another positive trait of biochar is that its absorption is comparatively less 
flexible than other organic materials (Sander and Pignatello 2007). Thus, some heavy metal mobility and bioavailability 
may be controlled by the presence of biochar (Namgay et al. 2010). Hence, this study was conducted to determine various 
characteristics and effectiveness of different biochars to control Cu uptake and influence on the growth of maize (Zea mays L.).

MATERIAL AND METHODS

Location and experimental details

The efficacy of different biochars was determined by growing maize crop on acidic soils, a common prevalence in 
Malaysia. The experiment was led at a glasshouse located in Rimba Ilmu, University of Malaya. The pH of experimental 
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soil was 5.65, total N 0.06%, available P 92.28 mg·kg–1, organic C 0.51%, exchangeable K, Ca and Mg of 0.21, 0.85 and  
0.18 cmolc·kg–1, respectively. The soil texture was sandy loam. Five various types of biochars, including rice husk (RH1 and 
RH2), empty fruit bunches (EFB1 and EFB2) and oil palm kernel (OPK), were used at a rate of 20 t·ha–1 with four replicates. 
Each treatment was planted on its own individual pot, containing 10 kg of soil. Prior to the biochar mixing, the treatment 
was contaminated with 60 ppm of Cu, using 5% copper sulphate (CuSO4.5H2O) of 60 mg·L–1 Cu, and NPK fertilizer mixed 
in all the relevant treatments at the recommended rates. After contaminating the treatments with Cu for two weeks, biochars 
were mixed into the soil for two weeks before sowing the maize (three seeds·pot–1). The water was given as required and 
treatments were harvested after 55 days. The plant height, number of leaves, plant uptake of Cu, and soil pH, cation exchange 
capacity (CEC), electrical conductivity (EC) and organic carbon (OC) were determined. The experiment was conducted in 
a complete randomized design (CRD).

Physical analysis

The surface structure of biochar was determined using the field emission scanning electron microscopy (FESEM) 
Hitachi-SU8220 model, Japan. Four samples of each type of biochar were magnified at different magnifications to obtain 
clear and detailed results. The Brunauer–Emmett and Teller (BET) surface area of biochar were calculated by measuring 
N2 gas adsorption at –196 °C using a Micrometrics ASAP 2020, TRISTAR II 3020 Kr, USA, according to the single point 
method. Samples were degassed at 100 °C under continuous N2 flow for 24 h prior to analysis.

Chemical analysis

The biochar pH was measured using a CRISON micro pH 2001 pH meter, while the EC was measured using a conductivity 
meter. Total organic C and total N were determined by the Kjedahl digestion method (Bremner and Mulvaney 1982) and 
available phosphorus (P) was determined using the method of Bray No. 2 (Bray and Kurtz 1945). Dry ash and digestion with 
nitric acid were the combination methods used to determine the total concentration of P, K, Ca, Mg, Cu and Zn. Available 
Cu in soil was extracted using 0.1 M·HCl (Baker and Michael 1982). The concentrations of these elements were determined 
using inductively coupled plasma spectrophotometer (ICP-OES, Varian 725-ES, USA).

The functional mineral groups contained in biochar were identified by PerkinElmer Fourier-transform infrared 
spectroscopy (FTIR) spectrum 400, USA. One gram of each biochar sample was pressed into a thin film form and analyzed at 
different wavelengths. For the presence of minerals and elements, the X-ray diffraction (XRD) analysis was performed using 
PANalytical EMPYREAN, USA. Meanwhile, the X-ray fluorescence (XRF) spectroscopy was performed using Shimadzu 
Fluorescence Spectrophotometer μ-EDX 1400, Japan.

Adsorption study

The absorption of Cu on biochar was measured using the batch method. Two grams of each sample were 
placed in centrifuge tubes (falcon tube). The samples were then added with 0.01 mol L–1·CaCl2 solution containing 
various Cu concentrations (0, 20, 40, 60, 80, 100, 150 and 200 mg·L–1) with three replications. The biochar mixture 
was stirred overnight (16 h) at room temperature (25 °C) on a rotary shaker (Lab Line Orbital Shaker, USA) at  
30 revolutions per minutes (rpm). The suspension was centrifuged (Sorvall ST 16 Centrifuge Series, USA) at  
3000 rpm for 15 min, followed by filtration through Whatman No. 1 filter. The concentration of Cu in the clear 
extract solution was determined using the inductively coupled plasma optical emission spectrometry (ICP-OES, 
Varian 725-ES, USA). The Cu adsorbed by the biochar was then fixed into the Freundlich and Langmuir isotherm 
and calculated as follows:

					     Ce/q = 1/kqmax + Ce/qmax	�  (1)
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where, Ce = concentration of Cu in equilibrium solution (mg·L−1), q = amount of Cu sorbed by the biochars (mg·kg−1), 
qmax = maximum adsorption (mg·kg−1) and k = ion bonding energy (m3·kg−1).

Value of q was measured by the following equation:

					          q = (Co – Ce) V/W	�  (2)

where, Co = initial equilibrium of Cu concentration in the solution (mg·L−1), Ce = equilibrium concentration of Cu soil 
solution (mg·L−1), V = volume of biochar solution (cm3) and W = weight of biochar sample (g).

A plot of Ce/q versus Ce yielded a straight line with a slope of 1/qmax and intercept of 1/kqmax. The slope and intercept 
were used to measure qmax and k, as well as to test changes between biochars series and Cu. The Freundlich equation is 
shown below:

					     log q = log-Kf + 1/n log-Ce	� (3)

where, Ce = concentration of Cu in equilibrium solution (mg·L−1), q = amount Cu sorbed by the biochars (mg·kg−1),  
kf = equilibrium coefficient (m3.kg−1) and 1/n= constant.

Soil analysis

The pH, EC, OC and available P of the soil were determined using the same methods for the biochar analysis. The CEC 
was calculated using the leaching method (Kitsopoulos 1999).

Cu concentration in plant

The dry ashing process was used to determine the total concentration of copper in plants. The P, K, Ca and Mg were 
extracted from the plant and then determined using the inductively coupled plasma spectrophotometer (ICP). The Cu 
uptake in plants was calculated using the following formula:

			   Cu uptake in plants = (Plant biomass × Cu concentration in plant)	�  (4)

Statistical analysis

Analysis of variance (ANOVA), along with Tukey’s test, was performed for growth parameters, soil properties and Cu 
uptake in plants. It was used to analyze the difference and relationship among the treatments. All statistical analyses were 
performed using SAS version 9.3. The experimental data was fitted to the Freundlich and Langmuir equation to determine 
the intensity and the capacity of the biochar to adsorb Cu. The suitability of these isotherm models for the adsorption study 
was measured by determining their correlation coefficient (r2 values).

RESULTS AND DISCUSSION

Physical characterization of various biochars

The five different types of biochar from three types of agricultural wastes were used in this study. All biochar 
samples exhibited differing physicochemical properties and the formation of pores and surface areas were dependent 
on the temperature. During pyrolysis at lower temperatures no physiological changes occurred. Based on the scanning 
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electron microscopy, it can be observed that the biochars had different physical characteristics (Fig. 1). The EFB1 
biochar possessed medium, uniformed pore sizes, with a maximum of 50 µm in diameter at 700 × magnification. 
Small particle of ashes could also be perceived on the surface of the EFB1 biochar (Fig. 1b). In comparison, EFB2 
biochar (Fig. 1b) had smooth, larger, well-shaped and more uniformed pore sizes, under 50 μm in diameter at 900 × 
magnification. Rice husk 1 biochar showed a different pore pattern from both empty fruit branches biochars, whereby 
the pore shape was round and the size was different to the adjacent pores, which were not uniformly distributed with 
50 μm in diameter at 700 × magnification (Fig. 1c). Diminished and not well shaped pores were observed for RH2 
biochar with 50 μm in diameter at 1000 × magnification (Fig. 1d). Figure 1e shows that the OPK biochar had small, 
clumped and not uniformly distributed pores with 50 μ in diameter under 900 × magnification. Small particles of ash 
were also spotted on the surface of the OPK biochar.

     

        

 

 

(a) (b)

(c)

(e)

(d)

     

        

 

 
Figure 1. Field emission scanning electron microscopy imaging of biochars at different magnification. (a) biochar EFB1, (b) biochar EFB2, 
(c) biochar RH1, (d) biochar RH2 and (e) biochar OPK.
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The formation and nature of the pores in biochars were dependent on the waste source and the biochar production 
method, namely the pyrolysis temperature. The surface area of biochar increased with increasing temperature, at which 
deformation occurred (Zarcinas et al. 2004; Lehmann and Joseph 2009). The pyrolytic temperature of a biomass affected the 
uptake rate of a compound by biochar as the temperature affected the degree of carbonization of a biochar. However, organic 
matter is completely carbonized at higher temperatures (Chen et al. 2012). At the same time, surface area was significantly 
increased and maximum nanopores developed, resulting in sharply enhanced adsorption rate (Zhou et al. 2010). This 
explained the high surface area of RH1, RH2 and OPK biochars, compared to the EFB1 and EFB2 biochars, which were 
produced at lower temperatures. Furthermore, the surface area of biochar was influenced by micropore volume, feedstock 
and production temperatures (Boateng 2007). In addition, the biochar production method, especially the temperature, has 
a great influence on the biochar C content. Based on the biochars used in this study, OPK biochars were found to be rich 
in C due to its high pyrolysis temperature. High pyrolysis temperatures produce high fractions of stable C and total C due 
to an increased release of volatiles (Crombie et al. 2013).

Chemical characterization of various biochars

The pH values of biochar samples varied from one another; however, all were alkaline. The highest pH was for 
RH2 (9.66), closely followed by EFB2 (9.46). The lowest pH was observed in RH1, with a reading of 7.87. Biochars 
from the pyrolysis processes were usually alkaline in nature with pH > 7.00 (Bagreev et al. 2001; Sari et al. 2014). 
Adding biochar into deionized water increases the solution pH and biochar produced at higher temperatures exhibit a 
higher pH. The increase of pH is likely resulted from the release of alkali salts from the feedstock during the pyrolysis 
process (Ahmad et al. 2012). Furthermore, because of higher temperature while producing biochar, higher amounts 
of ash were produced and resulted in higher pH (e.g., RH1). The highest EC (9.37 dS·m–1) was found in EFB1 and 
the lowest was in RH2 (1.33 dS·m–1). The total OC percentage varied among the different biochars. The highest OC 
(43.41%) and Ca (2.27%) contents were found in OPK, while the highest percentages of N (1.29%), K (5.36%), Mg 
(0.44%) and Cu (29.23%) were observed in EFB1 samples. For available P, the highest reading (0.21%) was obtained 
from RH2 (Table 1). The EC measured the soluble salts and it could be utilized as an indicator of total soluble mineral 
and inorganic salts content in biochar (Ding et al. 2010). Empty fruit bunches 1 has the highest amount of total soluble 
minerals. Biochar also influences the chemical properties of the soil, such as changing pH, EC, CEC and nutrient 
levels (Gundale and DeLuca 2007).

Table 1. Chemical properties of various biochars.

Biochar pH
EC Total OC N P K Ca Mg Cu

(dS·m–1) ------------------------------------------------- (%) --------------------------------------------------- (ppm)

EFB1 8.22 9.37 42.50 1.29 0.19 5.36 0.47 0.44 29.23

EFB2 9.46 6.19 38.34 0.19 0.17 3.52 0.64 0.33 30.89

RH1 7.87 6.48 29.47 0.54 0.1 0.55 0.12 0.08 1.25

RH2 9.66 1.33 10.17 0.09 0.21 0.93 0.14 0.08 1.58

OPK 8.61 3.67 43.41 0.50 0.15 0.74 2.27 0.25 17.85

EFB = empty fruit bunch, RH = rice husk, OPK = oil palm kernel.

Among the different biochars, EFB biochars contained higher amounts of nutrients (N, K and Mg), except for P 
and Ca. The depleted amount of nutrients in other biochars might be because of volatilization of few nutrients when 
heated at high temperature during the production procedure. The content of N in biochars was quite low, due to 
the high sensitivity of the nutrient in high temperatures, in comparison to the other macronutrients (Gundale and 
DeLuca 2006). Even at low temperatures, N can simply become free, as it is linked with several number of organic 
molecules (Schnitzer et al. 2007).
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Brunauer–Emmett and Teller analysis

The surface area of biochar was measured using BET analysis. Table 2 shows that RH1 had the highest surface area 
(277.18 m2·g–1), followed by OPK (141.46 m2· g–1) and RH2 (85.823 m2·g–1). Empty fruit bunches 1 possessed the lowest 
surface area among the biochars. The empty fruit branches biochar had the largest diameters of pores. Empty fruit bunches 
2 had the largest diameter of mesopores at 10.843 nm width, followed by EFB1, with a diameter of 9.244 nm. The narrowest 
was observed in OPK, with a diameter of 1.676 nm, which can be considered as micropores. It can be proven by the FESEM 
imaging that EFB2 had wider pores compared to EFB1, which had the same structure but with narrower pores. Oil palm 
kernel had a small, narrow and bundled pore structure (Fig. 1).

Table 2. Brunauer–Emmett and Teller surface area and porosity of biochar.

Biochar Surface area  
(m2·g–1)

Micropore volume 
(cm3·g–1)

Internal surface area 
(m2·g–1)

Average pore diameter 
(nm)

EFB1 1.54 0.0036 1.36 9.24

EFB2 1.70 0.0046 1.64 10.84

RH1 277.18 0.1411 245.09 2.03

RH2 85.82 0.0138 53.50 3.34

OPK 141.46 0.0592 121.66 1.67

EFB = empty fresh fruit bunch, RH = rice husk, OPK = oil palm kernel.

Fourier-transform infrared spectroscopy (FTIR)

The FTIR spectra of various biochars were analyzed with wavelengths ranging from 400 to 4000 cm–1 (Fig. 2). The 
biochars had different minerals and a substantial number of functional groups, which mostly contained alcohol, phenols 
and carboxylic. The least number of functional groups were found in EFB1 and RH2 samples. As the pyrolytic temperature 
of biochar improved, the functional groups decreased due to pyrolysis (Table 3).

EFB2

EFB1

RH1

RH2

OPKKernel MPOB

RH Bernes

RH Sandi

EFB Jelbet

EFB UPA
5555.5

3310.98

3746.60
1608.30

1600.70

3280.05

2177.00

872.25 740.55

630.66
1075.75

792.40

1050.51

787.55

1602.00

1375.20
1018.68

737.12

2926.67

1375.42
872.15

1024.40

760.05

Wavenumber [cm-1]4000 45C

%T

EFB = empty fruit bunch, RH = rice husk, OPK = oil palm kernel.
Figure 2. Fourier infrared spectra of various biochars.



Bragantia, Campinas, 80, e2221, 20218

R. Abdullah et al.

Table 3. Summary of FTIR spectra of various biochars.

Biochar Peak (cm–1)
Assignment

Strength Functional group
Stretching Bending

EFB1

3353.05 N-H (2 amines) - Weak Amines
2926.67 O-H - Strong Alcohols and phenols
1024.4 C-N - Medium Amines
760.05 C-H Strong Arenes

EFB2

3310.98 O-H - Strong Alcohols and phenols
1602 - N-H (1i- amide) Medium Carboxylic acids and derivatives

1018.68 O-C - Strong Carboxylic acids and derivatives
872.15 - =C-H,=CH2 Strong Alkenes

RH1

3298.6 O-H - Strong Alcohols and phenols
1608.3 - N-H (1i- amide) Medium Carboxylic acids and derivatives

1050.31 C-N - Medium Amines
2323.05 Si-H - Strong Saline

787.5 - C-H Strong Alkynes

RH2

1600.7 - NH2 (1 amine) Strong Amines
792.94 C-H Strong Alkynes
2307.6 Si-H - Strong Saline

1048.54 Si-OR - Strong Alkoxysilane

OPK

3328.05 O-H - Strong Alcohols and phenols
2177 C=C - Weak Arenes

1074.75 O-C - Strong Carboxylic acids and derivatives
872.25 NH2 and N-H - Weak Amines

740 - C-H Strong Alkynes
EFB = empty fruit bunch, RH = rice husk, OPK = oil palm kernel.

X-ray diffraction (XRD)

The XRD analysis confirmed the presence of various patterns (Fig. 3) and minerals in the biochar samples (Table 4). The 
XRD analysis of biochar indicated that EFB2 had the highest number of minerals (5): epsomite, magniotriplite, heterosite, 
periclase and nanosite. The other biochars, with the exception of RH1, had only one type of mineral. The low mineral 
content in the biochar might be influenced by the pyrolysis temperature.

C
ou

nt
s

Pos. [2Th.], Copper (Cu)

5,0603         12,9603       20,8603        28,7603        36,6603        44,5603       52,4603       60,3603

EFB1
EFB2
RH2
RH1
OPK

EFB = empty fruit bunch, RH = rice husk, OPK = oil palm kernel.
Figure 3. XRD pattern of various biochar.
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Table 4. Summary of XRD analysis.

Biochar Minerals Chemical formula Peak, d-spacing [Å]

EFB1 Moganite SiO2 3.332

EFB2

Epsomite MgSO4•7(H2O) 4.212

Magniotriplite (Mg,Fe2+,Mn)2(PO4)F 3.330

Heterosite Fe3+PO4 2.452

Periclase MgO 2.107

Nasonite Pb6Ca4Si6O21Cl2 1.810

RH1 - - -

RH2 Cuprite Cu2O 2.471

OPK Anglesite PbSO4 3.009

EFB = empty fruit bunch, RH = rice husk, OPK = oil palm kernel.

X-ray fluorescence (XRF) analysis

The XRF was used for elemental analysis of the composition of the biochar samples. Empty fruit bunches 
1 and EFB2 had high amounts of K, which reaffirmed the findings of the chemical analysis (Table 5). Whereas  
RH1 and RH2 had high amount of Si and OPK showed high amount of Fe and Ca, which also reaffirmed the 
chemical analysis findings. The XRF analysis also confirmed that the hard protective shells of plants contained a 
high silica content, which was exhibited in biochars made from these materials. Hence, biochar made from rice 
husk would have high silica content.

Table 5. Chemical composition of biochars.

Biochar
Compounds (%)

K2O Fe2O3 Cl NiO I CaO BaO ZnO MnO SiO2 Cr2O3 NiO

EFB1 82.80 8.55 4.69 2.53 1.41 - - - - - - -

EFB2 53.91 9.63 - - - 27.04 4.64 1.80 1.46 - - 1.50

RH1 3.99 0.25 - - - 1.81 - - 0.21 93.46 - 0.25

RH2 4.79 0.12 - - - 0.91 - - 0.09 93.90 - 0.78

OPK 16.71 34.54 - - - 37.17 - - - - 1.18 10.45

EFB = empty fruit bunch, RH = rice husk, OPK = oil palm kernel.

Biochar adsorption isotherm for Cu

The isotherm defines the association among the mass adsorbed substances with the sorbent when the adsorption 
process reaches equilibrium. In this study, the absorbed substance is Cu, whereas the sorbent is biochar. The experimental 
data was fitted to the Freundlich and Langmuir equation (Table 6) to determine the intensity and the capacity of 
biochar to adsorb Cu. The suitability of these isotherm models for the adsorption study was measured by determining 
their correlation coefficient (r2 values). Most correlation coefficient (r2) values were > 0.9 and this meant that the 
data fitted well with the models. The highest adsorption value, qmax, (5128.21 mg·kg–1) was found in the RH1 samples.

The Freundlich isotherm is created on the theory of the heterogeneous superficial energies of the sorbent. The 
adsorption coefficient, kf, denotes the amount of Cu concentration adsorbed into biochar for a unit of equilibrium 
concentration. It processes the adsorption capacity of biochar for Cu, where the greater kf designates the biochar 
preference to adsorb solute. The kf showed higher adsorption of Cu on RH2 biochar in contrast with the rest of 
the biochars.
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Table 6. Adsorption parameters of Freundlich and Langmuir equation for Cu.

Biochar
Langmuir model Freundlich model

qmax
(mg·kg–1)

k
(m3·kg–1) r2 Kf

(m3·kg–1) n r2

EFB1 2000 0.063 0.9987 6.46 0.622 0.974

EFB2 909 0.239 0.9932 10.20 0.458 0.967

RH1 5128 0.065 0.991 12.74 0.864 0.972

RH2 4977 0.058 0.990 45.64 1.168 0.921

OPK 4889 0.0219 0.9707 8.64 0.463 0.948

qmax: maximum adsorption, k: binding affinity, kf: equilibrium coefficient, n: binding affinity, EFB = empty fruit bunch, RH = rice husk, OPK = oil palm kernel.

The biochar samples had a number of functional groups, namely alcohol, phenols and carboxylic. All biochars had alcohols, 
phenols and carboxylic functional groups, except for RH2, while amines dominated all biochars except for EFB2. Both rice 
husk biochars had silicon functional groups, such as saline and alkoxysilane. This might be due to the rich silica content in 
rice husks (Uchimiya et al. 2013). The most diverse functional group was OPK, with six different functional groups. As OPK 
underwent the highest pyrolysis temperature, it can be determined that temperature did not decrease functional groups of 
biochars. Therefore, it is more likely that the source of biomass waste is the biggest contributing factor to functional groups 
in biochars (Khare et al. 2017; Pintor et al. 2012). The functional groups have a strong interaction with heavy metals through 
electrostatic attraction, ion exchange and surface complexion (Amonette and Joseph 2009). Minerals also act as additional 
adsorption sites, which contribute to the biochar adsorption capacity for heavy metals (Xu et al. 2013). Hence, biochar functional 
groups might assist in controlling Cu uptake by plants, which meant OPK had promising attributes.

In addition, the Langmuir isotherm showed that the maximum adsorption capacity of molecules on the biochar surface 
at the same energy (Hameed et al. 2007) and maximum adsorption value were observed in RH1. The high adsorption of 
RH1 was caused by its surface area (245.09 m2·g–1) and high number of functional groups (O-H, N-H, C-N, Si-H and 
C-H). High surface areas and pores enable easier accessibility to metals. Biochar has the potential to change the physical 
and chemical properties of soil (Glaser et al. 2002). These effects may enhance water availability to crops and even prevent 
soil erosion. Perhaps the most significant factor of the biochar interaction with soil is its effect on soil pH. Malaysia’s soil 
is highly weathered, making it highly acidic. As soil acidity is a key factor that controls metal mobility in soils (Ali et al. 
2013) and plants are mostly susceptible to heavy metal toxicity. The ability of biochar to increase soil pH unlike most other 
organic amendments (Novak et al. 2009 a) increases the sorption of these metals, thus reducing their bioavailability for 
plant uptake. Besides retaining heavy metals, biochar treated soils also increased their CEC (Chibuike and Obiora 2014).

Effects of biochars on soil properties

The application of biochars affected the soil pH. However, the general pH values were below 7.0 (5.26–6.0), indicating  
that the acidic nature of the soils persisted despite biochar applications. The highest pH (5.93) was observed in OPK biochar 
(Table 7). From the data obtained, the soil applied with empty fruit branches-based biochar had shown higher pH than the rice 
husk biochars. The application of biochar on Cu polluted soils significantly increased the mean values (p < 0.05) of soil organic 
C (OC). The highest values were observed in soils amended with EFB1 (0.88%) followed by RH2 (0.84%). The increase in OC 
due to the addition of biochar could be caused by the presence of high amount of organic carbon in the biochar itself (Table 1).

Among the biochar treatments, OPK had the highest increase in soil pH; however, EFB1 showed the highest OC, while 
EFB2 had the highest concentrations of available P. It is also significant to note that, since the characteristics of biochar vary 
widely depending on its method of production and the material used in its production, the effect of biochar amendments on the 
availability of Cu in soil differs (Ippolito et al. 2012; Yuan and Xu 2011). The availability of P in soil is also highly dependent on 
the range of the soil pH. The application of biochar can increase P availability in soils at the ideal pH from 6.5 to 7.0 (Ippolito 
et al. 2012) and it has been described that biochar can enhance the CEC in soils (Chan et al. 2007), which changes soil pH 
and makes available soil P for plants (Zwetsloot et al. 2016). Moreover, increase in soil pH reduces the activity of iron (Fe) and 
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aluminum (Al), further contributing to increase in available P. The addition of mineral P fertilizers can made P-availability in 
soils and similarly increase the efficiency of metal P mineral formations, which increases metal solubility in soil suspensions 
by inducing the formation of heavy metal P precipitation (Yuan and Xu 2011). All biochar treated soils in the study showed 
an increase in soil pH, organic matter and available P, when compared to the control treatment. Therefore, it can be concluded 
that biochar improves soil properties, while improving the soil ability to retain heavy metals, such as Cu.

Table 7. Effect of biochars on soil properties at harvest.

Treatment pH EC  
(dS·m–1) OC (%) CEC

(cmolc·kg–1)
Av. P

(mg·kg–1)

Control 5.29c ± 0.01 68.15a ± 3.22 0.53e ± 0.01 11.64a ± 0.90 105.42b ± 4.41

F 5.29c ± 0.02 71.06a ± 3.59 0.55e ± 0.01 12.30a ± 0.87 118.83ab ± 6.11

EFB1 5.75b ± 0.04 70.23a ± 2.60 0.88a ± 0.03 10.51a ± 0.66 141.63ab ± 1.22

EFB2 5.65b ± 0.01 55.56a ± 3.66 0.77bc ± 0.02 10.64a ± 0.27 151.67a ± 5.67

RH1 5.39c ± 0.03 62.18a ± 2.61 0.84ab ± 0.02 9.95a ± 1.82 147.13a ± 8.37

RH2 5.41c ± 0.03 61.72a ± 4.82 0.68cd ± 0.02 9.43a ± 0.73 148.29a ± 3.74

OPK 5.93a ± 0.04 66.93a ± 6.11 0.66d ± 0.01 11.30a ± 2.23 146.21a ± 3.79

Control = without fertilizer or biochar, F = fertilizer only, EFB = empty fruit bunch, RH = rice husk, OPK = oil palm kernel. Means followed by the same letter within 
a column are not significantly different (Tukey’s test, p > 0.05).

The influence of biochar to the CEC of Cu contaminated soils was not significantly different (p > 0.05). Theoretically, 
the result should have been slightly different. However, differences in the experimental design of the present study may 
also be a contributing factor in the patterns observed. Basically, the application of various biochars in this study did not 
alter the CEC of the soil (Table 7). Meanwhile, the application of various biochars had significantly increased the available 
P in the soil related to the control treatment; however, no significant variation was found among the applied treatments.

Copper concentration in soil and in plants

Copper is an essential micronutrient, needed by plants in low concentrations for normal and healthy plant growth. 
All the experimental treatments were contaminated with 60 ppm of Cu, except control. After harvesting, all the biochar 
amended treatments found less than 15 ppm of Cu concentration (Table 8). To maintain crop quality, the maximum permitted 
concentration (MPC), is 30 ppm of Cu (Kitsopoulos 1999; Zarcinas at al. 2004), which meant that all biochars studied were 
able to absorb and control Cu mobility in the soil. The biochar amended treatments had a significantly higher (p < 0.05) 
concentration value than the control treatment. The highest available Cu in soil was found in OPK (5.21 mg·kg–1) and the 
lowest was in control (2.82 mg·kg–1).

Table 8. Effect of biochar on Cu concentration in soil and plant uptake.

Treatment
Total Cu concentration 

in soil
Available  
Cu in soil

Cu concentration  
in plant

Cu uptake  
in plant

--------------------------------------------- (mg·kg–1) ---------------------------------------------- ----- (µg·pot–1) ----

Control 4.84c ± 0.33 2.92c ± 0.11 0.78c ± 0.06 10.53d ± 0.54

F 5.55c ± 0.38 2.64c ± 0.07 1.19b ± 0.08 18.73c ± 1.59

EFB1 12.99ab ± 0.61 5.09b ± 0.17 1.61a ± 0.13 39.76a ± 3.31

EFB2 13.78ab ± 0.63 6.17b ± 0.34 0.94c ± 0.03 25.53bc ± 1.05

RH1 12.25b ± 0.56 5.52b ± 0.17 0.38d ± 0.04 13.14d ± 0.83

RH2 13.25abc ± 0.42 5.26b ± 0.07 0.52d ± 0.03 18.25c ± 0.96

OPK 14.23a ± 0.54 8.30a ± 0.77 1.31b ± 0.07 38.87a ± 1.473

Control = without fertilizer or biochar, F = fertilizer only, EFB = empty fresh fruit bunch, RH = rice husk, OPK = oil palm kernel. Means followed by the same letter 
within a column are not significantly different (Tukey’s test, p > 0.05).
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The Cu concentration in the maize plants differ among the different types of biochar applied. However, all biochar 
treatments increased Cu uptake associated to the control treatment (Table 8). The highest Cu concentration and uptake 
was observed in the EFB1 treatment. Despite having the highest concentration, the Cu uptake was not in amounts that 
could affect the plants growth. Rice husk biochars were promising, since they had less concentration of Cu than the 
control treatment. This clearly indicates that rice husk biochar had the potential to control Cu uptake in plants (Ippolito 
et al. 2012).

Effect of various biochars on Zea mays L. growth

The use of biochar showed a positive effect on maize grown in Cu contaminated soils (Table 9). Among all treatments, 
the highest plant height (68.27 cm) was found in RH1. The highest plant biomass (34.73 g) and leaf chlorophyll contents 
(45.03) were observed in RH2 applications. Meanwhile, there was no significant difference in plant biomass for the other 
treatments.

Table 9. Effect of biochar on the plant growth performances of maize.

Treatment Plant height  
(cm)

Plant biomass  
(g)

Leaf chlorophyll content 
(SPAD values)

Control 41.73b ± 2.57 17.03c ± 1.37 33.37c ± 1.14

F 44.90b ± 3.95 24.13b ± 1.17 40.03abc ± 0.27

EFB1 61.11a ± 1.97 24.70b ± 0.05 39.23abc ± 1.22

EFB2 59.67a ± 0.27 27.27b ± 1.77 36.20bc ± 2.87

RH1 68.27a ± 0.94 26.87b ± 0.89 32.60c ± 1.09

RH2 67.30a ± 2.05 34.73a ± 1.41 45.03a ± 1.34

OPK 60.43a ± 2.77 29.82ab ± 2.28 41.30ab ± 1.72

Control = without fertilizer or biochar, F = fertilizer only, EFB = empty fruit bunch, RH = rice husk, OPK = oil palm kernel. Means followed by the same letter within 
a column are not significantly different (Tukey’s test, p > 0.05).

The amounts of Cu in maize are in low amounts. However, the lowest Cu uptake among all the biochar treatments 
was observed in RH1. This meant that RH1 had the best potential to reduce the bioavailability of Cu. Furthermore, 
it should also be noted that maize plants in RH1 treatment had the best growth performance in terms of height and 
number of leaves. All biochars studied had the potential to not only improve the growth performance of maize plants, 
but also to retain soil Cu, preventing it to be up taken by the plants at toxic levels (Beesley et al. 2011). However, RH1 
exhibited the best results in retaining the most Cu while providing the best growth performance of the maize plants. 
The different processes of adsorption and desorption are the most important mechanisms that managed bioavailability 
of heavy metals ions in the soils. Instead, desorption mechanism in soil to the release of heavy metal ions from various 
processes of retention and adsorption is the main contributor to the steady state of heavy metals such as Cu, Zn and Cd 
in the soil (Aishah et al. 2018).

Correlations of soil properties with plant biomass and Cu uptake

Correlation analysis was carried out in order to understand the relationship between soil properties with plant biomass 
and Cu uptake in plants. All soil factors were analyzed, including the pH, CEC, OC and available P. A significant positive 
correlation was observed among the pH and Cu uptake in the maize plants (Table 10). Available P also exhibited a significant 
positive correlation with the plant biomass, while CEC had a significant negative correlation with the plant biomass. 
Phosphorus is often recommended as a row applied starter fertilizer for increasing early growth of plants. Low available 
phosphorus is a primary constraint to plant growth, because phosphorus is usually bound to soil ingredients that make it 
unavailable to plants (Yuan and Xu 2011).
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Table 10. Correlation of soil properties with plant biomass and Cu uptake in plants.

Soil properties
Correlation coefficient

Plant biomass Cu uptake in plants

pH 0.32750 0.74919**

EC -0.26938 0.28339

OC 0.30638 0.15650

Available P 0.65520* 0.19857

CEC -0.17856 0.18132

* Significant, ** significant at p < 0.01.

CONCLUSION

The five plant-based biochars exhibited different physicochemical properties. The RH1 biochar had the most porous in 
structure, having highest BET surface area, including with a substantial number of functional groups. The porous structure 
and heterogenic functional groups on surface area meant that it was able to retain nutrients. All biochars contained relatively 
low amounts of nutrient conformation, which was most likely vanished due to volatilization throughout the biochar 
production. The potential adsorption of biochar is influenced by pH, surface area, functional groups and organic matter 
contents. Combination of these characteristics created Cu adsorption potential. Regardless, all biochar amended treatments 
not only showed the ability to retain Cu, but also facilitated significant maize plant growth. This study was conducted to 
determine the characteristics and potential of different plant-based biochars to control Cu uptake and influence on the 
growth of Maize (Zea mays L.), where, among the biochars studied, RH1 showed the most promising results, as it retained 
the most soil Cu while providing the best growth performance of the maize plants. Thus, RH1 can be a useful soil amendment 
to reduce Cu bioavailability for plants.
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