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We study the conformal symmetry and the energy-momentum conservation of scalar field interacting with a
curved background at D = 2. We avoid to incorporate the metric determinant into the measure of the scalar
field to explain the conformal anomaly and the consequent energy-momentum conservation. Contrarily, we
split the scalar field in two other fields, in such a way that just one of them can be quantized. We show that the
same usual geometric quantities of the anomaly are obtained, which are accompanied by terms containing the

new field of the theory.

1 Introduction

The interaction between quantum fields and classical grav-
ity has been intensively studied for a long time [1]. One of
the main motivations is that this procedure is considered to
be the first initial step to understand the full quantum theory
including the gravitatonal field itself. It resembles the old
formalism of dealing with quantum fields interacting with
the classical external electromagnetic background before the
advent of the quantum electrodynamics.

However, even though these are aparently similar proce-
dures, the former is much more involved. For example, the
concept of particle is not well defined. Consequently, the
definition of |in) and |out) states cannot be done in a clear
way and the definition S-matrix becomes meaningless. So,
instead os particles, it is the energy-momentum tensor that
plays the fundamental role, due to its local nature and being
the source of the curvature in the general relativity theory.
There is an important property that the energy-momentum
tensor has to satisfy, the (covariant) divergenceless, which
corresponds to the conservation of energy and momentum
of the theory. This is a kind of symmetry that cannot be
modified by quantum corrections.

On the other hand, we have an interesting symmetry
related to massless theories, called conformal symmetry,
which means, in a broader sense, the absence of scales.
This symmetry is manifested in the traceless of the energy-
momentum tensor. Contrarily to previous case, it is not nec-
essarily kept in the quantum scenario (trace anomaly). This
occurs because the quantum formalism naturally introduces
scale parameters in order to deal with infinities during the
regularization procedures.

In this paper, we consider a quantum massless scalar
field interacting with a classical curved background. We
mention that this theory exhibits the conformal symmetry,
where for D > 2 it is necessary to couple the scalar field to
the classical curvature (nominimal coupling) [1]. The par-
ticular case of D = 2, that is the subject of the present paper,

has an interesting feature. The conformal symmetry is veri-
fied without necessity of coupling the scalar field to the cur-
vature, because there is no conformal transformation for it.
This result may lead to a wrong conclusion that there is no
trace anomaly for scalar fields at D = 2 because the absence
of conformal transformation for them leads to an invariance
of the corresponding measure in the path integral formalism.

The above reasoning and conclusion, which there is no
trace anomaly for D = 2, cannot be true because it is accom-
panied by an unpleasant absence of energy and momentum
conservation (after quantum corrections). A more carefull
study of the conformal symmetry shows that the conformal
anomaly does actually exist and the energy and momentum
are actually conserved, as they should be [2, 3]. We mention
that this problem can be circumvented by splitting the /—¢g
of the action as \/—g = (—g) % (—g) ™% and incorporating
each one of these factors to the scalar field [2]. In this way,
the new scalar field acquires a convenient conformal trans-
formation [4], whose noninvariance of the measure renders
the expected trace anomaly and the energy-momentum con-
servation.

The purpose of the present paper is to display a different
alternative of dealing with this problem. We avoid to incor-
porate any factor involving the metric tensor to the scalar
field because, since we intend to work with the path inte-
gral formalism, this would be inconsistent with the initial
assumption that the gravitational field is classical. Our pro-
posal consists in splitting the scalar field in a product of two
fields with different conformal transformations. The classi-
cal conformal symmetry is not modified, but the measure of
one of them is. We show that this leads to a trace anomaly,
that has the same geometrical terms of the usual case, plus
other ones related to the new field. We also show that, even-
though more involved, the energy momentum conservation
is also achieved quantically.

Our paper is organized as follows. In Sec. II we brief

discuss how this this problem can be solved by incorporat-
ing a factor inovolving the metric tensor into the scalar field.
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Eventhough this is a section review, we follow the lines that
we shall used into the next section, where our formalism is
presented. We left Sec. IV for some concluding remarks.

2 Trace anomaly and energy-
momentum conservation
Let us start from the action
1
5= / 022 /=9 9" 0,6 D @1

The classical energy-momentum tensor is
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9" Ty =0 (2.3)
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where V# is the covariante derivative and O is the
Laplace-Beltrami operator, O¢ = ﬁaﬂ(\/——gaw) =
gV, Vi, o.

Expression (2.3) tell us that the theory exhibits the con-
formal symmetry. The conformal transformation for the
metric tensor is §,, = €>**g,,,, and, consequently, \/—g g"”
is conformally invariant. This means that the conformal
symmetry is verified at D = 2 without any transformation
for the scalar field ¢. The meaning of expression (2.4) is
that the energy and momentum are conserved. It is oppor-
tune to mention that this expression was obtained by using
the equation of motion for ¢.

In the quantum scenario (with a classical background
metric) the energy momentum tensor can be obtained by
means of the vacuum functional as

2 6z

Vg 2
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where

Z= / [dé] exp (% / &/ g gﬂ”amaygb) 2.6)

Since the scalar field does not change under conformal trans-
formation, we have that the measure [d¢] also remains in-
variant. Consequently, the semiclassical expression for the
energy-momentum tensor reads

1

(L) = (0 00 = 5 Guv 0”9 9p0) 2.7)

The curved background is considered to be classical, so we
may have
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9" (Tw) = (9" Tpw) =0 (2.8)
VH(T,) = (VFT,) = (0, 60¢)  (2.9)

It is not possible to conclude that expression (2.9) is zero
because the equation of motion cannot be used in the quan-
tum scenario. Of course, the results above do not merit
confidence because there is no reason to believe that energy
and momentum are not conserved after quantum effects are
taken into account.

To circumvent this problem, the action (2.1) can be
rewriten as

1
S=3 /d%gﬂ”a@ 0,® (2.10)

where

b =(—g)i0 2.11)
Of course, the classical T}, is precisely the previous one
given by (2.2) (which can be rewritten in terms of ®) and
the action, S given by (2.10), is still conformally invariant.
The conformal transformation for the new scalar field ® is

P =ed 2.12)

However, for the vacuum functional, the measure [d®] is not
invariant under conformal transformation. In a general way,
we have [5]

[d®] = exp(i/de —ga(x) A(x)) [dD] (2.13)

where A(z) is a badly divergent quantity that can be regu-
larized by means of the zeta function technique leading to

(6]

Alz) = lilr(l)trg(x,s)

_ @] (2.14)
4
The last step of the expression above is restrict to D =
2, and the coefficient a;(x,2’) is related to heat ker-
nel expansion. The notation [a;(x)] means [a1(z)] =
lim, ., ai(z,z’). These coefficients can be obtained by
means of a recursion relation that depends on the kind of
operator that acts on the field [7]. For the present case,
a1(z) = —% R, where R is the Ricci scalar curvature
Now, the corresponding energy-momentum tensor ob-
tained by means of expression (2.6), which we shall denote
by T}, is not traceless. The trace (T ) can be directly
obtained by

<Tﬂ w = _\/L_—g (;_i
= A(x)
1

= —— 2.1
247rR @.15)
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This result embodies the trace anomaly. Since in two space-
time dimensions we have the identity R, = 3g,., R, one
may say that the full expression for the energy-momentum
tensor (T},,,) should be

~ 1
<T;W> = <T;W> - EguvR

where (T),,,) is the one given by (2.7) (it is indifferent to
write it in terms of ¢ or ®). Acting the covariant derivative
in both sides of the expression above, we get

(2.16)
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Expanding the field ¢ in terms of eigenfunctions of the op-
erator O, one can show that [2]

(0,6 06) = 50,(659) @.18)

and the quantity (¢ O ¢) can be regularized and leads to [2]

1

(p0¢) = —R

2.1
24n (2.19)

So,

VA(T,) =0 (2.20)

as it should be.

3 Alternative procedure

Now, instead of incorporating the factor (—g)~7 to the
scalar field, we go in a opposite direction by splitting the
field ¢ as

p=¢"¢ 3.1)

where 6 and ¢ are considered to be two independent quanti-
ties with the following conformal tranformations

p=e % (3.2)
0=0+a (3.3)

The field ¢ remains quantum, but 6 can be quantum
or not. It is important the field 6 appears in a exponen-
tial term and, consequently, with a conformal transforma-
tion like (3.3). This is so because, in the hypothesis that 8 is
also quantum, its corresponding measure, [df], remains un-
changed (the jacobian is trivial). In the developments which
follow, we shall consider 6 classical. At the end, we briefly
talk on the possibility of § being quantum.

Replacing ¢ given by (3.1) into the initial expression for
S, (2.1), we have

We have just done a change of variables and, conse-
quently, there is no changing into the classical case. But,
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in the path integral, the measure [d¢] is not invariant under
conformal transformation. Considering € classical, se have
the vacuum functional

2= [laden{-5 [ #av=50[ (20,000}
3.5)

Now, the coefficient [a4], related to the operator that is act-
ing on ¢, is

1
[a1] = —¢*° <6R + aﬂaaua) (3.6)
So, the trace anomaly reads

20

1
(T, = - <ER+aﬂaaﬂo> 3.7)

Since the field 6 is considered to be classical, one may
infer that the expression for the energy momentum tensor

(T ) is given by

20

N e 1
(Do) = (T} = <E G R+ auoaye) (3.8)

where (7),,) is the same one as given by (2.7), with ¢ re-
placed by e’¢, i.e.

(Tw) = e* [<6u98u9 - %gﬁw 8p98p9> (¥?)

1 1
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1
— 5 9 (0°S)
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Now, let us verify the consistency with respect the
energy and momentum conservation. First, we consider
V#(T,,). This can be done by directly acting the opera-
tor V# on (TW}, given by the expression (3.9), or by using
(2.9), where we should replace ¢ by ee<p [notice, however,

that this replacement cannot be done into (2.18), because
just part of ¢ is quantum]. We thus have

VH(T,,) = ¢ [(apeaﬂe +06) 9,0(%)
+ 80,0070 (0,0°) + 0,0(p 0 )
1
+3 (80,0070 + 00) (D,¢%)

+20°0(0,00,0) + (Dyp O M
(3.10)

For the second term of (3.8) we have
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—% v e (% G B+ 0,00,6) |
—% ¢! (% RO,0+ % O, R
+20,00,0070
+0600,0+0°00,0,6)  (.11)
Now, since just ¢ is quantum, we can write
(DO ) = %6y<<p|:|<p> (3.12)
20

Considering the action involving ¢ and with the term e
factorized, as well as the renormalization factor we are us-
ing into (2.14), we can obtain the regularized quantities

<¢D¢>=i(é

47
(%) = -

T in
Finally, since ¢ is a scalar quantity and (9, ¢?) is an average
involving all directions aleatory, and the same occurs with
(0,0, ), we have that these quantities are null. Replacing
all these results into (3.10) and (3.11), we get

R+0,00'0)  (3.13)

(3.14)

VAT,,) =0 (3.15)

which express the consistency with the energy-momentum
conservation.

In the case that @ is also quantum, the measure [df] does
not change under conformal transformation, but the problem
is much more involved and difficult to solve. Just formally,
one may write that the trace anomaly reads

- 1, 59/1
(@) == (ER + auaaue)>
From which one cannot either infer an expression similar as
the second term of (3.8) or try to regularize it because the

bad divergencies occuring in the exponential 2.

(3.16)

4 Conclusion

In this paper we have study the problem of conformal
anomaly and the energy-momentum conservation for a
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quantum scalar field interacting with a classical curved
background in the spacetime dimension D=2. We have con-
sidered the scalar field as split in two other scalar fields, and
kept just of them quantum. This procedure is in opposite di-
rection to what is done in literature, where a factor contain-
ing the metric determinant is absorbed by the scalar field,
leading to a new field with a convenient conformal trans-
formation. We have shown that our procedure is consistent
with the geometric terms of the usual treatment of the con-
formal anomaly and also consistent with the expected result
that energy and momentum should be conserved after quan-
tum effects are taken into account.
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