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Abstract: Molecular tools have been used in taxonomy for the purpose of identification and classification of living 
organisms. Among these, a short sequence of the mitochondrial DNA, popularly known as DNA barcoding, has 
become very popular. However, the usefulness and dependability of DNA barcodes have been recently questioned 
because mitochondrial pseudogenes, non-functional copies of the mitochondrial DNA incorporated into the 
nuclear genome, have been found in various taxa. When these paralogous sequences are amplified together with 
the mitochondrial DNA, they may go unnoticed and end up being analyzed as if they were orthologous sequences. 
In this contribution the different points of view regarding the implications of mitochondrial pseudogenes for 
entomology are reviewed and discussed. A discussion of the problem from a historical and conceptual perspective 
is presented as well as a discussion of strategies to keep these nuclear mtDNA copies out of sequence analyzes.
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Resumo: Ferramentas moleculares têm sido utilizadas para os estudos referentes à identificação e classificação dos 
organismos vivos. Entre estes, uma curta sequência do DNA mitocondrial, popularmente conhecida como DNA 
barcoding, tornou-se muito popular. No entanto, a utilidade e confiabilidade dos códigos de barras de DNA têm 
sido recentemente questionadas porque pseudogenes mitocondriais, cópias não-funcionais do DNA mitocondrial 
incorporados ao genoma nuclear, foram encontrados em vários táxons. Quando estas sequências parálogas são 
amplificadas juntamente com o DNA mitocondrial, podem passar despercebidas e acabam sendo analisadas como 
se fossem seqüências ortólogas. Nesta contribuição objetivou-se revisar e discutir os diferentes pontos de vista 
sobre as implicações de pseudogenes mitocondriais para entomologia. Discutimos também o problema através 
de uma perspectiva histórica e conceitual, abordando estratégias para eliminar ou evitar a presença dessas cópias 
nucleares em meio às sequências funcionais de DNA.
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species (Hajibabaei  et  al. 2007). A single, 648bp long sequence, 
corresponding to the 5’ end o of the mitochondrial cytochrome c 
oxidase subunit I, is used as a standard, universal marker for all 
living organisms (Hebert et al. 2003a, b, Ratnasingham & Hebert 
2007, Strutzenberger et al. 2010).

The choice of a mitochondrial gene as a universal marker was 
mostly driven by the fact that the mitochondria is maternally inherited, 
avoiding problems with recombination. Also, the mitochondrial 
genome has a high mutation rate when compared with the nuclear 
genome, which results in high degrees of intra-specific polymorphism 
and divergence, important in evolutionary studies (Williams & 
Knowlton 2001, Wheat & Watt 2008, Hlaing et al. 2009).

Several contributions have been made to the taxonomy and 
systematics of insects using DNA barcoding, particularly in the 
following orders: Hemiptera (Foottit  et  al. 2009, Lee et  al. 2010, 
Shufran & Puterka 2011), Diptera (Smith et al. 2006, Ekrem et al. 
2007, Rivera & Currie 2009), Hymenoptera (Smith  et  al. 2005, 
Sheffield et al. 2009, Smith et al. 2009), Coleoptera (Yoshitake et al. 
2008, Raupach et al. 2010, Greenstone et al. 2011), and Trichoptera 
(Salokannel  et  al. 2010, Geraci  et  al. 2011, Zhou  et  al. 2011). 
Additionally, a considerable number of articles on lepidopteran 
DNA barcoding have been produced since the beginning of this 
century (Hebert  et  al. 2004, Janzen  et  al. 2005, Hajibabaei  et  al. 
2006, Hulcr et al. 2007, Bravo et al. 2008, Emery et al. 2009, Wilson 
2010, Hausmann et al. 2011). The first animals to be used in the DNA 
barcoding campaign, and to have their sequences incorporated into 
the CBOL’s database, were insects (Lepidoptera), fish and birds 
(Ratnasingham & Hebert 2007). The Consortium for the Barcode 
of Life  –  CBOL: (www.barcodeoflife.org) currently has other 
campaigns that contribute with DNA barcode data for insects such 
as bees, mosquitoes, fruit flies (Tephritidae: Diptera), Trichoptera 
and Lepidoptera.

Several characteristics intrinsic to insects, such as their diversity 
and the economic and epidemiological relevance of some groups, have 
made them the main target of DNA barcoding studies. The BOLD 
system currently stores molecular data on approximately one million 
exemplars (Table 1). This standard database can be used in studies 
on the taxonomy, phylogeny, ecology, agriculture and conservation 
of various groups of organisms (Jinbo et al. 2011).

Several contributions focusing on identification using the mtCOI 
have proved useful in the detection of cryptic insect species. Some 
of those cryptic species which were initially almost impossible 
to separate using morphological characters alone, have had their 
identities corroborated by other characters in their natural history and 
even characters in their morphology (Hebert et al. 2004, Janzen et al. 
2005, Smith et al. 2006, Pfenninger et al. 2007, Decaëns & Rougerie 
2008, Vaglia et al. 2008, Wheat & Watt 2008, Dasmahapatra et al. 
2010, Hausmann et al. 2011).

Recent studies have suggested that the barcode sequence may 
be useful when morphological differences are present in the same 
species, including cases of sexual dimorphism, different castes, or 
different stages of development (Miller  et  al. 2005, Geraci  et  al. 
2011, Jinbo et al. 2011). Other applications of DNA barcoding are: 
identification of host plants by sequencing the stomach contents or 
plant tissues left on the outside of an insect’s body (Jurado-Rivera et al. 
2009); identification of the stomach contents of predators in biological 
control studies (Greenstone et al. 2005, Greenstone 2006); additional 
data uncovering trophic relationships (Clare et al. 2009, Hrcek et al. 
2011); and finally, population genetics, community ecology and 
biodiversity inventories (Janzen et al. 2005, Hajibabaei et al. 2006, 
Lukhtanov et al. 2009, Craft et al. 2010). 

According to Jinbo et al. (2011), DNA barcoding may be used 
in the future in official protocols for the identification of insects and 

Introduction

The classification and identification of living organisms, 
conducted by amateurs and professionals alike, has been classically 
based on the description and analysis of morphological features. 
While the general interest in documenting species diversity has 
grown exponentially over the years, the number of taxonomists 
and other professionals trained in species identification, such as 
parataxonomists (Jinbo et al. 2011), has steadily declined. Taking 
this scenario into account, several researchers have attempted to 
find different ways to accelerate and facilitate the process of species 
identification making it accessible to non-specialists.

Much of the recent taxonomic research has focused on the 
use of molecular tools in the classification and identification of 
living organisms. Among these efforts, the use of a short stretch 
of the mitochondrial cytochrome c oxidase subunit I, popularly 
known as DNA barcode, has received much attention (Hebert et al. 
2003a, b, 2004, Janzen et  al. 2005, Hajibabaei  et  al. 2006, 2007, 
Decaëns & Rougerie 2008, Janzen et al. 2009, Strutzenberger et al. 
2010). Some authors are so partial to this technique that they 
have implied, or suggested, that DNA barcoding is superior to 
the classical, morphologically-based taxonomy, and that it should 
substitute morphology in species descriptions and identification as 
well as in studies trying to ascertain the relationships between them 
(Packer et al. 2009).

Researchers who question the idea that DNA barcoding is 
a panacea that will solve all taxonomic problems have argued, 
among other things, that mitochondrial pseudogenes may lead 
to an overestimation of the actual species diversity, as well as to 
unreliable or misleading identifications based on barcoding sequences 
(Song et al. 2008, Buhay 2009, Hlaing et al. 2009, Hazkani-Covo et al. 
2010).

In this contribution different views are compared and some of 
the problems mitochondrial pseudogenes may cause to insect DNA 
barcoding are discussed.

DNA Barcoding in Entomology

DNA barcoding, a taxonomic method that uses a short, 
standardized DNA sequence to identify species, has gained 
increased attention and acceptance from members of the scientific 
community interested in documenting the Earths’ biodiversity 
(Hebert  et  al. 2003a,  b, Savolainen  et  al. 2005, Hajibabaei  et  al. 
2007, Borisenko et al. 2009, Ivanova et al. 2009, Janzen et al. 2009). 
Since its inauguration in 2004, the Consortium for the Barcode 
of Life  –  CBOL, managed primarily by the Canadian Centre for 
DNA Barcoding at the Biodiversity Institute of Ontario, University 
of Guelph, Ontario, Canada, has gathered partners from all over 
the world. Their objective is to build, in less than twenty years, a 
comprehensive database that will include barcode sequences of all 
extant eukaryotes (Hajibabaei et al. 2005, Ratnasingham & Hebert 
2007, Jinbo et al. 2011).

One of the advantages of DNA barcoding with respect to 
traditional taxonomy is the speed and low costs involved in gathering 
and analyzing data (Borisenko et al. 2009, Strutzenberger et al. 2010). 
The creation of the CBOL’s online database (The Barcode of Life Data 
System – BOLD: www.barcodinglife.org) has provided an incentive 
for numerous researchers to join the barcode initiative. The database 
is easy to access and provides free storage and retrieval of molecular, 
morphological and geographical data, besides built-in, integrated 
analysis tools such as tree reconstructions on the basis of genetic 
similarity (Ratnasingham & Hebert 2007, Frézal & Leblois 2008). 

One of the premises on which DNA barcoding relies on is that the 
genetic variation among species is greater than the variation within 
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other groups, not as a competitor against traditional taxonomy, but 
as a strong tool to assist in the discovery and description of new taxa. 
The projected growth of databases such as the BOLD system, which 
are capable to integrate morphological, physiological and ecological 
data, strengthen and give respectability to the method.

Mitochondrial Pseudogenes

Pseudogenes, also known as nuclear mitochondrial DNA 
(NUMTs), are non-functional copies of mitochondrial sequences 
that have become incorporated into the nuclear genome. The transfer 
of mitochondrial genes to the nuclear DNA may happen through 
direct transfer, or may be mediated by RNAs, in which case viral 
elements are believed to participate (Williams & Knowlton 2001, 
D’Errico  et  al. 2004, Frézal & Leblois 2008, Song  et  al. 2008). 
According to Strugnell & Lindgren (2007), when transferred to the 
nucleus, the mitochondrial gene loses its original function, and is free 
to accumulate mutations, even though the mutation rate of the nuclear 
DNA is slower than that of the mitochondrial genome.

Pseudogenes have been long known to occur in prokaryotes, 
where they usually originate when errors in the transcription process 

cause a gene to “die”. A pseudogene is structurally similar to the 
stretch of DNA it originates from, but may lack a start codon, have 
duplicated termination codons, and/or abnormal regulatory sequences 
on either end. For this reason, unlike functional genes, pseudogenes 
cannot be translated into functional proteins (D’Errico et al. 2004, 
Gerstein & Zheng 2006).

Pseudogenes have been detected in several eukaryotes; they vary 
in number, size and abundance (Bensasson et al. 2001a, Richly & 
Leister 2004, Timmis et al. 2004, Arthofer et al. 2010). In humans, 
for instance, NUMTs are very common, and five of them are known 
to cause diseases (Hazkani-Covo et al. 2010).

Besides mitochondrial pseudogenes, two other types of 
pseudogenes exist: processed and unprocessed. The former are 
copied from RNA and are not found in the same chromosome 
they originated from. They lack introns and regulatory sequences. 
Unprocessed pseudogenes, by contrast, can be found in the same 
chromosome where they originated, and may have introns and 
regulatory sequences, just as a functional gene (D’Errico et al. 2004).

NUMTs may originate anywhere in the mitochondrial DNA, and 
may occur as a unique copy in different parts of the genome. These 
fragments are usually less than 1kb long, but longer fragments seem 
to be common in mammals (Bensasson et al. 2001a, Richly & Leister 
2004, Arthofer et al. 2010).

According to Sorenson & Quinn (1998), even though NUMTs 
are very similar to their source DNA sequences, they have various 
degrees of functionality; because they are located in different parts 
of the cell and away from their origin, they are subject to different 
evolutionary pressures. This is why misleading conclusions can be 
reached when pseudogenes are unknowingly included in analyzes of 
mitochondrial sequences. According to Hazkani-Covo et al. (2010), 
the generation of NUMTs is an important evolutionary process in 
continuous development.

History of the Relationship Between NUMTs and 
Insects

The first record of a mitochondrial pseudogene in Metazoa was 
for Locusta migratoria (Linnaeus, 1758) (Orthoptera : Acrididae) 
(Gellissen et al. 1983), when sequences homologous to stretches of 
the mitochondrial DNA were found in the nuclear genome.

After the first discovery of NUMTs in Orthoptera, thirteen years 
passed until an important contribution involving pseudogenes was 
published in insect molecular research. In 1996, Sunnucks & Hales 
reported on numerous transpositions of mitochondrial sequences 
similar to the cytochrome oxidase I and II in Sitobion Mordvilko, 
1914 (Hemiptera : Aphididae). According to the authors, the 
non-mitochondrial copies of at least three species seemed to have 
originated even before transposition. In the same year, Zhang & 
Hewitt (1996) detected highly conserved pseudogenes in the nucleus 
of Schistocerca gregaria (Forskal, 1775) (Orthoptera : Acrididae) that 
had been amplified along with authentic mitochondrial sequences. 
They observed that pseudogene amplification seemed more common 
when the source specimen had been preserved dry for longer periods 
of time, and without drawing further conclusions on that comment, 
suggested that researchers should seek for NUMTs when conducting 
population biology research using the mitochondrial DNA as a marker 
in order to avoid potentially misleading evidence.

Five years after the works mentioned above, Bensasson et al. 
(2001a) found pseudogenes in all 10 species of Acrididae (Orthoptera) 
studied, distributed in four subfamilies (Podisminae, Calliptaminae, 
Cyrtacanthacridinae and Gomphocerinae). Until then, grasshoppers 
were among the groups believed to harbor a great number of 
pseudogenes. According to Bensasson  et  al. (2001a), at least in 

Table 1. Data obtained from the (The Barcode of Life Data System – BOLD: 
www.barcodinglife.org) relating to the numbers of specimens and species with 
data in the DNA Barcoding in the database. Date of access: October 26, 2011.

Order
Specimens with 

DNA Barcodes on 
BOLD system

Species with 
DNA Barcodes on 

BOLD system
Lepidoptera 561.713 64.197
Hymenoptera 134.151 17.099
Diptera 108.679 9.377
Coleoptera 33.344 8.304
Trichoptera 27.731 3.779
Hemiptera 23.285 3.745
Ephemeroptera 9.235 614
Orthoptera 5.218 840
Odonata 4.669 367
Plecoptera 3.863 464
Thysanoptera 1.857 137
Neuroptera 1.714 147
Megaloptera 1.152 112
Isoptera 826 197
Blattaria 684 125
Phthiraptera 624 85
Psocoptera 395 3
Mantodea 374 150
Dermaptera 140 11
Phasmatodea 101 25
Archaeognatha 81 4
Siphonaptera 158 12
Mecoptera 49 27
Embioptera 20 11
Raphidioptera 15 5
Thysanura 14 3
Diplura 10 4
Strepsiptera 9 7
Mantophasmatodea 2 1
Grylloblattodea 1 1
Total 920.114 109.853
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Orthoptera, the evolution of NUMTs seems to involve two steps. First, 
horizontal transfer, which is the simple transposition of mitochondrial 
DNA to the nucleus; second, post-transfer replication in the nucleus, 
which allows for the continuation of the pseudogene. According to 
the summary compiled by Bensasson et al. (2001b), pseudogenes 
have been found in a total of 82 species of eukaryotes, corresponding 
to approximately 21 species of insects, particularly in Orhtoptera 
and Hemiptera. The great majority of reports on NUMTs in animals 
have been for vertebrates (Blanchard & Schmidt 1996, Sorenson & 
Quinn 1998, Bensasson et al. 2001b). Other important publications on 
insect molecular studies appeared in the beginning of the twenty-first 
century, reporting on the discovery of mitochondrial pseudogenes. 
For instance, Harrison et al. (2003) located about 100 pseudogenes 
in Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae). 
Richly & Leister (2004) found pseudogenes in 13 eukaryote species, 
including Drosophila melanogaster, but failed to find any in 
Anopheles gambiae Giles, 1926 (Diptera : Culicidae). The variation in 
the abundance of NUMTs in closely related species in that study, when 
compared with the variation found for other eukaryotes, was explained 
as a function of two factors. First, among-species differences in the 
rate of sequence transfer from the mitochondrial to the nuclear DNA; 
and second, among-species differences in the rate of loss of NUMTs 
in the nucleus. These conclusions were corroborated by a similar 
study by D’Errico et al. (2004), who utilized only D. melanogaster 
as a representative of Hexapoda.

In 2006, Brower re-evaluated data on Astraptes fulgerator 
(Walch, 1775) (Lepidoptera: Hesperiidae) and found NUMTs 
among the barcode sequences published by Hebert  et  al. (2004). 
Later, Pamilo et al. (2007) searched for pseudogenes in four insect 
species, D. melanogaster; A. gambiae; Apis mellifera Linnaeus, 
1758 (Hymenoptera : Apidae) and Tribolium castaneum (Herbst, 
1797) (Coleoptera : Tenebrionidae), and suggested that the rate of 
transfer of mitochondrial genes to the nuclear DNA in Apis mellifera 
and Tribolium castaneum is high with respect to the dipterans 
sampled. After analyzing the number of NUMTs (>2000) and the 
relationship between the number of base-pairs transferred per 1 Kb 
of nuclear sequence (>1.0) in their samples, they also concluded 
that A. mellifera has the greatest number of NUMTs in the animal 
kingdom. Hlaing et al. (2009) searched for NUMTs in the genome of 
Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae), D. melanogaster 
and A. gambiae, concluding that the first species has more NUMTs 
than the other two. They also concluded that many of the NUMTs 
detected had originated more recently and for that reason they were 
difficult to distinguish from their functional counterparts. The authors 
suggested that similar cases might pose a great problem for DNA 
barcoding.

Hazkani-Covo et al. (2010) studied sequences of 85 eukaryotes 
in search for pseudogenes, which they referred to as “molecular 
Poltergeists”. They found NUMTs in 72 species, absent from the study 
of Richly & Leister (2004). One of their new records was Bombyx 
mori (Linnaeus, 1758) (Lepidoptera: Bombycidae) with 0.0016% of 
the nuclear genome composed of NUMTs (the record for Metazoa, 
Apis mellifera, is 0.081%). Magnacca & Brown (2010) found 
barcode-like pseudogenes in Hylaeus Fabricius, 1793 (Hymenoptera 
: Colletidae), which were easily distinguished from their functional 
counterparts in their nucleotide sequences and translated amino-acids.

Implications of NUMTs for Entomological Studies 
using DNA Barcoding

Using the subunit I of the cytochrome c oxidase, Hebert et al. 
(2004) divided Astraptes fulgerator (Lepidoptera : Hesperiidae) 
into ten different species, most of which (six to seven species) were 

corroborated by morphological, ethological and ecological evidence. 
The remaining (cryptic) species were defined based solely on their 
barcode sequences. Even though the authors did not rule out the 
possibility that pseudogenes were a problem, they stressed that only 
2.8% of their sequences were likely to have been amplified from 
NUMTs. 

The contribution by Hebert et al. (2004) was criticized by Brower 
(2006) and Song et al. (2008), who suggested that the number of 
cryptic species had been overestimated because mitochondrial 
pseudogenes of Astraptes fulgerator had been amplified by the 
universal primers used by Herbert and collaborators. The critique is 
based on the fact that when paralogous genes are used in the place of 
orthologous ones, the assumptions of phylogenetic reconstructions 
are violated, leading to erroneous reconstructions.

In a study involving DNA barcode sequences as well as 
pseudogenes of various orthopterans, Song et al. (2008) concluded 
that the presence of NUMTs in their analysis led to an overestimation 
of the number of species. Even though they expressed some 
pessimism that NUMTs can be completely eliminated, they suggested 
some strategies to help identify these alien sequences: search 
for ambiguity among sequences, noise, or double peaks in the 
electropherogram or chromatogram (Figure 1); sequence translation 
in search for additional termination codons and the comparison of 
the amplified sequences with other, published sequences from closely 
related species.

Hebert  et  al. (2004) suggested sequencing freshly collected 
specimens (preserved for less than 10 years) and using reverse 
transcriptase followed by PCR (RT-PCR) to prevent pseudogene 
amplification, particularly for taxa known to carry NUMTs. Even 
though they excluded 13 sequences from their analysis because their 
electropherogram revealed double peaks, they failed to mention other 
strategies they might have used to look for NUMTs, for instance, 
searching for additional termination codons. Later, Ratnasingham 
& Hebert (2007) declared that all sequences submitted to the BOLD 
system are scrutinized with various tools in search for abnormalities 
typical of pseudogenes, including the search for termination codons 
and translation into protein for comparison with the cytochrome c 
oxidase I product.

Zhang & Hewitt (1996) compared the nuclear copies of the 
mtDNA to mitochondrial heteroplasmy (the presence of more than 
one type of mtDNA within cells). The latter, a common cause of 
degenerative diseases, also causes trouble in sequence analysis. 
The authors mentioned some strategies that can be used to avoid 
pseudogene contamination in molecular data, such as the use of 
specific primers, search for well delimited peaks in the chromatograms 
and termination codons, comparison with other sequences, and 
re-sampling when radically divergent sequences are found, or 
contradictory topologies are recovered in an analysis. An additional 
strategy, mentioned by Calvignac et al. (2011) to avoid NUMTs is to 
evaluate the rate of evolution of potential pseudogenes as they tend 
to evolve faster with respect to their paralogous counterparts.

Moulton et  al. (2010) tested the strategy of using specifically 
designed primers to amplify the barcode region as a means to avoid 
co-amplification of NUMTs in 11 species of Orthoptera. Their 
results casted more doubts on the barcode method, because the use 
of specific primers only eliminated NUMTs from sequences of one 
species, and merely reduced the amount of amplified pseudogenes 
from the others. Several of the pseudogenes found lacked termination 
codons, a determining factor that makes their identification difficult. 
Moulton and collaborators regarded the presence of NUMTs as a 
challenge to insect DNA barcoding, and suggested that a lot more 
control on sequence quality needs to be exerted, and further studies 



305

Mitochondrial pseudogenes in insect DNA barcoding

http://www.biotaneotropica.org.br/v12n3/en/abstract?thematic-review+bn02412032012	 http://www.biotaneotropica.org.br

Biota Neotrop., vol. 12, no. 3

on the ubiquity of NUMTs need to be conducted, if the COI is to be 
used as a universal marker. 

Conclusions

Based on all previously published data and discussions about 
mitochondrial pseudogenes in DNA barcoding, we conclude 
that, if ignored, NUMTs pose a major problem for taxonomic and 

phylogenetic studies based exclusively on barcode sequences. 
Increased control on submission sequences, amplification from fresh 
material, use of specific primers, careful analysis of chromatograms, 
and comparison with other sequences should be mandatory to reduce 
the risk of contamination with NUMTs. In other words, the barcode 
protocol needs to be adjusted to accommodate for the new information 
regarding the prevalence of pseudogenes.

A

B

C

D

Figure 1. Modified chromatogram from (CodonCode Aligner v.3.0.1 copyright© 2002-2009) related to the COI project with the genus Dynamine Hübner, 
[1819] (Lepidoptera : Nymphalidae). A-D. Sequences of Dynamine myrrhina (Doubleday, 1849). A, C. 3’--- 5’. B, D. 5’--- 3’.

Figure 2. Suggested steps for the future studies with DNA Barcoding in insects seeking the elimination or reduction of the presence of NUMTs in sequences.
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Different steps must be prioritized in future studies using DNA 
barcoding (Figure  2), as previously suggested by others (Zhang 
& Hewitt 1996, Song  et  al. 2008, Calvignac  et  al. 2011), and 
methodologies must be specified in such a manner as to allow other 
researchers to make inferences on the reliability of each dataset. 
Sequences that resemble a pseudogene should be removed as early 
as possible, beginning with chromatogram analysis in search for 
suspicious peaks.

Since the barcode sequence was proposed as a universal marker 
by Hebert et al. (2003a, b), the number of entomological studies using 
it have grown exponentially. However, despite the problems discussed 
in the present study, the majority of them fail to mention the possibility 
of contamination with pseudogenes in their data, or have neglected to 
use methodologies aimed to mitigate the problem (Janzen et al. 2005, 
Hajibabaei et al. 2006, Craft et al. 2010, Dasmahapatra et al. 2010). 
There are two possible explanations for this behavior: ignorance 
regarding the prevalence of pseudogenes and/or hurry to publish. 
Fewer studies using COI in insect taxonomy, however, are more 
reliable despite the fact that they fail to mention NUMTs, because they 
also use morphological and/or ecological information (Burns et al. 
2007, Decaëns & Rougerie 2008) as corroborating evidence.

The DNA Barcoding revolution has introduced a strong tool to 
aid in the taxonomy and phylogenetic systematics, being particularly 
useful in pairing individuals of different sexes and uncovering cryptic 
species, which are very important to understand our biodiversity. 
However, it should not be treated as a substitute for any technique, nor 
should it be used, along with their programs and system (BOLD), as 
the only source of evidence in the place of morphological, ecological 
and natural history evidence, as it has been the case in some studies. 
The COI is simply a tool that provides additional evidence, and 
therefore should be treated as such.

More studies should be conducted in order to understand the 
prevalence of mitochondrial pseudogenes in the various insect orders. 
Existing data to date are not very informative and only report on the 
presence and quantity of NUMTs in some species within a few orders. 
The pseudogenes are definitely important contaminants in molecular 
studies using DNA barcoding, and should be searched for, analyzed, 
and disposed of when detected.
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