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Negatively Charged Donors in Flat Quantum Dots
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The ground state energies of off-axis negatively charged donors in axially symmetrical quantum dots, with
different shapes but in all cases with a small height-to-base radius aspect ratio are calculated in adiabatic ap-
proximation by using the Hylleraas-type trial function. The dependencies of the neutral and negative donor
binding energies and their ratios on the base radius in the pyramid, lens and disk are calculated and compared
with previously obtained results for the spherical quantum dot. We also present the contour plots of the binding
energies of the neutral and negative donors with different positions along a vertical cross section in the middle
of the quantum dots.
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I. INTRODUCTION

It is increasing the interest in the study of the electronic
structure and properties of excitons, neutral, D0and nega-
tively charged, D− donors in the self-assembled quantum dots
(SAQDs) which are formed by the Stranski-Krastanow growth
mode by deposition a material on the substrate with different
lattice parameter [1]. The electrical and optical properties of
these structures may be changed in a controlled form by dop-
ing the shallow impurities whose energy levels are defined by
the interplay between the reduction of the physical dimension,
the Coulomb attraction and the inter-particle correlation. Pre-
viously, it has been shown that the electronic spectrum of D0

and D−in a spherical quantum dot (QD) is very sensible to the
variation of the heterostructure size and the donor position [2].
In particular, it was established that the confinement leads to
the enhancement of the binding energies both Eb

(
D0

)
of the

neutral donor and Eb (D−) of the negatively charged donor
in such way that the ratio σ = Eb (D−)/Eb

(
D0

)
successively

increases with the decrease of the dimensionality of the struc-
ture. For example, this ratio for the on-center donor in a spher-
ical QD (SQD) increases from 0.055 as the QD’s radius is very
large up to 0.3 as the QD’s radius becomes less than the effec-
tive Bohr radius [3], i.e. the difference between binding en-
ergies within the heterostructures there is no longer as signif-
icant as in bulk. It would be interesting to extend this results
obtained previously for a spherical quantum dot to SAQDs
with different shapes.

The calculation of the energy spectrum of both the D0 and
the D− confined in a heterostructure that has not a high sym-
metry as a QD requires a lot of computational efforts. To
simplify these calculations in the papers [4] it has been used
a simple variational procedure, which permits to reduce the
wave equations for D0 and D− confined in semiconductor het-
erostructures to the similar equations for the hydrogen atom,
H and negatively charged ion, H− in an isotropic effective
space with a non-power-law dependence of the Jacobian on
the electron-ion distance. It has been shown that the procedure
gives for the D0 and D− in QW, cylindrical QWW and spher-
ical QD binding energies which are in an excellent concor-
dance with the Monte Carlo and variational calculations [4].

The morphology of SAQDs generally is sufficiently com-
plicated, and a direct calculation of the Jacobian similar to
one for the SQD can not be fulfilled. But one can take an
advantage of the adiabatic approximation (AA) applicable to
these systems due to their small height-to-base radius aspect
ratio. By using this approximation in this work we calculate
the ground state energies of the neutral and negative donors
in flat QDs with axial symmetry as a function of the distance
from the donor position to the axis and the base radius of the
quantum dot. Comparing results of calculation for structures
with different geometry such as disk, lens and pyramid we
analyze the QDs shape on donor’s ground state energies.

II. THEORETICAL MODEL

In our calculation, we consider three different types of
QDs with cylindrical symmetry whose 3D images are pre-
sented schematically in Fig.1: disk, lens and pyramid with the
heightd0, the base radiusR0. Their profiles can be described by
a functiond (ρ), which defines the dependency of the thickness
din z-direction on the distance ρ from the axis of symmetry.
For the sake of the mathematical convenience we choose the
dependencies d (ρ)in a form of a piecewise continuous linear
functions.
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III. Results and discussion 

FIG. 1: The 3D images of QDs with different shapes: a) disk, b) lens,
and c) pyramid.

The confinement potential due to the conduction band dis-
continuity in the junction of the QD is given by the piecewise
constant function V (ρ,z) which is equal to zero in the well
(0 < z < d (ρ)and equal to V0 in the barrier. The effective
Bohr radius a∗0 = ε~2

/
m∗e2 and the effective Rydberg Ry∗ =

e2
/

2a∗0ε are used in our calculations as units of length and en-
ergy, respectively. Differences between material parameters,
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the electron effective mass m∗and the dielectric constantε, in
the well and in the barrier are not included in the calculation.
In what follows we present the results of calculation for the
heterostructures of In0.55 Al0.45As/Ga0.65Al0.35As where the
values of a∗0 and Ry∗ are equal to 8.86nm and 6.40meV, re-
spectively, and the barrier height V0 ≈ 40Ry∗ [5]. It should
be noted that in heterostructures of GaAs/Ga0.7Al0.3As where
units of length and energy, a∗0 and Ry∗ are equal to 9.8 nm
and 5.83 meV, respectively, the dimensionless barrier height
have approximately the same value and therefore the results
presented below are also applicable to these heterostructures.

For the potential V (ρ,z)the one-particle Schrödinger equa-
tion do not completely separate and no exact solutions have
been found. It is therefore some approximation method
should be used to find the ground state wave function
f0 (r) of free electron corresponding to the lowest energy
E (e−)in a QD. In what follows we consider a typical situa-
tion when the QD’s height is much smaller than its in-plane
dimension(d0 << 2R0), condition that allows us to take ad-
vantage of the AA. Following the AA standard scheme we
represent f0 (r) as a product of two wave functions, fz (z,ρ)
which describes the rapid motion in the strongly confined
transverse direction and fρ (ρ)which corresponds to a slow in-
plane motion:

f0 (r) = fz (z,ρ) fρ (ρ) (1)

The function fz (z,ρ) and the associated lowest energy
Ez (ρ) can be found exactly as the well-known solution of the
wave equation for a rectangular quantum well of width d (ρ)
and barrier heightV0:

Once fz (z,ρ) and Ez (ρ) are found, the function fρ (ρ) may
then be obtained as a solution of the two-dimensional central
force problem with potential Ez (ρ)

− f ?
ρ(ρ)− 1

ρ
f ′ρ(ρ)+Ez(ρ) fρ(ρ) = E

(
e−

)
fρ(ρ) (2)

To solve Eq. 2 we use the numerical procedure similar to
trigonometric sweep method described in the paper [6]

To find the ground state wave functions ΨDo (r) for neu-
tral donor and ΨD− (r1,r2) for a negatively charged donor in
QD corresponding to the lowest energies E (Do)andE (D−),
we use the following trial functions:

ΨD0 (r) = f0 (r)ΦD0 ( |r−ξ| ) ;
ΨD− (r1,r2) = f0 (r1) f0 (r2)ΦD− ( |r1−ξ| , |r2−ξ| ,r12 )

(3)
Here ξ and ri (i = 1,2) are vectors of the ion and electrons

positions, respectively. The donor position in QDs with axial
symmetry given by the vector ξ below is described by two
parameters, ξρ, the distance from the axis and ξz, the distance
from the base.

In Eq. 3, functions ΦD0 and ΦD− take into account the ef-
fect of the correlation produced by the Coulomb interaction.
As it has been demonstrated in [4], the trial functions (3) sat-
isfy the Schrödinger variational principle, if ΦD0 and ΦD− are

solutions of wave equations for the hydrogen atom H and the
negatively charged ion H−, respectively, with modified Lapla-
cian in which the radial part of the Jacobian (equal to r2in 3D
space) is replaced by J (r) = r2 R f 2

0 (r′)δ(|r′|− r)dr′. Func-
tions ΦD0and ΦD− and the energies E (Do)andE (D−), can be
found by using any standard method from the atomic physics
one of which is described in details in Ref. [4]. Particularly,
for ΦD−we use a three-parameter Hylleraas trial function [7].

III. RESULTS AND DISCUSSION

Below we present the results of calculation of the binding
energies Eb (Do)and Eb (D−)of the neutral and the negatively
charged donors, defined as:

Eb
(
D0

)
= E (e−)−E

(
D0

)
;

Eb (D−) = E
(
D0

)
+E (e−)−E (D−) (4)

In Fig. 2 we show the dependencies of the ground state
binding energies of the D−and the ratio of the binding en-
ergies of the D0 and D−located at the middle of the axis
(ξρ = 0, ξz = 0.5d0) on the base radii of the disk, lens and con-
ical pyramid with two different heights d0, 2nm (solid lines)
and 4nm (dashed lines).

The binding energies presented in these figures should be
compared with the corresponding values of the binding en-
ergies of the D− in 3D bulk, 0.055Ry* [7], in 2D bulk,
0.511Ry*[9], respectively. As the QD radius is very large the
structures can be considered as quasi-two dimensional sys-
tems with a strong but incomplete confinement in z-direction
due to the finite values of the thickness and the barrier height.
Therefore as the radius increases and it becomes very large the
binding energies of the D− tend to the values slightly lower
than those for 2D bulk. In the region of the large base radii
the largest binding energy presents in the conical pyramid and
the disk presents the smallest binding energy. Comparing the
curves for different structures one can see that effect of leak-
ing of the wave functions in the barrier region due to decrease
of the QD radius first occurs in conical pyramid following by
lens and lastly in a disk. As result, the crossovers and the in-
version of the binding energies order with the decrease of the
base radius can be observed in Figs. 2. Besides, one can com-
pare the maximum values of D− binding energies for differ-
ent structures with corresponding values obtained previously
for the SQD, 2.4Ry* and the cylindrical quantum well wire,
1.2Ry* [4]. It is seen that the maximum values of the binding
energies in quasi-two dimensional structures are lower than
the corresponding values for the SQD.

In order to achieve a better understanding of the di-
mensional characteristics of the D− centers and the QD’s
geometrical-shape effect, we present in Fig. 2 the correspond-
ing ratios σof D−to D0 binding energies as a function of the
base radius. It has been shown in the paper [10] that values
of the ratio σ depend weakly on the potential shape and the
limit values of σ, 0.3, 0.2, 0.13 and 0.05 can be considered
as a typical for 0D, 1D, 2D and 3D heterostructures, respec-
tively. One can see from Fig. 6 that the limit value σof 0D
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FIG. 2: Ground state binding energies Eb
(
D−

)
and ratios σ of

Eb
(
D−

)
to Eb

(
D0) as a function of the base radius R0 for donors

located at the middle of the axis of the disk, lens and conical pyra-
mid with the heights 2 nm (solid lines) and 4 nm (dashed limes).

structures about 0.3 is also valid for all SAQDs independent
of their geometrical shape. In the limit, as the radius becomes
large, σ decreases monotonically and it tends to its 2D bulk
limit.

To study the effect of the donor position on the ground state
binding energy we calculate the binding energies of the D−
centers located in different places of QDs. The results of cal-
culation we show in the form of the curves in Fig. 3 and the
contour plots in Fig.4. In Figs. 3 we have plotted the D−
binding energies and ratios σas a function of ξρ for QDs with
different shapes. The binding energies in all QDs decrease
as the donor is removed from the axis. It is due to the fact
that in these structures the motion of electron is mainly re-
stricted close to axes independently on the donor position and
therefore the electron-donor separation increases as the donor
removes from the axis whereas the ratio σ decreases from the
value typical for 0D structure, about 0.3 to the value typical
for 1D structure, about 0.2.

The results of calculation for off-axis D0 and D− centers
we show in Fig. 4 contour plots, which correspond to the
level lines of the binding energies of the D− with different
positions along a cross section in the middle of the pyramids,
lens and disk perpendicular to the ydirection. The shadowed
parts of figures indicate the cross section of the corresponding

FIG. 3: Ground state binding energies of negative donors and ratios
σas a function of the distance from the donor position to the axis in
QDs with radius 40nm and height 4nm.

FIG. 4: Contour plots of binding energies of negatively charged
donors corresponding to their different positions in a plane trough
the axis of symmetry of the quantum dots with different profiles.
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structures. It is seen the evolution which undergoes the level
lines as the shape of the QD varies from the conical pyramid
to disk. Along the ρ direction the level lines become more
extended due to the decrease of the confinement as the QD’s
shape varies from the conical pyramid to disk.

In conclusion, we present the results of calculation the en-
ergies of the negatively charged donors and the ratios of the
negative to neutral binding energies in flat SAQDs in order to
study their dependencies on the dot shape, radius, height and

the donor position.
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