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We address this work to investigate symbolic sequences with long-range correlations by using computational
simulation. We analyze sequences with two, three and four symbols that could be repeated l times, with the
probability distribution p(l) ∝ 1/lµ. For these sequences, we verified that the usual entropy increases more
slowly when the symbols are correlated and the Tsallis entropy exhibits, for a suitable choice of q, a linear
behavior. We also study the chain as a random walk-like process and observe a nonusual diffusive behavior
depending on the values of the parameter µ.
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1. INTRODUCTION

Two basic assumptions of the statistical mechanics are: the
“equal a priori probabilities” and ergodicity. When these as-
sumptions do not hold, we need other suitable tools to study
systems which exhibit a nonusual behavior. A typical situ-
ation can be found by analyzing systems which have an in-
termediate regime between periodic and chaotic [1]. This
kind of system commonly shows a power law spectra and ap-
pears in several fields of science. Aspects of nonusual behav-
ior have been explored, for instance, in biology[2], nuclear
physics [3], financial market [4], music [5] and linguistics
[6]. In this context, there are also works that search for cor-
relations in DNA sequences [7–11] by using entropic indexes
[12–16]. To provide a possible description for these systems
which are not conveniently explained by the usual formalism,
Tsallis[17] proposes an extension of the Boltzmann-Gibbs en-
tropy. Many systems have been investigated by using this ap-
proach, e.g., long-range Hamiltonian systems like the HMF
model [18], the generalized Lennard-Jonnes gas [19], self-
gravitating systems [20] and anomalous diffusion [21].

In this direction, to try to clarify in a more direct way ba-
sic aspects related to Tsallis entropy, it may be convenient
to consider specifc models with a kind of long-range behav-
ior. Considering this, the aim of this work is to explore the
nonusual behavior of a symbolic model with an adjustable
long-range behavior. More precisely, we investigate one di-
mensional symbolic sequences with long-range correlations
which are generated by using the numerical experiment pre-
sented in Ref. [22]. The procedure uses two random numbers
to obtain a lattice with N sites which represent the symbolic
sequence. One of them, x, has a uniform distribution in the
interval [0,1] and the other emerges from the expression

y = A
[

1
(1− x)1/(µ−1) −1

]
, (1)
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where A and µ are real parameters. We go through the sym-
bolic sequence drawing x and filling Ny = [y] + 1 sites with
the same value z, where [y] denotes the integer part of y and z
is a signal generator that can have one of four distinct values
(0, 1, 2, 3) with the same statistical weight. A typical example
obtained within this procedure is

Q =





0,0,0,︸ ︷︷ ︸
Ny=3

1,1,1,1,1,︸ ︷︷ ︸
Ny=5

0,0,︸︷︷︸
Ny=2

1,1,1,1,︸ ︷︷ ︸
Ny=4

0︸︷︷︸
Ny=1





for a sequence with two symbols.
For the sequences generated with the procedure described

above, we may obtain the probability distribution function of
the variable y, p(y), and show that, depending on the values
of the µ, it can be asymptotically related to a Lévy distribution
(for y≥ 0). In fact, after some calculations, one can show that
p(y) is given by

p(y) = (µ−1)
Aµ−1

(A+ y)µ , (2)

and the first moment of this distribution is 〈y〉= A/(µ−2).
By comparing the asymptotic limit of Eq.(2), p(y) ∼ 1/yµ,
with the asymptotic limit of the Lévy distributions, p(y) ∼
1/y1+η, the relation between µ and η is µ = 1+η. Note also
that 〈y〉 diverges for µ→ 2. This fact indicates that, when µ
is close to two, Ny may assume large values and fill a large
part of the symbolic sequence with the same symbol. On the
other hand, when µ is far from two (µ� 2), large values of
Ny become very rare and consequently the sequence has more
alternated symbols.
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FIG. 1: Sq versus L for some values of µ (indicated in the figure) for a two-symbol sequence. We use A = 2 and N = 108 in
all the three figures.

2. ENTROPY AND SEQUENCE

The Tsallis entropy is defined, for a system with W
microstates and occupation probabilities pi, as follows:

Sq =
1−∑W

i=1 pq
i

q − 1
, (3)

where q is a real parameter. In the limit q → 1 we have
the standard Boltzmann-Gibbs entropy. Sq is extensive
for a composite system consisting of independent sub-
systems for q = 1 and nonextensive for q 6= 1; for this
reason, Sq is sometimes referred to as nonextensive en-
tropy. However, when we have long-range interactions or
long-range correlations, the subsystems cannot be inde-
pendent. In this case we will see that Sq can be extensive
for a particular value of q 6= 1.

In order to evaluate the Tsallis entropy, for the sym-
bolic sequence generated with the previous procedure,
we fix windows of length L which are moved along the
sequence. Then, we count how many times a given con-
figuration (string) occurs, determining the probability pi

of a specific configuration i. To illustrate this procedure,
suppose that we have the following sequence:

Q = {0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1} ,

then we fix a window of length 2 and move it along the
sequence, i.e., we have

Q =



0, 0,︸︷︷︸

1

1, 0,︸︷︷︸
2

0, 1,︸︷︷︸
3

1, 1,︸︷︷︸
4

0, 0,︸︷︷︸
5

0, 1,︸︷︷︸
6

0, 0,︸︷︷︸
7

0, 0,︸︷︷︸
8

1, 0,︸︷︷︸
9

1, 1︸︷︷︸
10



 ,

where the index below the keys indicates time steps of
the window’s motion. The next step is to count how
many times a given configuration occurs, for example,
the configuration {0, 0} occurred 4 times (in the instants
of “time” 1, 5, 7 and 8), leading to the probability 4/10.
Similarly, we calculate the probability of other configu-
rations and for other window lengths as well.

Figure (1) shows Sq as a function of L for some values
of µ. Note that for each value of µ there is only one value

of q = q∗ that makes the relation Sq versus L linear.
This feature becomes evident when we look at the linear
correlations (see the insets in Fig. (1)). We can observe
from the above results that when µ decreases q∗ also
decreases.

Motivated by the previous results, we investigate the
relation q∗ versus µ for two, three and four-symbol se-
quences. The results are shown in Fig. (2). Note that,
when µ increases, q∗ tends to unity, and that the more
symbols the sequence has, the faster it reaches towards
one. This feature shows that large values of µ generate
small values of Ny and consequently the terms of the
symbolic sequence becomes noncorrelated leading to the
usual description based on the Boltzmann-Gibbs entropy.
However, when µ decreases, Ny is generally very large
(remember that, when µ < 2, all the moments of p(y) di-
verge) and introduces correlation among the terms of the
symbolic sequence which are not properly described by
the usual formalism. The decreasing values of q∗ reflects
this nonusual behavior. We emphasize that in this case
the Tsallis entropy is extensive and Boltzmann-Gibbs en-
tropy is not, indicating the applicability and robustness
of the generalized entropy.
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The Tsallis entropy is defined, for a system with W mi-
crostates and occupation probabilities pi, as follows:

Sq =
1−∑

W
i=1 pq

i
q−1

, (3)

where q is a real parameter. In the limit q→ 1 we have the
standard Boltzmann-Gibbs entropy. Sq is extensive for a com-
posite system consisting of independent subsystems for q = 1
and nonextensive for q 6= 1; for this reason, Sq is sometimes
referred to as nonextensive entropy. However, when we have
long-range interactions or long-range correlations, the sub-
systems cannot be independent. In this case we will see that
Sq can be extensive for a particular value of q 6= 1.
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In order to evaluate the Tsallis entropy, for the symbolic
sequence generated with the previous procedure, we fix win-
dows of length L which are moved along the sequence. Then,
we count how many times a given configuration (string) oc-
curs, determining the probability pi of a specific configura-
tion i. To illustrate this procedure, suppose that we have the
following sequence:

Q = {0,0,1,0,0,1,1,1,0,0,0,1,0,0,0,0,1,0,1,1} ,

104
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FIG. 3: The standard-deviation versus N for µ = 2.2 and A = 0.1.

then we fix a window of length 2 and move it along the se-
quence, i.e., we have

Q =



0,0,︸︷︷︸

1

1,0,︸︷︷︸
2

0,1,︸︷︷︸
3

1,1,︸︷︷︸
4

0,0,︸︷︷︸
5

0,1,︸︷︷︸
6

0,0,︸︷︷︸
7

0,0,︸︷︷︸
8

1,0,︸︷︷︸
9

1,1,︸︷︷︸
10



 ,

where the index below the keys indicates time steps of the
window’s motion. The next step is to count how many times
a given configuration occurs, for example, the configuration
{0,0} occurred 4 times (in the instants of “time” 1, 5, 7 and
8), leading to the probability 4/10. Similarly, we calculate
the probability of other configurations and for other window
lengths as well.

Figure (1) shows Sq as a function of L for some values of
µ. Note that for each value of µ there is only one value of
q = q∗ that makes the relation Sq versus L linear. This feature
becomes evident when we look at the linear correlations (see
the insets in Fig. (1)). We can observe from the above results
that when µ decreases q∗ also decreases.

Motivated by the previous results, we investigate the re-
lation q∗ versus µ for two, three and four-symbol sequences.
The results are shown in Fig. (2). Note that, when µ increases,
q∗ tends to unity, and that the more symbols the sequence has,
the faster it reaches towards one. This feature shows that large
values of µ generate small values of Ny and consequently the
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terms of the symbolic sequence becomes noncorrelated lead-
ing to the usual description based on the Boltzmann-Gibbs
entropy. However, when µ decreases, Ny is generally very
large (remember that, when µ < 2, all the moments of p(y)
diverge) and introduces correlation among the terms of the
symbolic sequence which are not properly described by the
usual formalism. The decreasing values of q∗ reflects this
nonusual behavior. We emphasize that in this case the Tsal-
lis entropy is extensive and Boltzmann-Gibbs entropy is not,
indicating the applicability and robustness of the generalized
entropy.

3. DIFFUSION AND SEQUENCE

In order to explore further aspects of a symbolic sequence,
let us consider it as an erratic trajectory and establish a cor-
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FIG. 4: (a) The α slope of the curve in Fig (3) versus µ (b) the
entropic index q∗ versus µ and (c) q∗ versus α. In the three figures
we use A = 0.1.

respondence with a diffusive process. For the case of two-
symbol sequences, we associate the symbol “0” with a jump
of unit length to the right and the symbol “1” with a jump of
unit length to the left. That is, a random walk-like process.

Using the previous prescription, we calculate the standard-
deviation for i = 1 to N over 105 events as we can see in Fig.
(3). We know that the slope α of this curve is one for a usual
diffusion, but in the case of Fig.(3) α is greater than one. We
also observed that α depends on µ. This behavior is shown
in Fig.(4a). Note that for small values of µ (µ < 3) the dif-
fusion is anomalous, i.e., we have a superdiffusion, and for
large values (µ≥ 3) the diffusion regimes tend to a usual dif-
fusion. This behavior can be explained if we remember that
for small values of µ, Ny can be very large and consequently
the walker can make large steps without changing the direc-
tion. When µ is large, this event becomes very rare because
Ny is in general small, making the walker change directions,
producing a usual erratic trajectory. We may also connect α

with q∗ through the values of µ. In order to do this we evalu-
ate the relation q∗ versus µ as shown in Fig. (4b) and exhibit
q∗ versus α in Fig. (4c).

4. DISCUSSION AND CONCLUSION

We verified that by varying the value of µ we can produce
long-range correlations in symbolic sequences. This is evi-
denced by the nonlinear growing of the Boltzmann-Gibbs en-
tropy. This feature led us to use the Tsallis entropy with suit-
able values of q to obtain a satisfactory description of these
sequences. Specifically, we observed that the Tsallis entropy
preserves the extensivity even when the terms of the symbolic
sequence are correlated. We also considered the symbolic se-
quence as a random walk-like process and evaluated the stan-
dard deviation. The result showed that the diffusive process
presents a superdiffusive regime which emerges for small val-
ues of µ (µ < 3). The usual diffusion is recovered when µ≥ 3.
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