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Bonding efficiency and durability: 
current possibilities

Abstract: Bonding plays a major role in dentistry nowadays. Dental 
adhesives are used in association with composites to solve many 
restorative issues. However, the wide variety of bonding agents currently 
available makes it difficult for clinicians to choose the best alternative 
in terms of material and technique, especially when different clinical 
situations are considered. Moreover, although bonding agents allow 
for a more conservative restorative approach, achieving a durable 
adhesive interface remains a matter of concern, and this mainly due to 
degradation of the bonding complex in the challenging oral environment. 
This review aims to present strategies that are being used or those still in 
development which may help to prevent degradation. It is fundamental 
that professionals are aware of these strategies to counteract degradation 
as much as possible. None of them are efficient to completely solve this 
problem, but they certainly represent reasonable alternatives to increase 
the lifetime of adhesive restorations.

Keywords: Dentin-Bonding Agents; Dental Cements; Adhesives; 
Dental Enamel.

Introduction

The advent of adhesives and the understanding of their interaction 
mainly with dentin have recognizably become landmarks for the practice 
of operative and conservative dentistry. In addition to direct resin 
restorations of teeth compromised by fractures, carious or non-carious 
lesions, adhesives enable several other procedures, such as bonding of 
indirect restorations, intra radicular posts and orthodontic brackets, repair 
of failed restorations, control of dentin hypersensitivity and correction 
of aesthetic impairments.

For a long time, amalgam was the material of choice for directly restoring 
posterior damaged teeth, leading to the preparation of large and geometric 
macro-retentive cavities. However, as recently presented by Alexander et 
al.,1 the United Nations Environment Programme (UNEP), supported by the 
World Health Organization (WHO), has urged for policies that could play 
down the use of mercury, and consequently of dental amalgam. This trend 
was also corroborated by the Minamata Convention, which strengthened 
the so-called phase-down of amalgam.2 Despite many controversies about 
its suitability as a real alternative to amalgam, resin composites gradually 
turned out to be the most indicated restorative material, also for posterior 
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teeth. This procedure, however, always requires 
an intermediate bonding agent which penetrates 
enamel and/or dentin, primarily establishing what 
is called micromechanical bonding.3 Basically, the 
adhesive procedure consists of removing minerals 
from the dental substrate by acid etching it to create 
micro-retentive porosities, where resin monomers 
infiltrate and polymerize.4,5,6 Specifically, on dentin, 
the acid etching procedure not only removes possible 
superficial debris, the so-called smear layer, but also 
exposes a net of collagen fibers besides opening the 
dentin tubules. By penetrating this collagen mesh and 
dentin tubules, the infiltrating resin will form two well-
defined structures which are known as hybrid layer 
and resin tags, respectively. This polymer-collagen 
biocomposite layer is in large part responsible for the 
bonding effectiveness, which does not actually rely on 
its thickness but rather on its quality.7 In other words, 
an effective bonding relies mostly on the ability of the 
bonding agent to completely infiltrate the exposed 
collagen mesh, ideally sealing and protecting it from 
all sorts of degradation pathways. In the same way, 
it has been suggested that the bonding effectiveness 
does not depend on the number nor on the length 
of resin tags.7 

Contemporary adhesives are formally categorized 
into two main types according to their mechanism of 
action, namely etch-and-rinse and self-etch systems.4,5,8 

The first requires prior application of phosphoric acid 
as an initial step. After mandatory rinsing, smear 
layer is completely removed and the tooth substrate 
is demineralized, resulting in profound pores in the 
highly-mineralized enamel and exposed collagen 
mesh in dentin in a depth that may range from 5 µm 
to 10 µm.4,5,9,10 When using etch-and-rinse systems, 
proper hybrid layer is classically achieved through 
the infiltration of resin monomers into the exposed 
collagen mesh by using the so-called wet-bonding 
technique. In this protocol, water remaining from 
the rinsing step maintains the collagen network 
expanded, allowing resin monomers to properly 
infiltrate it; excessive dehydration would cause fibrils 
to collapse, impairing resin penetration and hybrid 
layer formation.11,12,13 However, it is noteworthy that 
the wet-bonding technique is a major challenge for 
clinicians, who do not count on ultimate parameters 

to determine ideal moisture. Although it is suggested 
that dentin should clinically present a shiny aspect, 
this judgement is subjective and not precise enough.11,12 

Etch-and-rinse adhesives are subcategorized according 
to their presentation, more specifically according 
to the number of steps needed to accomplish the 
adhesive protocol. Three-step systems are comprised 
of etchant, primer and bonding resin while their 
two-step counterparts consist of etchant and a single 
bottle containing both primer bonding resin chemical 
components.14 Primers contain water, ethanol, and/or 
acetone as solvents which act dissolving hydrophilic 
monomers such as HEMA, for example. While 
chasing water from the wet tooth substrate, they 
prevent collagen network from collapsing, therefore 
allowing for proper impregnation of the solvent-free, 
hydrophobic bonding resin.4,6

Conversely, self-etch adhesives contain monomer 
molecules with carboxylate or phosphate acidic groups 
which concurrently etch and infiltrate dental substrates 
in such a manner that smear layer is not removed, 
but incorporated into the adhesive interface.5,15,16 Even 
if the thickness of demineralization/impregnation 
area is smaller than that promoted by etch-and-rinse 
adhesives, this does not necessarily reflect on lower 
bond strength.16 Self-etch adhesives differ from each 
other in the amount of intrinsic water and potential 
of hydrogen (pH).17 Their formulation is available in 
one or two separate bottles/compartments and their 
application protocol can be carried out in one or two 
steps. Both presentations can be subdivided according 
to their acidity into ‘strong’ (pH≤1), ‘intermediate’ 
(pH ≈ 1.5), ‘mild’ (pH ≈ 2) and ‘ultra-mild’ (pH ≥ 2.5).5 

Those having a pH lower than or near to 1.5, contain 
functional monomers which mainly demineralize 
dental hard tissues instead of chemically bonding 
to hydroxyapatite; those having a pH greater 
than 1.5, only demineralize the dental substrate 
partially, chemically interacting with the remaining 
hydroxyapatite.5 The latter thus only exposes dentin 
collagen very superficially, creating a nanoscaled 
hybrid layer also referred to as nano-interdiffusion 
zone.18 Higher bonding durability obtained with these 
“mild” self-etch bonding agents can be ascribed, 
among other aspects, to the formation of a rather 
thin hybrid layer which is less prone to hydrolysis. 
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Partial demineralization of dentin and consequent 
bonding to remaining hydroxyapatite also counts for 
a more stable and durable bonding interface.5,19 Such 
interaction is derived from the presence of specific 
functional monomers in the adhesive composition: 
10-methacryloyloxydecyl dihydrogen phosphate 
(10-MDP), 4-methacryloyloxyethyl trimellitate 
anhydride (4-META) and 2-metacriloxil ethyl phenyl 
hydrogen phosphate (Phenyl-P).20 

A new family of adhesives, named ‘‘universal’’ 
or ‘‘multi-mode’’, was recently introduced in the 
dental market aiming for further simplification of 
the adhesive procedure and rationalization of the 
inventory at the dental office.21 The definition of a 
universal bonding agent is still controversial. Although 
many commercially available brands claim their 
universality, a real “multi-mode” adhesive should: 
a) perform equally well in both etching modes 
(etch-and-rinse and self-etch); b) bond to enamel and 
dentin as well as to different restorative materials 
(composites, ceramics, metal, zirconia, and so on); 
and c) be suitable for use in both direct and indirect 
restorative techniques irrespective of the curing mode 
of the luting cement (light-cure or dual-cure).  Despite 
their versatility in terms of etching mode (etch-and-
rinse or self-etch21,22 such adhesives are essentially 
single-step self-etch bonding agents. Some of them 
contain copolymers of polyalkenoic acid which, in 
combination with MDP, show contradictory results 
regarding their bonding effectiveness.23,24 Considering 
the concept of “multi-mode application”, one must 
assume that bond strength would not be compromised 
by the chosen etching strategy. However, it has been 
noticed that enamel etching with phosphoric acid 
favors the bonding performance of these bonding 
agents.17 For dentin, similar immediate performance 
was observed regardless of the application mode, but 
significant reduction in bond strength to dentin, both in 
dry and wet-bonding techniques, was reported in the 
long-term when phosphoric acid was used.22 It has been 
suggested that phosphoric acid demineralizes dentin 
in a greater depth than self-etch adhesive systems can 
infiltrate. Moreover, the adhesive interface will not 
benefit from the advantages of chemical bonding in 
case the dentin surface is extensively demineralized 
and residual apatite crystals are not left in sufficient 

amount to promote the desirable interaction with 
the adhesive’s functional monomers.25,26 Finally, 
post-operative sensitivity is less likely to occur when 
the self-etch protocol is adopted.22,27

  As another restorative alternative, glass-ionomers 
are self-adhering materials that can bond to tooth 
structure without an intermediate adhesive layer.5,28,29 
However, a short polyalkenoic acid pre-treatment 
is recommended, resulting in a two-step approach. 
Such acidic conditioner removes the smear layer and 
demineralizes the underlying dentin up to a depth 
of about 0.5–1 µm.30 Glass ionomer components are 
then able to infiltrate the exposed collagen mesh, 
establishing a micro-mechanical retention which 
follows the principle of hybridization.31 Within this 
hybrid layer, a chemical bonding is also obtained 
by ionic interaction of the carboxyl groups of the 
polyalkenoic acid with calcium of hydroxyapatite that 
remains attached to the collagen fibrils.20 This two-fold 
bonding mechanism which combines micro-
mechanical interlocking and chemical interaction 
may explain the clinical success boasted by glass 
ionomers in specific clinical indications such as non-
stress bearing restorations28 and atraumatic restorative 
treatment.32 Likewise, mild self-etch adhesives, the 
chemical bonding promoted by glass ionomers has 
also been described as an important aspect against 
hydrolytic degradation of the adhesive interface.5,28 
Despite its excellent clinical performance in terms 
of retention and microleakage in non-stress bearing 
areas, glass ionomers commonly present lower 
aesthetic characteristics and polishing maintenance 
over time due to their lower mechanical properties 
when compared to resin-based restorative materials.33 
Nevertheless, a modern high-viscosity glass ionomer 
associated with a resin-based protective coating 
has been showing promising clinical performance 
in posterior permanent restorations,34,35 therefore 
deserving further attention.

Dental adhesive technology, as impeccably stressed 
by Peumans et al.,28 “evolves quickly and continuously 
with a rapid turnover of commercial adhesives, a high 
number of laboratory studies on adhesive materials and 
a high demand for laboratory techniques and data in 
potential prediction of clinical effectiveness”. Despite 
the importance of laboratory studies, clinical trials 
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remain the ultimate source to collect scientific data 
on the effectiveness of different restorative materials 
and protocols. All things considered, the practice of 
restorative dentistry should base itself on qualified 
evidence-based dentistry to better understand the 
intrinsic limitations of current restorative materials, 
especially those of bonding agents, aiming to overcome 
them in favor of a successful clinical performance.

The key to success in adhesive dentistry relies on 
the effectiveness of the adhesive interfaces over time. 
By developing new restorative products and operative 
strategies, one can increase the long-term performance 
of aesthetic restorations, thus minimizing the need for 
replacement of failed restorations in the daily clinical 
practice. This review aims to explain the mechanisms 
of degradation of adhesive interfaces, suggesting 
strategies to overcome the intrinsic limitations of 
bonding agents and their application protocols.

Why do adhesive interfaces fail?
Sano36 hypothesized that the biodegradation of 

the adhesive interface involves a sequence of events. 
The first stage towards biodegradation starts when 
dentin is acid etched for smear layer removal and 
exposure of the underlying collagen network for 
subsequent hybrid layer formation. Once depleted 
of minerals, the exposed collagen fibers become 
more prone to prospective deterioration. In the 
second stage, resins that infiltrated the dentin matrix 
are leached out and replaced by water creating 
nanometer-sized voids within the hybrid layer. 
The third stage involves enzymatic degradation 
of the exposed collagen fibrils. During bonding 
procedures with both etch-and-rinse and self-etch 
systems, demineralized dentin activates proteolytic 
enzymes (MMPs) that are also responsible for the 
degradation of unprotected collagen fibrils.37,38 
Therefore, we might need to counteract the adverse 
effects of enzymes such as esterases and matrix 
metalloproteinases (MMPs) at the bonding interface. 

If biodegradation of the adhesive interface is 
to be avoided, a complete and intimate infiltration 
of resin monomers into the collagen network is 
fundamental, as well as an efficient polymerization 
of these monomers in situ. Both goals are clear and 
reasonable, but not so easily attained. 

Acid etching of dentin removes its inorganic 
components, exposing collagen fibrils which should 
be subsequently protected through an intimate and 
complete infiltration of resin monomers from the 
bonding agent. However, the depth of demineralization 
can be greater than the infiltrating potential of resin 
monomers, leaving a zone of unprotected collagen 
fibers. This area is highly vulnerable to both hydrolytic 
and enzymatic degradation.6 For the adhesives to 
properly impregnate its hydrophobic monomers into 
the intrinsically humid dentin, hydrophilic monomers 
are included in their composition. As a counter 
effect, the adhesive interface becomes more prone to 
water sorption and consequent hydrolysis39,40,41,42,43,44 

Hydrophilic adhesives can also attract water from 
hydrated dentin resulting in water-filled channels 
within the polymer matrices.45 Besides promoting the 
degradation of collagen fibers, water also presents 
a degradative effect on resin monomers. Most of 
the monomers used in bonding agents nowadays 
do contain chemical groups such as ester, urethane 
and hydroxyl groups and ether linkages that are 
susceptible to hydrolytic cleavage. Water within the 
adhesive layer is therefore also responsible for the 
elution of unreacted monomers within the adhesive 
layer46 and plasticization of the polymer network.47 
Porosity and intermolecular spaces in the polymer 
network further contributes for the degradation of 
the hybrid layer due to hydrolysis or exposure of 
additional collagen fibrils to activated MMPs.48

Interaction between polymeric dental materials 
and dentin organic components seems to be rather 
complex from a sub-micrometer perspective, 
therefore impairing a hermetic encapsulation of 
dentin collagen fibrils. According to its structural 
relation with collagen, hydroxyapatite in dentin can 
be classified into extrafibrillar mineral, located among 
the fibrils, and intrafibrillar mineral, mainly in the 
gaps within the fibrils extending between collagen 
molecules.49 The synthetic monomers used nowadays 
are meant to infiltrate the space among collagen fibrils. 
Nevertheless, they do not seem to be small enough 
to penetrate the nanometric voids between collagen 
molecules within the demineralized collagen fibers.50 
Moreover, it has been shown that collagen molecules 
are surrounded by water molecules to form highly 
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ordered and multilayered cylinders of hydration51 
which may favor the hydrolytic degradation of resin 
monomers in a sub-micrometer level.

To reduce the degradation process detailed above, 
some recent strategies can be explored, such as: 
inactivation or blockage of MMP’s; reduction of 
dentin water content without increasing hydrophilic 
components of adhesive systems; addition of new 
chemical functional monomers into bonding agents; 
and an increase of collagen fibers stiffness to improving 
their resistance.

Strategies to counteract 
degradation of adhesive interfaces

Caries management from the restorative 
point of view

Minimal intervention approach recommends 
complete removal of infected dentin and maintenance of 
caries-affected dentin (CAD) on the pulpal cavity floor.  
Although most the literature related to the performance 
of bonding agents refers to sound dentin as a standard 
substrate,52 clinicians are frequently challenged by the 
presence of caries-affected and/or sclerotic dentin in 
their daily practice. In the same way, manufacturers 
base their new technologies on the adhesion to sound 
dentin which is far from representing a clinically relevant 
substrate. The main common goal among researchers 
and manufacturers should be the development of a 
bonding agent that could equally bond to sound, caries-
affected, eroded and sclerotic dentin.53

The caries process induces different chemical, 
biological and physical modifications on the affected 
substrate, rendering it less favorable for interaction 
with polymeric restorative materials.54 Bonding to 
infected dentin is contra-indicated due to its high 
bacterial count, lower resistance due to high minerals 
loss, and advanced deterioration of collagen structure. 
Consequently, such substrate should be completely 
removed.55 Caries-affected dentin, in turn, is more 
permeable than sound dentin due to its lower mineral 
content, besides presenting a higher water ratio 
and important changes in the secondary structure 
of collagen.54 Despite these unfavorable features, 
CAD still stands high chances of remineralization, 
which justifies its maintenance at the pulpal floor of 

the cavity. It should be considered, however, that a 
hybrid layer of poorer quality is obtained on CAD, and 
that a lower bonding performance may be expected 
irrespective of the kind of bonding agent employed.56

While manufacturers do not create an adhesive 
system that performs equally well on different sorts 
of modified dentin, it is highly recommended to finish 
the margins of the restoration in sound tooth structure 
to assure an optimal marginal sealing.56 In the light 
of a more conservative approach, caries-affected 
dentin should be maintained at the pulpal cavity 
floor and should be covered with a thin layer of glass 
ionomer cement. There are indications that glass 
ionomer cements may promote remineralization 
of caries affected dentin,57 although further studies 
are necessary to evaluate the reincorporation of 
mineral content within demineralized dentin and the 
recovery of its mechanical properties. The bonding 
agent must be applied over the remaining cavity 
walls and margins after application of the glass 
ionomer cement as part of the procedure for adhesive 
composite restorations.

Chemical bonding
Chemical bond in SE adhesives is achieved through 

specific functional monomers that bind calcium ions 
of hydroxiapatite within the hybrid layer.5,58 Different 
functional monomers may be found in this kind of 
bonding agents such as 10- methacryloyloxydecyl 
dihydrogen phosphate (10 MDP), 4- methacryloxyethyl 
trimellitic acid (4-MET) and 2 (methacryloyloxyethyl) 
and phenyl hydrogenphosphate (Phenyl-P).5,58 Their 
physico-chemical properties play an important 
role on the bonding effectiveness and durability of 
self-etch adhesives.5,59

Such chemical bond is mostly observed in mild 
and ultra-mild SE adhesives (pH < 2) that partially 
demineralizes dentin producing sub-micrometer 
hybrid layers14 in which substantial HAp-crystals 
remain around partially exposed collagen fibers.3,18,60,61 
Besides protecting collagen fibers against degradation, 
such remaining mineral content also serves as receptor 
for additional chemical bonding with the respective 
functional monomer,14,18 by which their two-fold bonding 
mechanism (i.e. micro-mechanical and chemical 
adhesion) closely resembles that of glass-ionomers.62
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The additional chemical bonding of mild self-etch 
adhesives and glass-ionomers is supposed to be beneficial 
in terms of bonding durability.18,20 However, the ability 
to chemically bond to HAp is not sufficient on its own. 
The formed ionic bond should also be stable in an 
aqueous environment. It has been demonstrated that 
the chemical bonding generated by 10-MDP is not only 
more effective, but also more stable in water than that of 
4-MET and phenyl-P.18 The dissolution rate of the calcium 
salts formed by these three monomers was inversely 
related to their chemical bonding potential. This chemical 
phenomenon is known as the adhesion-decalcification 
concept (AD-concept) that defines if molecules will 
either decalcify or adhere to mineralized tissues.63 
The more effective bonding promoted by 10-MDP-
containing adhesives has recently been demonstrated 
via bond strength tests.64 From a chemical point of view, 
the ionic interaction of 10-MDP with HAp has been 
revealed by X-ray diffraction (XRD) complemented by 
Transmission Electron Microscopy (TEM), presenting 
it as a “nanolayered” structure at the tooth-adhesive 
interface, and this being more evidently observed on 
dentin than on enamel.64 Each layer of this self-assembled 
nano-layered structure constitutes of two 10-MDP 
molecules with their methacrylate groups directed 
towards each other and their functional hydrogen 
phosphate groups directed away from each other. 
In between the layers, calcium salts are deposited.65

Apparently, the weakest zone in self-etch adhesives 
is located below the hybrid layer, where the adhesive 
penetration and/or polymerization are not sufficient 
to protect collagen against hydrolysis and enzymatic 
degradation.6,66,67,68 Despite its superior performance 
as compared to other functional acidic monomers, 
the salt formed by 10-MDP may also degrade with 
time, as it is also somehow sensitive to hydrolytic 
dissolution.61 According to Kim et al.67 the hydrolytic 
degradation of the collagen fibers still occurs at the 
base of the hybrid layer, characterized by voids and 
nanoleakage between the intact top of the hybrid 
layer and the mineralized dentin base, as detected 
by SEM and Confocal microscopy analysis.

Considering the chemical bonding approach, 
a strategy based on the selection of 10-MDP-based 
adhesives could be an additional advantage to improve 
bonding durability of esthetic restorations.

Enzymatic inhibitors
As mentioned before, one of the foremost 

impediment for the longevity of adhesive interfaces 
is degradation of exposed collagen fibrils at the base 
of the hybrid layer: preservation of their integrity is 
tough pivotal to improve bonding durability.68

Since Pashley et al.37 and Armstrong et al.39 
auspiciously linked such degradation to the action 
of host derived endogenous matrix metalloproteinases 
(MMPs),69 several approaches to make them inactive, 
hence slowing down or nullifying the phenomenon, 
started to be considered.40,68,70,71,72 It is well-known that 
certain substances are promising MMPs inhibitors, but 
the most studied in adhesive dentistry is chlorhexidine 
(CHX).37,58,73,74 It is, in addition, also capable of inhibiting 
cysteine cathepsins (CCs)75 the other key class of 
proteolytic enzymes identified in dentin.76

CHX was accordingly shown to partially conserve 
the integrity of the hybrid layer,77, favoring bond 
durability. CHX can be used as an antiproteolytic 
“primer” solution directly applied on the dentin surface, 
or after phosphoric acid etching and rinsing74,78,79,80,81,82 
or incorporated into the acid etching agent83,84 or 
within the adhesive system composition.74,85,86,87 

The use of 2% CHX solution as an effective 
and nonspecific protease inhibitor primer, after 
acid-etching, is attractive from a clinical point of 
view, since it is already used in other oral health 
situations as an antimicrobial agent.88 Compared to 
control, aged CHX-treated dentin relates to higher 
bond strength values73,74,77,78,79,80,89,90,91,92 which are 
interestingly equivalent to each other in most of the 
immediate evaluations.93 Especially when two step 
etch-and-rinse adhesives are used, reduction of bond 
strength values for conventionally treated dentin 
over one to two years is of approximately 50%; when 
CHX is applied after acid etching, total reduction is 
around 20%72 to 84.9%.88

Even though the presence of carious-affected dentin, 
as well as artificially eroded dentin, relates to inferior 
bond strength values,53,94,95 CHX can preserve adhesive 
interface stablished by two-step etch-and-rinse 
adhesives, although not indefinitely.77,96,97,98,99 Higher 
bond strength durability of a two-step self-etch 
adhesive over 2-year aging in artificial saliva and under 
simulated intrapulpal pressure was also described 
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in the literature when caries-affected dentin was 
pretreated with CHX.100 Besides, the degradation 
of the adhesive interface in primary teeth may be 
counteracted or blocked by the application of CHX 
as a therapeutic primer.92,101

Avoiding to add another step in the adhesive 
treatment of dentin,6,88 some investigators have studied 
the beneficial effects of incorporation CHX into the 
etchant83,84 or the adhesive.87,97,102,103,104 First strategy 
was alleged to reduce the effectiveness of CHX in 
the inhibition of MMPs and CCs, due to the limited 
contact time and the little concentration of CHX at 
the moment of adhesive application. It should be 
considered that CHX is leached from demineralized 
and mineralized powdered human dentin with water 
rinsing.67 However, Loguercio et al.105 have identified 
CHX inside a 5-year aged hybrid layer after application 
of a CHX-containing etchant. The high substantivity 
of CHX on dentin may explain inefficiency of the 
rinsing step in eliminating substantial amounts of it.106 

CHX incorporated into experimental adhesives, 
in turn, was proved not to jeopardize immediate 
bond strength to dentin and to partially reduce 
the degradation of the resin-dentin bonds after 
aging.103 A reservoir of CHX for controlled release 
would be derived from its inclusion into primers 
and/or adhesives:87 addition of relatively low CHX 
concentrations to commercial adhesive, chiefly in 
ethanol-solvated hydrophobic resins, was shown 
feasible in this sense.85,86,87 Controversial results look 
as if they were related to the concentration of CHX 
added to the adhesive formulation and/or to the 
chemical compositions of the adhesives,93,102,107,108 
which may influence resin water sorption, and hence 
its solubility, degree of conversion, and mechanical 
properties.85,109 To endorse CHX incorporation into 
adhesives, Stanislawczuk et al.87 advised the conduction 
of further studies in more clinically relevant conditions. 
In vitro studies have already attested that CHX-
containing primers of two-step self-etch and simplified 
etch-and-rinse adhesives are capable of, respectively, 
inhibiting MMPs108 and reducing nanoleakage,104 
precluding time-related bond strength loss.102,104  An 
adhesive system containing 0.2% chlorhexidine (Peak 
Universal Bond, Ultradent Products Inc, South Jordan, 
USA) was then just introduced in the market.6

As an alternative, Abu Nawareg et al.110 successfully 
used a monomer named CHX-methacrylate (Ivoclar 
Vivadent, Schaan, Liechtenstein) as a primer to improve 
hybrid layer long-term stability. In this way, CHX would 
both bind to demineralized dentin67 and copolymerize 
with adhesive monomers: CHX-methacrylate would 
be much more than electrostatically bound to the 
dentin matrix, it would be sealed inside it, maybe 
for many years.110 Then CHX-methacrylate could 
inhibit matrix proteases probably the same way CHX 
digluconate can do.110

CHX i s  a  cat ion ic  b i sbig ua n ide wh ich 
inhibits collagenase/gelatinase activity of dentin 
matrices.74,37,111,112 It is believed that it acts by cation 
chelation, sequestrating calcium and zinc ions that 
are essential for the activation of the MMPs catalytic 
domains.111,113,114 Even low CHX concentrations 
(0.002–0.02%) and short-time applications (15 to 30 
seconds)86 are effective in minimizing the degradation 
of adhesive interfaces, but the association between 
the concentration and the bond strength is not 
linear.73 Lower percent of failure mode in the hybrid 
layer, especially at the bottom part, found after six-
month aging when CHX was applied, was one of 
the first indicative of its effectiveness as a protease 
inhibitor in adhesive dentistry.78 Later, after CHX 
application, improved collagen network formation 
(better adhesive penetration), reduced collagen 
degradation, and distinct gold-labeling signals 
were identified by field emission scanning electron 
microscopy and immuno-gold staining; a better 
resin and dentin tube combination was detected 
in the surface micromorphology of the fractured 
dentin resin restoration as well.38 About long-term 
effectiveness, it would be explained by the high 
substantivity of CHX.106 Regardless of its concentration, 
CHX has a strong affinity to the dental structure, 
binding to phosphate groups of mineralized dentin 
crystallites and to negative carboxyl groups of the 
collagen matrix (electrostatic forces between NH3

+ in 
the CHX molecule and COOH- or OH- in dentin).106 
After oversaturating proteases binding sites, if still 
available (higher concentrations), it can remain bound 
to collagen fibrils for later release.115 

Adversely, a limitation of CHX indication as an 
enzymatic inhibitor is that its effect seems not to be 
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indefinitely long.85 Because CHX molecule is large and 
water soluble, it may be gradually leached out from 
the adhesive interface,92 especially when in contact 
with an external environment (through marginal 
gaps, for instance).105 Remaining concentration then 
becomes no longer appropriate to exert noticeable 
antiproteolytic effects.92 

Usage of CHX on etched dentin before priming plus 
bonding together, thus when two-step etch-and-rinse 
adhesives are applied,116 is strongly recommended; by 
the way, demineralization increases CHX binding to 
dentin.67,106 Its effect on the durability of the bonding 
when three-step etch and-rinse are used, in turn, 
appears to be only slightly favorable. Adhesive 
interfaces determined by using non-simplified etch-
and-rinse systems are, per se, more stable than that 
determined by using the simplified counterparts.73 
Regarding the effectiveness of self-etch adhesives, 
and even the moment or how CHX must be applied, 
are conflicting.74,90,117,118,119 Recent systematic reviews 
show that an aging-associated decline in dentin 
bond strength of both categories of adhesives can 
be lessened by CHX application.74,118,119 In this sense, 
a growing predisposition among clinicians in properly 
applying 0.2–2% CHX for 15–60 s for re-wetting the 
collagen network on acid-etched dentin77,79,89,120 to 
minimize degradation of resin-dentin bonds, can 
be currently appreciated.115,119 Tough medium-term 
randomized clinical trials (18-36 months) does not 
show significant beneficial results from incorporating 
CHX to adhesive treatment of dentin.121,122,123 Loguercio 
et al.,105 incite researchers to evaluate the only one 
proven clinically and easy to adopt strategy88 after 
long-term follow-ups, when the benefits of CHX 
would possibly turn out to be detectable.

Inhibitors of endogenous dentin proteases other 
than CHX, such as the quaternary ammonium 
surface-acting benzalkonium chloride (BAC)124,125,126,127 
the tetracyclines (TCs) and their antimicrobially 
inactive analogs (minocycline, for now),71,84,128,129,130 
bisphosphonates (batimastat, galardin, and 
zoledronate),93,129,131,132 g reen tea polyphenol 
epigallocatechin-3-gallate (EGCG),40,133,134 and the 
chelating agent ethylenediaminetetraacetic acid 
(EDTA) 135,136,137 are being studied as better alternatives 
associated with dentin hybrid layer preservation. 

The same happens to adhesives containing zinc 
114,138,139,140,141 or MMP-inhibiting monomers or solvents: 
polymerizable quaternary ammonium methacrylates 
(QAMs; e.g. 12-Methacryloyloxydodecylpyridinium 
bromide / MDPB),66,68,93,125,142,143 incorporated into 
the primer of Clearfil Protect Bond, Kuraray,(6) and 
dimethyl sulfoxide (DMSO),144,145,146 correspondingly. 
As further efforts are required to ratify related initial 
encouraging results, for compiled deeper information, 
one should refer to Perdigão et al.40 and Tjäderhane.6

Authors claim that,6,41,68 although CHX may not be 
unfailing, it can and should be indicated (often as an 
optional step before application of etch-and-rinse, or 
even self-etch, primer / primer plus bonding) until 
new strategies have been recognized harmless and 
just as effective in preserving collagen fibrils integrity, 
thus favoring bonding durability for some time.

Addition of a separate hydrophobic 
adhesive resin

Simplified adhesive systems, both two-step etch-
and-rinse and one step self-etch adhesives, are 
composed of high concentrations of hydrophilic 
resin monomers and a higher amount of water 
than their more complex counterparts, namely 
three-step etch-and-rinse and two-step self-etch 
adhesives. This composition is necessary as water is 
required to dissociate the weak acidic methacrylate 
monomers into ionized forms for permeation into 
dentin.16 However, the excess water may prevent the 
optimal polymerization of the adhesive monomers, 
thereby reducing the mechanical properties of the 
adhesive layer and the resulting resin–dentin bond 
strength. Additionally, due to their high hydrophilicity, 
such simplified adhesives remain permeable upon 
polymerization, permitting movement of water from 
both the host tooth as well as from the outer oral 
cavity across the interface.147

To counteract this limitation of simplified adhesives, 
it has been proposed that the application of an additional 
layer of hydrophobic fluid resin should be incorporated 
to their bonding protocol.24,148,149,150,151,152 This strategy 
proved to be effective in minimizing nanoleakage and 
improving the polymerization of simplified adhesives150 
as well as their immediate40,146,150 and long-term146 bond 
strength. It could also improve the sealing ability of 

10 Braz. Oral Res. 2017;31(suppl):e57



Matos AB, Trevelin LT, Silva BTF, Francisconi-dos-Rios LF, Siriani LK, Cardoso MV

two-step etch-and-rinse adhesives by reducing fluid 
conductance across the adhesive interface.151

All things considered, an extra coating of 
hydrophobic resin should be applied over dentin 
treated with both simplified adhesive systems, 
etch-and-rinse or self-etch. Advantages of this 
technique can be the improvement of marginal sealing, 
bond strength and degree of conversion, together with 
a reduced post-operative hypersensitivity.6

Selective enamel acid-etching
Contrary to the possible shortcomings of etching 

dentin with phosphoric acid, its selective application 
on enamel seems to have been recognized as a key 
step toward the clinical success of self-etch protocol,153 
especially when mild and ultra-mild adhesives are 
considered.154,155,156 The pH of self-etch and self-adhesive 
materials directly relates to their reduced potential, 
as compared to that of phosphoric acid,157,158 to etch 
the highly-mineralized enamel.25,155,156,157,159,160,161,162,163,164 
Hence, increasing its surface area and creating deep 
etch-pits remains important for the achievement of 
an effective and durable bond to enamel.4,165,166,167,168 
According to the buffering capacity that such substrate 
offers to the action of self-etch systems in general, it can 
be expected that they do have a lower demineralizing 
effect on the hydroxyapatite-rich enamel, which 
ultimately compromise their bonding effectiveness.169,170

Several in vitro studies proved that higher 
bond strength of self-etch systems to enamel is 
achieved with the selective phosphoric acid etching 
technique.161,171,172,173,174 The same proved true, 
in recent times, for universal adhesives.17,168,170,175,176 
Performing selective enamel etching implies in 
less marginal discoloration and better marginal 
adaptation.24,177,178,179,180,181 Likewise, an interesting 
meta-analysis communicated by Peumans et al.28 
showed that selective etching reduces the clinical 
annual failure rates of mild self-etch systems, 
notwithstanding this was not true when clinical 
trials were evaluated separately. Also, retention 
rates of restorations of NCCLs might be improved by 
selective application of phosphoric acid on enamel 
and further employment of self-etch adhesives.175

It is suggested, therefore, that prior acid etching 
of enamel with phosphoric acid should be a routine 

procedure when using any self-etch protocol, to achieve 
higher retention of the resinous material,5,172,173 

especially in more critical situations due to the 
structure of the substrate: unground/aprismatic 
enamel; or due to the lack of inherent form of retention 
of certain cavity profiles a sin the case of Class IV 
cavities, fractures in anterior teeth, and luting laminate 
veneers, for instance.9,14,153,160,182 Selective acid-etching 
is increasingly more suitable the greater the amount 
of remaining enamel.182

Cross-linkers
Type I collagen represents the major component 

of the organic matrix of hard tissues and its stiffness 
depends on the formation of endogenous and exogenous 
cross-links.183 Collagen is a heterotrimeric molecule 
composed of two α1 and one α2 chains that are comprised 
of three domains: NH2–terminal (N-telopeptide), the 
central triple helix and the COOH-terminal non-triple 
helical (C-telopeptide) domain.184

Endogenous collagen cross-links are mediated 
by both non-enzymatic and enzymatic reactions. 
Non-enzymatic collagen cross-links are mediated by 
oxidation and glycation processes,185 while enzymatic 
reactions happen between the telopeptide and adjacent 
triple helical chains,186 which is mediated by chemical 
reactions through lysyl oxidase covalent bonding.187,188 
This results in the formation of inter and intra-molecular 
and inter-microfibrillar cross-links.187,188,189,190,191 Such 
enzymatic reactions are the basis of tissue stability, 
viscoelasticity and strength of collagen fibrils.184,192 In 
particular, intra-molecular cross-links provide primarily 
biostability to the collagen molecule, while inter-
molecular and inter-microfibrillar cross-links enhance 
mechanical properties, in addition to fibril biostability.193

Exogenous cross-linking agents have been 
proposed to mimic physiological cross-links. They 
increase the intrinsic properties of the collagen 
against collagenases degradation through inducing 
additional formation of inter and intra-molecular 
cross-links.194,195 Exogenous cross-links also improve 
biomechanical and biostability properties of collagen 
fibrils196 and are mediated by non-enzymatic reaction 
sources, such as chemical agents (i.e. glutaraldehyde, 
carbodiimide hydrochloride and natural resources) 
and physical methods.196
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Physical methods are mediated by photo-oxidative 
reaction, usually by light exposure, such as 
ultraviolet radiation (UVA).197 Riboflavin is the 
most common cross-link of this class that can 
be induced by UVA. However, the use of UVA in 
clinical practice is unfeasible. 

Among the great variability of synthetic chemical 
agents, the most widely known is Glutaraldehyde 
(GA).68,196 GA can induce cross-links in collagen, 
consequently enhancing its mechanical properties, 
such as hardness, and maintaining its mechanical 
stability. GA may also prevent matrix degradation 
by crosslinking the binding and/or active sites 
of endogenous dentin MMPs, therefore blocking 
the access of such enzymes.198 However, its high 
cytotoxicity makes its clinical use inappropriate.196

Carbodiimide hydrochloride (EDC) has also 
been proposed as an effective collagen cross-linker 
as it has been shown to improve the durability and 
structural integrity of the adhesive interface, thus 
preserving its bond strength over time, and this 
through the formation of inter- and intra-molecular 
cross-links.199,200,201,202 Moreover, EDC is one of the 
least cytotoxic and most stable cross linkers.58 EDC 
also seems to be capable of inactivating dentinal 
gelatinases.200,201,202 It should be considered, however, 
that it is currently designed to be used just after 
acid-etching, in etch-and-rinse adhesives.58

Genipin is a natural cross-linking agent that can 
react with the amino groups of lysine, hydroxylysine 
or arginine to form intra or inter-molecular cross-links 
within collagen molecule or between adjacent 
collagen molecules.195,203 However, the rates of induced 
exogenous cross-links are slow, which represents a 
limiting factor as far as treatment of dentin is taken 
into account.204

Proantocianidin (PA) is a polyphenolic compound 
that can be extracted from several fruits, nuts, 
vegetables and barks.195,205 Their interaction with 
collagen type I depends on the type of PA, chemical 
structure, stereochemistry pattern and concentration 
of these natural extracts.206,207 PA is a natural 
cross-linking agent that has been widely studied in 
recent years due to their ability to biomodify the dentin 
matrix184 and enhance its mechanical properties and 
resistance against biodegradation, finally favoring 

the resin/dentin bond strengths.199,204 PA can interact 
with collagen tissue and induce non-enzymatic 
collagen cross-linking193 increasing collagen stiffness 
and dentin bond strength by keeping the bonding 
stable over time.207 

Even though crosslinkers proved to be efficient 
in enhancing mechanical properties of dentin, and 
impairing degradation of the dentin-resin interface, 
researchers did not reach the exact point to recommend 
its clinical use. More studies are necessary to turn this 
promising strategy into a clinically effective protocol.

Ethanol – wet Bonding
The development of a promising bonding 

procedure on dentin is still challenging due to its 
humid and porous intrinsic biological features. 
The formation of a stable hybrid layer depends on 
an efficient penetration of resin monomers for a tight 
encapsulation of the exposed collagen matrix.208 
However, this ideal hybrid layer is difficult to obtain, 
being therefore prone to hydrolytic degradation of 
collagen fibrils and adhesive polymers.40,46,209

The “ethanol wet bonding” technique consists 
of gradually replacing water from interfibrillar and 
intrafibrillar spaces by ethanol, starting with the 
application of lower concentrations of ethanol solutions 
and slowly progressing to higher concentrations up 
to a complete dehydration of the exposed collagen 
network.13,210,211,212. Ethanol has a higher vapor 
pressure than water, enhancing its evaporation and 
creating wider interfibrilar spaces for impregnation 
of hydrophobic monomers to form a more stable 
hybrid layer.213,214,215

Basically, ethanol dehydrates the demineralized 
collagen matrix and coaxes hydrophobic monomers 
into it.216 This technique also prevents phase separation 
of hydrophobic resin monomers in the presence of 
water,217,218,219 since the latter is completely replaced 
by ethanol prior to the application of the ethanol-
soluble monomers.220,221 Additionally, the elimination 
of residual water seems to contribute to decrease or 
even eliminate hydrolytic enzymatic degradation 
of collagen fibrils,212,222 thereby increasing bond 
durability and stability.213

However, this technique is very sensitive, time 
consuming and requires the application of many 
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steps to achieve the desired dehydration, which 
becomes inappropriate. More studies are necessary 
to improve this protocol for clinical use. 

Conclusion

Our main objective towards the formation of 
a strong and durable bond to tooth structure is to 
create on dentin a hybrid layer which is completely 
free of voids so that the collagen network becomes 
fully protected against hydrolytic and enzymatic 
degradation. However, based on the current state 
of the art, this task seems impossible to be fully 
achieved. Basically, the adhesive interface as we know 
today is the antithesis of a completely successful 
bonding, especially from a nanoscale and molecular 
standpoint. On the other hand, we do believe that 
there are materials and strategies that can certainly 
help to prevent degradation within the adhesive 
interface. It is fundamental that professionals are 
aware of these strategies to counteract degradation 
as much as possible. None of them are efficient to 
completely solve the problem, but they certainly 
represent reasonable alternatives to increase the 
lifetime of adhesive restorations. In a nutshell, 
we could mention:
a.	 Preserve as much as possible enamel on cavity 

margins;

b.	 Remove all infected dentin;
c.	 Remove caries-affected dentin from surrounding 

walls, maintaining it at pulpal and axial walls;
d.	 Maintain the correct humidity of dentin, 

according to the type of bonding agent used;
e.	 Use selective acid etching for self-etch agents 

when cavities margins are on enamel; 
f.	 Clean cavities with anionic detergent before 

proceeding with the restorative protocol;
g.	 Make sure your curing unit is effective with 

the right wavelength per photo initiators of the 
bonding systems. Thus, follow manufacturer̀ s 
instructions;

h.	 When opting for self-etching strategies, give 
preference to those promoting chemical 
adhesion to the dental substrate, especially 
those based on 10-MDP.

i.	 An extra coating of hydrophobic resin should 
be applied over dentin treated with any of the 
currently available simplified bonding agents.
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