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INTRODUCTION

For many decades the design of drugs was 
characterized by the search for biologically active 
molecules against a disease of interest (Kubinyi, 
Hamprecht, Mietzner, 1998). The complexity in developing 
new medicines is one of the most difficult processes in the 
pharmaceutical industry, mobilizing millions of dollars 

(Ooms, 2012). For a drug to reach patients, usually more 
than 8 years and millions of dollars in investments are 
needed to complete the long and tedious process of 
drug development (Huang et al., 2010). Although these 

procedures were often based on rational concepts, usually 
they were based on trial and error. 

The large amount of existing molecular information 
along with the presence of computational models that 
aid in the processing and analysis of the wide variety 
of data have also emerged. In this way, the use of these 
computational tools has demonstrated support for 
academia and the pharmaceutical industry in the design 
and development of new drugs and targets (Wilson, Lil, 
2011).

Based on this, CADD (Computer-Aided Drug Design) 
is divided into two main classifications: Structure-Based 
Drug Design (SBDD) and Ligand-Based Drug Design 
(LBDD). SBDD is applied when 3D structural information 
of the molecular target is used, simulating intermolecular 
interactions. Extensive examples, molecular docking and 
dynamics have been applied in recent studies. In contrast, 
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LBDD is based on investigations of small ligands with 
known activity, extracting information about their 
molecular characteristics, descriptors, and producing 
predictive mathematical models in pharmacophores in 
Quantitative Structure-Activity Relationship (QSAR) 
studies (Zhao et al., 2020).

These computational simulations and protocols 
have proved to be essential in early drug discovery. This 
scenario emerged with the classical techniques of QSAR 
models decades ago, such as the Hansch analysis (Hansch, 
1969). Subsequently, recent advances to accelerate drug 
design were the automation and the improvement of these 
processes aided by computational chemistry methods, 
saving time and money (Yu, Mackerell, 2017; Rahman 
et al., 2012). 

QSAR is a valuable tool for the planning of new 
drugs, since it decreases the number of compounds to be 
synthesized, facilitates the selection of more promising 
candidates, and saves time and financial resources. The 
reasons why QSAR has become a useful alternative, 
among other issues, is that many compounds are 
available due to combinatorial chemistry and HTS (High-
Throughput Screening) approaches, but estimates are 
required for the prioritization of synthesis and screening 
(Verma, Khedkar, Coutinho, 2010).

Currently, there are several approaches to construct 
QSAR models, such as 2D-QSAR (Freitas, Brown, 
Martins, 2005; Casañola et al., 2018), 3D-QSAR (Tosco, 
Balle, 2011; Cramer; Patterson; Bunce, 1988; Klebe; 
Abraham, 1998) and 4D-QSAR (Martins et al., 2009), 
all of which differ from one another in how they represent 
molecular structures and define their descriptors. For 
example, COMFA and COMSIA take their approach 
from the structure of molecules correlated with their 
activities, representing the ligand molecules through 
steric, electrostatic, hydrophobic fields and hydrogen bond 
donor or acceptor properties. Nevertheless, all of them 
have the same purpose of elucidating the relationship 
between structure and biological response and low 
efficacy. The exhaustive conformational treatment of 
the success of such methodologies has encouraged us to 
develop a widely accessible QSAR method.

One of the ways to increase the existing approaches 
in the construction of new QSAR models is to efficiently 

explore the different techniques of machine learning 
(ML) (Devinyak, Lesyk, 2016), including the methods of 
variable selection (Li et al., 2017; Ghasemi et al., 2017; 
Jesus, Canuto, Araujo, 2018; Jesus, Canuto, Araujo, 2019) 
that have been researched recently. ML has been envisioned 
as an indispensable tool in facilitating fast, affordable, and 
reliable assessments by generating high-accuracy QSAR 
models. Studies show that ML-generated models can 
reduce the number of synthesized compounds, reducing 
time-consuming modeling and computational cost in drug 
discovery and development (Kausar, Falcao, 2018). 

Studies show that the combination of multiple 
algorithms from different categories can further improve 
predictions and indicate the best algorithm for the 
evaluated dataset (Wu et al., 2021). The use of several ML 
algorithms, such as Artificial Neural Networks (ANN), 
Random Forest (RF) and Support Vector Machines 
(SVM), can show strong predictive power in QSAR 
modeling, being superior to other algorithms. However, 
in the literature there is still no availability of a 3D QSAR 
program with automated ML algorithms, which is free, 
easy to implement, and which can produce highly stable 
predictions.

In summary, our QSAR tool is able to create QSAR 
3D models in an automated way, with a user-friendly, 
robust and freely available method of combining variable 
selection strategies and machine learning techniques. 
We observe that our methodology, when compared to 
CoMFA, had a superior performance in predictability 
of activity for molecules that were not used to build the 
model. Additionally, we offer fully accessible, modifiable 
and customizable hyperparameter tuning. 

MATERIAL AND METHODS

Overview of the 3D-QSARpy tool

The 3D-QSARPy tool was developed using already 
available technologies. Python (Van Rossum, Drake, 
2009) was the main programming language used to 
develop this tool, together with packages such as numpy, 
scipy library, pandas, matplotlib and sklearn. 

In the current version of 3D-QSARPy, the user must 
upload a file containing the molecule data previously 
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aligned by other software. It is important to say that the 
quality of the alignment can be crucial to obtain accurate 
results and this alignment is the user’s responsibility. After 
uploading this file, there is a preprocessing procedure to 
verify user’s mistakes and to help identify the necessary 
changes to obtain a correct format before the main 
processing. In some cases, the user will receive an email 
alert to fix the problems and submit the form again.

Computing descriptors

From the input data, the molecular interaction field 
descriptors and the input matrix of the methods are 
defined (Cramer, Patterson, Bunce, 1988). A series of 
molecules (binders) are used which are already aligned 
and centered in a grid box. Subsequently, the energy 
interactions are calculated between the binders and a sp3 
charged +1 probe positioned at points distributed evenly 
along the grid.

Molecular interaction fields (MIF) were constructed 
to describe molecular interactions of a pharmaceutical 
nature (GoodFord, 1985). This describes the spatial 
variation of the interaction energy between a molecular 
target and a probe chosen within a GRID (Grisoni, 
Consonni, Todeschini, 2018), using the total energy 
of interaction between a target molecule and a probe. 
In this way, distinct characteristics are derived from 
the molecules. MIFs can be used to identify similar 
pharmacophore ligands, predict bioactive alignments, 
and derive 3D-QSAR models to predict binding affinity 
(Milletti et al., 2007; Cross, Cruciani, 2010). 

Four types of descriptors were implemented to 
compare molecules in terms of either their similarity 
or diversity to the binding groups. These descriptors 
were chosen because they better reproduce an interaction 
with a biological receptor, when compared to the 
intrinsic information of the molecule. The descriptor 
count and type can be easily personalized by any 
user. In this process, the changes in the interaction 
properties through the potential energy at grid points are 
calculated: Lennard-Jones potential (LJ) and Coulomb’s 
law (QQ) represent, respectively, steric (van der Waals 
intermolecular interactions) and electrostatic interactions 
(Cramer, Patterson, Bunce, 1988). Hydrogen-Bond (HB) 

and Hydrophobic-Bond (HF) represent, respectively, 
hydrogen bond and hydrophobic interacting moieties 
within the probe (Klebe, Abraham, 1999). Table I shows 
the described descriptors.

TABLE I - 3D descriptors calculated for the construction of 
models

Descriptor Formula

LJ (Lennard-Jones)

QQ (Coulomb electrostatic interactions)

HB (Hydrogen bond forming atoms)

HF (Hydrophobic atoms)

The parameters ε and σ are the types of combined 
atoms derived from the MMFF94 force field, ρ middle 
dielectric constant (ρ = 1), r is the distance between the 
interacting atoms. A=1 for interaction with O and N. B=0 
for atoms of O and N. 

Building the QSAR-3D model

Once the descriptors were calculated and the matrix 
of descriptors is ready, prior to applying the machine 
learning techniques to build the QSAR-3D models, some 
strategies to reduce the data dimensionality are conducted. 
In this way we can seek a good performance from the 
induced model, reduce computational cost and improve 
the understanding of the data (Carvalho et al., 2011). 

The approach to reduce the dimensionality of data 
using variable selection was specifically defined for this 
tool. It is a combination of different types of strategies 
combining selection by filter-based subsets and wrapper 
strategies. In the first step, the dimension reduction was 
performed with a variable selection strategy by filter-
based subsets using three filters. The first and second 
filters are applied to each of the four types of descriptor 
matrix (QQ, LJ, HB and HF) separately. There are cutoff 
values by default defined in the input form for the first 
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and second filters, however, the user can change these 
values according to necessity. Before the third filter, the 
four matrices of descriptors are joined in a single matrix.

 The first filter is a cutoff criterion based on 
variance. This filter aims to eliminate distant points 
(descriptors) from the aligned molecules because these 
points are not relevant for representing the interaction in 
the models. The second filter is a cutoff criterion based 
on Pearson’s correlation between descriptors. This filter 
keeps the most correlated descriptors (independent 
variables) with the biological activity “y” (dependent 
variable). The variables with high correlation between 
them do not present different information to contribute 
to the models. So, when a high correlation is identified 
between two or more independent variables, only the 
most correlated to “y” is included in the new subset of 
variables selected. And finally, the third filter is another 
cutoff criterion based on variance applied to a single 
matrix of descriptors with all the descriptors remaining 
after the application of the first and the second filters. 
This third filter eliminates the descriptors (variables) 
which presents very small variance and that still remain 
in the combined matrix of descriptors. After these three 
filters, variable selection using wrapper is performed 
with strategies such as mutual info regression and the 
random forest algorithm. In this second step, the user 
must select one of the wrapper options in the form to 
reduce even more the number of descriptors to obtain 
more understandable models.

After dimensionality reduction of the data, the 
following different machine learning techniques were 
applied with variations of parameter settings to build 
the models, such as: linear regression methods, k-nearest 
neighbors, regression trees, naive bayesians, and support 
vector machine for regression. 

The user does not have the option to choose the 
algorithms to be performed because the strategy here 
is to perform all the possibilities employed by the tool 
to present the best results for the users. This is one of 
the most relevant differentials of this tool, Partial Least 
Squares is the most frequent algorithm to build QSAR 
models. The use of several machine learning techniques 
from different learning paradigms, allows models to be 
built in different ways and, thus, increases the search 

for possible solutions. One of the main factors that 
can affect the performance of the machine learning 
process is diversity. This ensures that the training data 
can provide more discriminative information for the 
model (unique or complementary information) (Wu 
et al., 2021).

For each employed algorithm, models are built with 
different quantities of selected variables, which results 
in many models. Among these models, the best models 
will be returned to the user, as previously defined by the 
user in an input form. Decision trees, for example, learn 
through symbolic representations. Naive bayes (NB), as 
well as linear methods, are statistical methods. K-nearest 
neighbors (KNN) is a method based on examples, 
whereas Support Vector Regression (SVR) are techniques 
that are considered connectionist (Rezende, 2005). This 
diversity of ML techniques used is considered a key factor 
in increasing the chances of obtaining models with good 
predictive capacity (Nascimento et al., 2018). Besides this, 
the diversity in parameters of each model is another way 
to achieve good models (Wu et al., 2021).

Each experiment to build a model is performed with 
10-fold-cross-validation and the R2 score is the metric 
used to measure the results obtained by each model. 
Additionally, we calculate the Concordance Correlation 
Coefficient (CCC), Root Mean Square Error (RMSE) 
and Mean Absolute Error (MAE), as recently proposed 
by Gramatica, Sangion (2016). The best models to be 
applied are selected using test set results.

Datasets and comparison of model performance

Experiments were performed with data from a series 
of molecules that had already been published by other 
authors using well consolidated tools. These results are 
compared to the results obtained with the 3D-QSARpy 
tool (Patel, Ghate, 2015; Karki et al., 2016).

To accomplish the comparison with results already 
published, 3D-QSARpy was applied following the same 
partitioning of the molecules used for training and 
molecules for testing. The results were recorded after 
the application of the module “3D-QSARpyGrid” filters 
with a significant number of descriptors and after the 
execution of the different variable selection strategies.



Braz. J. Pharm. Sci. 2023;59: e22373	 Page 5/12

3D-QSARpy: Combining variable selection strategies and machine learning techniques to build QSAR models

The first study validated the tool by building QSAR 
3D models whose series of input inhibitory molecules 
targets the enzyme dipeptidyl peptidase-4 involved in 
the treatment of type 2 diabetes mellitus. QSAR 3D 
models were built with a series of 36 quinolines and 
isoquinolines (Patel, Ghate. 2015). The second study 
validated the tool by building QSAR 3D models whose 
series of forty-five input inhibitory molecules were 
2-phenol-4-aryl-6-chlorophenyl pyridine compounds, 
which were synthesized and evaluated for cytotoxicity 
against four cancer cell lines (DU145, HCT15, T47D, 
and HeLa), targeting topoisomerase I and II (Karki et 
al., 2016). 

A summary of the information contained in these 
articles can be viewed in Table II.

TABLE II - Summary of data from the Patel and Ghatel 
(2015) and Karki et al. (2016) papers

Description Patel and 
Ghatel (2015) Karki et al. (2016)

Total molecules 
in series 36 45

Series of 
molecules

quinolines and 
isoquinolines

2-fenol-4-aril-6 
with clorofenil 

piridina

TABLE II - Summary of data from the Patel and Ghatel 
(2015) and Karki et al. (2016) papers

Description Patel and 
Ghatel (2015) Karki et al. (2016)

Target 0 0

pIC50 4.060 - 8.744 4.318 - 6.051

Tools to build 
the models 0 0

Q2 0.803 and 0.826 0.820

R2 0 0.915

R2pred 0 0.985

RESULTS AND DISCUSSION

Interface

The 3D-QSARPy is a user-friendly tool, freely 
available without registration as an offline tool by 
users. The user guide is available in the supplementary 
material. Currently, the 3D-QSARpy tool is subdivided 
into three main modules, according to the scheme 
shown in Figure 1.
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The first module is the “3D-QSARpy-Grid” which 
generates the descriptor matrix and a biological activity 
(y) file. This module receives as input a file containing the 
series of input molecules and configuration information. 
It performs the necessary processing to achieve the data 
that will be used as the input for the tool, such as the 
coordinates and values of the charges from the series 
of molecules. Subsequently, when the necessary data 
from the file is extracted, the smallest and largest x, y 
and z coordinates are identified, and the values will be 
used to define the points that will compose the grid that 
encompasses the whole series of molecules. Finally, filters 
are applied to reduce data dimensionality.

From the minimum and maximum values of the grid 
coordinates, the distance from the grid edges, ranging from 
small, medium and large, is defined. The values of these 
margins correspond to, respectively, 3Å, 4Å and 5Å, and 
they are added to the extreme points of the boxes (minimum 
and maximum coordinates). The internal spacing between 
box points (resolution) must also be user defined and this is 
called the box resolution. Both measurements, edge spacing 
and internal spacing between points, directly influence the 
amount of initially calculated descriptors.

Moreover, to define which types of descriptors 
(LJ, QQ, HB and HF) should be calculated, the user 
must select True or False for each of them, except the 
LJ descriptor, which is always calculated. The dielectric 
constant value can also be changed and the calculation 
thresholds for variance and correlation applied to the 
descriptors by filters for dimensionality reduction as well. 
Finally, the users must provide their email to receive the 
result files after the processing is concluded and also 
receive alerts about the processing. 

The second module is the training module, 
“3D-QSARpy-ML”, which generates an output file with 
the information about the best models obtained from 
the training phase. This module receives as input the 
descriptors matrix and the y file obtained from the 
“3D-QSARpy-Grid”. This matrix is reduced by variable 
selection strategies. Subsequently, several models are 
built based on different machine learning techniques. 
The best models built by this module are selected and 
the required data goes to the next module. The models 
are evaluated using the R2 metric with partitioning at 10 
times 10-fold-cross-validation. These data are stored for 
validation and testing in the subsequent module. Thus, it 

FIGURE 1 - 3D-QSARpy tool scheme.
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is possible to use the chosen models for further validation 
and testing with new molecules (external set).

Variable selection is performed using three different 
types of strategies already implemented and imported 
from Scikit-Learn, these are: SelectKBest with mutual_
info_regression method, SelectKBest with f_regression 
method and the Random Forest Learning algorithm. 
With all the strategies cited, models are generated with 
the number of attributes selected from each one until 
reaching the number of molecules in the input series.

In addition, all of these variable selection possibilities 
are used to build models based on the following 
algorithms: linear regression (Linear Regression, 
Lasso, Lasso Lars, Ridge, Bayesian Ridge), regression 
trees (Decision Tree Regressor, Extra Trees Regressor, 
Random Forest Regressor), random forest (RF), k-nearest 
neighbors for regression (KNN), and regression support 
vector machines (SVR).

Finally, the third module is the “3D-QSAR-
Predictor” which generates an output file with the 
information about the prediction of test molecules. 
This module receives as input the training molecules 
and their predictions, the test molecules (which were 
not used in any preprocessing or training steps), and 
their predictions when biological activities are known 
(validation). In addition, it also receives the file containing 
the data regarding the best models obtained from the 
“3D-QSARpy-ML” module.

 Thus, this module receives as input four files, these 
are: a file containing the series of input molecules used 

for training, a file containing the series of input molecules 
used for test, a file containing a matrix of descriptors 
obtained from the “3D-QSARpy-Grid”, and a file with 
the information of the best models obtained from the 
“3D-QSARpy-ML” module. In the cases in which the 
biological activity of these molecules is already known, 
the input from the data of the test molecules is used to 
validate the models. On the other hand, in the cases of 
molecules that still have unknown biological activity, 
this module simply predicts the biological activity of 
these new molecules.

In the “3DQSARpy-Predictor”, for each of the 
executed models, the descriptors for the test molecules 
are calculated, specifically the descriptors selected for the 
generation of the model in question. Several descriptor 
selections are tested for the different types of algorithms in 
the previous module. Models receive different selections, 
which consequently generate a specific test matrix for 
each model.

The test matrix is calculated similarly to the 
matrix generated using the input molecules in the 
first module, the “3D-QSARpy-Grid”, but instead of 
calculating descriptors for all points on a grid, only 
specific descriptors resulting from variable selections 
are calculated for the test molecules. Once the test matrix 
is calculated for a given model, it is tested and the R2 
metric is used again to measure this prediction.

What is more, the descriptor matrix makes it 
possible to create a 3D representation of the generated 
model, highlighting the most interesting physicochemical 
characteristics for the compounds studied (Figure 2).
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Performance

The preliminary results obtained had the objective 
of validating the 3D-QSARpy tool. Therefore, Table 
III shows some of the published results obtained using 
CoMFA and CoMSIA and some of the best results 
obtained by the present 3D-QSARpy tool. 

According to information from the paper by Patel 
and Ghatel (2015), the final goal of treating type 2 diabetes 
mellitus is to control blood glucose levels for a longer 
time and treat its complications. Currently oral treatment 

options are: sulfonylurea derivatives (SU), metformin, 
thiazolidinedione (TZD), glycosidase inhibitors and more 
recently, dipeptidyl peptidase-4 (DPP-4) inhibitors and 
glucagon-like peptide-1 analogues (GLP-1).

In Patel and Ghatel (2015) it is possible to compare 
the predictive capacity of the models through the values 
presented in the last line. One of the models presented 
in Table II, which was built with the 3D-QSARpy tool, 
showed significantly higher prediction results compared to 
CoMFA and CoMSIA. This was the model using variable 
selection with the random forest strategy, presenting 0.918.

A B

FIGURE 2 - 3D view of model representation, showing the best compound of Patel and Ghatel (2015) (compound A) and Karki 
et al. (2016) (compound B), and coordinated data of descriptors in space. The blue color represents the Hydrogen-Bond (HB), 
the green represents Lennard-Jones potential (LJ), the pink represents Hydrophobic-Bond (HF) and red represents Coulomb’s 
law (QQ).
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It is also important to mention that the values of R2 
are generally lower when compared to the previously 
published models of CoMFA and CoMSIA, however, this 
can be easily justified in view of the divergence regarding 
training validation. The publication used leave-one-
out, which means that only one molecule is withdrawn 
for validation, while experiments with 3D-QSARPy 
validation used the average of 10 times 10-fold-cross-
validation, removing 10% of the molecules. Thus, it is 
expected that the results present lower values, however, 
the validation is considered more robust. 

For CCC, RMSE and MAE metrics, we obtained 
representatively good values for the best model. However, 
this information was not included in the original paper 
reference and the comparison between our model and 
literature model was not possible.

The second study used for tool validation was 
a work by Karki et al. (2016), who built QSAR 3D 
models, and whose series of forty-five input inhibitory 
molecules, being 2-phenol-4-aryl-6-chlorophenyl 

pyridine compounds, were synthesized and evaluated 
for cytotoxicity against four cancer cell lines (DU145, 
HCT15, T47D, and HeLa), targeting topoisomerase I and 
II (Table III). 

The main goal of this paper was to prevent the 
proliferation of cancer cells by inhibiting topoisomerase 
I and II. Human DNA topoisomerases (I and II) are 
expressed at different levels in different types of cancer. 
For example, topo I is over-expressed in colon cancer 
cell lines, while topo II is over-expressed in breast and 
ovarian cancer lines.

The authors propose a new series of 2-phenol-4-
aryl-6-chlorophenyl pyridines synthesized as potential 
antitumor agents acting with dual inhibitory activity. For 
this purpose, chlorine was incorporated at the 6-phenyl 
position and aryl group at the 4-position of the central 
pyridine to investigate whether these changes cause any 
combined (double) effect on activity and cytotoxicity.

It was observed for Karki et al. (2016) that one of 
the models presented in Table III, which was built with 

TABLE III - Summary table of results obtained from the publications of Patel and Ghatel (2015) and Karki et al. (2016) with 
the proposed 3D-QSARpy tool

R2 Q2 R2pred CCC RMSE MAE

Patel and Ghatel (2015)

CoMFA 0.991 0.803 0.874 - - -

CoMSIA 0.983 0.826 0.847 - - -

3D-QSARpy (no selection) 1 0.689 0.889 - - -

3D-QSARpy(f_regression) 1 0.816 0.866 - - -

3D-QSARpy (mutual_regression) 0.967 0.698 0.853 - - -

3D-QSARpy (RF) 0.914 0.764 0.918 0.96 1.33 1.07

Karki et al. (2016)

CoMFA 0.820 0.915 0.985 - - -

3D-QSARpy (no selection) 1 0.701 0.952 - - -

3D-QSARpy (f_regression) 1 0.683 0.979 - - -

3D-QSARpy (mutual_regression) 1 0.904 0.987 0.989 0.676 0.583

3D-QSARpy (RF) 1 0.682 0.979 - - -
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the 3D-QSARpy tool, showed higher prediction results 
compared to CoMFA. This model presented variable 
selection with the mutual regression strategy, presenting 
a prediction of 0.987338, while CoMFA achieved 0.985. 
The other models presented similar values but could not 
outperform the CoMFA.

CONCLUSION

The 3D-QSARpy is a friendly tool with three 
modules available and allows the user to build promising 
models with good predictive ability, surpassing other 
methodologies, such as CoMFA and CoMSIA. The 
validation of this tool achieved good results. The use 
of different machine learning techniques combined 
with variable selection strategies allowed for increased 
model diversity in the existing search space and the 
flexibility of this tool allows for possibilities for future 
enhancements. This tool enables the user to configure 
important parameters according to what is needed. 
What is more, it is designed to gradually include other 
algorithms and new configurations of parameters and 
the strategy of dimensional reduction to improving its 
performance regardless of the user’s knowledge about 
the techniques employed. Thus, it demonstrates that this 
tool is robust and flexible and very useful for the drug 
discovery process.
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