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Experimental data on light nuclei close to dripline suggests that as the nucleon number asymmetry increases, the
shell structure from stability line is not preserved. In contrast with spherical shell model, Elliott’s SU(3) model,
uses a deformed multi-nucleon basis to describe nuclear states. The SU(3) symmetry is a strong feature of 1p
shell nuclei, where symmetry breaking spin-orbit force is rather weak. We have calculated the binding energies
and low-lying energy spectra of Be isotopes (A=6 to A=14), within the framework of Elliott’s SU(3) model, with
special emphasis on effects due to the presence of intruder orbit 1S1/2 in the region. The model space includes
SU(3) basis states that maximize the quadrupole-quadrupole interaction (−χQ.Q). An extended model space
includes, in addition, a set of 2p-2h excitations, with excited nucleons occupying lowest energy SU(3) states in
harmonic oscillator shell N=2. Group theoretical methods have been used to classify the states and calculate the
nuclear interaction matrix elements. Good angular momentum states are projected out from intrinsic deformed
SU(3) states by using standard angular momentum projection techniques. The interaction used contains the
monopole-monopole, quadrupole-quadrupole and isospin dependent terms. Interaction parameters are fixed
so as to reproduce the binding of 4 nucleons in N=1 orbit for the N=Z isotope-8Be in ground state and first
excited2+ state, along with the known systematics of single neutron separation energies for Be isotopes. The
calculated energy espectra are compared with available experimental data. The calculated excitation energies
of intruder states in8Be and10Be, are discussed in the light of available experimental evidence and theoretical
results from shell model as well as deformed oscillator model calculations of Fayache et al..

1 Introduction

Shell model predictions for ground state spins and parities
of Be isotopes with6 ≤ A ≤ 10 andA = 12, 14, are ver-
ified experimentally. For11Be and13Be nuclei, however,
the model predicts ground state spin and parity values of
1/2− and5/2+, to be compared with the experimental val-
ues of1/2+ and1/2− [1], respectively. Low lying spectra
of 9Be,11N, 11Be and13Be, also point to a change in nuclear
structure close to the drip line. The presence of positive par-
ity intruder orbit 1S1/2, in the region of N=1 single particle
orbits, offers a possible explanation for experimentally ob-
served spin and parity values. As a consequence, intruder
states are expected to be found in low lying spectra of Be
isotopes [2, 3, 4].

The object of the present work is to understand the
nuclear structure of Be isotopes in the low-energy region,
within the framework of SU(3) model. The SU(3) model
was proposed and used by Elliott [5] to describe rotational
bands in light nuclei. Appropriate representations (λµ) of
symmetry group SU(3) are used, in this model, to gen-
erate multi-nucleon basis states for a given nucleus. Us-
ing a four parameter residual interaction with monopole-
monopole, quadrupole-quadrupole and isospin dependent
interaction terms with strength parameters (P0, P1), χ ,
and β respectively, we have calculated the binding ener-
gies and low-lying spectra of Be isotopes. The ground
state band is described by the representation (λµ) that maxi-
mizes the ground state binding energy for a given strengthχ
of quadrupole-quadrupole interaction. An extended model
space including (2p-2h) excitations is then used to obtain

the likely position of intruder state in8,10,12Be. Interaction
parametersχ andP0 are fitted to experimental ground state
binding energy and excitation energy of2+

1 state in N=Z
isotope8Be. Interaction parametersP1 andβ are adjusted
to give a best fit to experimental ground state binding ener-
gies of Be isotopes with6 ≤ A ≤ 14. The calculated energy
spectra are compared with available experimental data. The
New Mass Formula (NMF) of reference [6], that made pos-
sible the identification and prediction of new magic num-
bers, is also used to calculate the residual interaction. A
comparison of results from NMF, our calculation and ex-
perimental data shows that the interaction used by us repro-
duces reasonably well the experimental ground state binding
energies and neutron separation energies for Be isotopes.

2 SU(3) Model

Symmetry group SU(3) [7] has found many applications in
nuclear physics as well as particle physics. We outline the
main features of SU(3) model of Elliott [5], writing down
the generators, subgroups and relevant Casimir operators.
An SU(3) representation is characterized by quantum num-
bers (λµ), that determine the eigenvalue of Casimir operator
for symmetry group SU(3). The states belonging to a given
representation can be further labeled by quantum numbers
that determine the eigenvalues of Casimir operators for sub-
groups of SU(3). Multi-nucleon deformed states, having
good orbital angular momentum, can be projected out from
a state belonging to a given representation of SU(3) group
by using angular momentum projection techniques.
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TABLE I. Casimir operators, Casimir operator eigenvalues and quantum numbers of SU(3) group and subgroups.

SU(3) SU(2) U1(1) U2(1)

Casimir op. (Q.Q+3L.L)
6

(3L2
0+Q2Q−2+Q−2Q2)

12
L0/2 Q0

eigenvalue 2
3

(
λ2 + µ2 + λµ + 3λ + 3µ

)
Λ(Λ + 1) K/2 ε

quantum number (λµ) Λ K ε

In spherical basis, three components of orbital angular
momentum operatorL, and five components of quadrupole
moment operatorQ constitute the eight generators of sym-
metry group SU(3). A component of quadrupole moment, is
defined as

Qq =

√
4π

5
α2

(
r2Y2,q (r̂) +

p2

α2~
Y2,q (p̂)

)
, q = 0,±1,±2

whereα2 = mω/~ andY2,q are the spherical harmonics.
The eight SU(3) generators form a Lie algebra and satisfy
the following commutation relations,

[Lq, Lq′ ] = −
√

2 (11qq′|1q + q′)Lq+q′ ,

[Qq, Lq′ ] = −
√

6 (21qq′|2q + q′)Qq+q′ ,

[Qq, Qq′ ] = 3
√

10 (22qq′|1q + q′) Lq+q′ .

A convenient labeling scheme can be achieved by not-
ing that the generators of symmetry group SU(2) are pro-
portional toQ2, Q−2 andL0. Next L0 andQ0 are iden-
tified as the generators of subgroups U1(1) and U2(1), re-
spectively. We show in Table I the relevant Casimir oper-
ators, Casimir operator eigenvalues, and the corresponding
quantum numbers for symmetry group SU(3) and it’s sub-
groups. The quantum numbers (λµ) characterize the permu-
tation symmetry between harmonic oscillator quanta andΛ
is proportional to the number of quanta inxy plane for the
caseµ = 0 [8, 9].

Elliott [5] has shown that we can expand a state
χ((λµ)εmaxΛK) belonging to SU(3) representation (λµ) in
terms of statesΨ((λµ)KLK), having good angular momen-
tum quantum numberL that is

χ((λµ)εmaxΛK) =
∑

L

c (λµK, L) Ψ((λµ)KLK),

where the coefficientsc are real andεmax is the highest
eigenvalue of operatorQ0. We use the method of angu-
lar momentum projection and obtain the wave functions
Ψ((λµ)KLK), which are in turn used to obtain analytically
the matrix elements of operatorQ.Q. A fortran routine has
been written to calculatec’s and eventually matrix elements
of Q.Q operator between relevant goodL states.

3 Interaction Parameters

The nuclei studied are the isotopes of Be with6 ≤ A ≤ 14.
We define the binding energy of isotope A in residual inter-
action zero state,I(A) as

I(A) = B(A,Z)−B(4, 2)− 2Sp(5, 3)− (A− 6)Sn(5, 2),
(1)

whereB(A, Z) is the binding energy of the nucleus with
Z protons and A−Z neutrons,Sp(5,3) is one proton sepa-
ration energy of5Li and Sn(5,2) is one neutron separation
energy of5He. All terms on the right hand side in Eq. 1 can
be obtained from available experimental data [1]. The ex-
perimental ground state residual interaction between active
nucleons,I(A), serves as a constraint on interaction param-
eters used in theoretical calculations.

We use an interaction Hamiltonian containing
monopole-monopole, quadrupole-quadrupole and isospin
dependent interaction terms that is

Hres = −F0 (n)− χQ.Q + βT (T + 1) , (2)

where n is the number of active nucleons (n = A-4).
The isospin dependent interaction is repulsive while the
monopole-monopole and quadrupole-quadrupole interac-
tions are attractive. The strength of monopole-monopole
interaction for nucleons in the same shell isP0 and for nu-
cleons in different shells isP1. We write the monopole-
monopole interaction forn1 andn2 (n = n1 +n2) nucleons
in oscillator shells N=1 and N=2, respectively, as

F0(n) = P0
n1(n1 − 1)

2
+ P0

n2(n2 − 1)
2

+ P1n1n2.

From Table I, the quadrupole-quadrupole interaction op-
erator may be expressed as

−χQ.Q = −χ3(2CSU(3) − L.L),

whereCSU(3) is the Casimir operator of the SU(3) group.

The ground state isospin is defined asT =
∣∣∣ (n−p)

2

∣∣∣, wheren

andp are the number of neutrons and protons respectively.

3.1 New Mass Formula (NMF)

Comparing the mass formula of Bethe-Weizsacker [10, 11]
with the New Mass Formula (NMF) [6], the NMF has a new
parameter∆(N,Z) and has a redefinition of the pairing term
δnew. The NMF is written as

B(A,Z)new = avA− asA
2/3 − ac

Z(Z − 1)
A1/3

−asym
(A− 2Z)2

A
+ δnew + ∆(N,Z),
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TABLE II. Values of(λ1µ1L1) and(λ2µ2L2) for active nucleons in N=1
and N=2 oscillator shells.

g. s. band 2p-2h excitations
λ1µ1 L1 λ2µ2 L2 λ1µ1 L1 λ2µ2 L2

6Be 20 0,2
7Be 30 1,3
8Be 40 0,2,4 20 0,2 40 0,2,4
9Be 31 1,2,3,4 30 1,3 40 0,2,4
10Be 22 0,22,3,4 40 0,2,4 40 0,2,4
11Be 22 0,22,3,4 20 0,2 40 0,2,4 41 1,2,3,4,5
12Be 22 0,22,3,4 40 0,2,4 20 0,2
13Be 21 1,2,3 40 0,2,4 31 1,2,3,4 42 0,22,42,3,5,6
14Be 20 0,2 40 0,2,4 22 0,22, 3, 4 42 0,22,42,3,5,6

whereav = 15, 85 MeV, as = 18, 34 MeV, ac = 0, 71
MeV, asym = 23, 21 MeV, δnew = (1 − exp(−Z

c ))δ,
c = 6/Ln2, δ is equal to12A−1/2 for even-even nu-
clei,−12A−1/2 for odd-odd nuclei,0 for odd A nuclei and
∆(N, Z) = |N − 4

3Z|NkZ exp(−Z
3 ) with k = 0, 45.

Using the NMF to calculate the binding energy we ob-
tain the residual interactionInew(A) for Be isotopes as

Inew(A) = Bnew(A, 4)−B(4, 2)−2Sp(5, 3)−(A−6)Sn(5, 2).
(3)

4 Model Space

Table II lists the representations (λµ) that maximize the
quadrupole-quadrupole interaction, and the possibleL val-
ues for the ground state band. The representations (λµ) and
possible angular momenta for the case when two nucleons
are excited out of ground state (2p-2h excitations) are also
presented in Table II.

We predict correct spin and parity for11Be ground state
if we consider the last neutron occupying N=2 oscillator
orbit. The isotopes,11Be, 12Be, 13Be and14Be have at
least one neutron occupying the N=2 oscillator shell, in the
ground state. Therefore we must subtract~ω from residual
interaction for11Be and2~ω for 12Be, 13Be and14Be. We
use the formula~ω = 45A−1/3 − 40A−2/3 to get the value
of oscillator constant. In comparison Fayache et al [4] have
used~ω = 45A−1/3 − 25A−2/3, with a milder surface de-
pendence.

5 Results and Conclusions

In Fig. 1 we plot the ground state binding energies of Be iso-
topes, due to residual interaction between active nucleons,
(i) calculated by using SU(3) model, (ii) calculated from
New Mass Formula (NMF Eq. 3) and (iii) obtained from
experimental data (Eq. 1). The parameterχ = 0.17 MeV
reproduces the excitation energy of2+

1 state in N=Z isotope
8Be. For this choice ofχ, a parameter value ofP0 = 2.3
MeV is needed to obtain experimental ground state binding

energy of8Be. Interaction parametersP1 andβ are next ad-
justed to give a best fit to experimental ground state binding
energies of Be isotopes with6 ≤ A ≤ 14. The fit shown in
Fig. 1 is obtained withP1 = 2.2 MeV andβ = 4.1 MeV.
We can verify that the calculated binding energies for Be
isotopes show a good agreement with experimental values.
Correct ground state spins and parities are reproduced in-
cluding the inversion of spectra in11Be. We notice that the
results of New Mass Formula, also reproduce the trend of
experimental binding energies of nuclei obtained by adding
neutrons to8Be.
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Figure 1. Experimental and calculated espectra for8Be, 10Be and
12Be. Calculated (2p-2h) excitation states are shown in square
brackets.

In Fig. 2, we compare with experimental and calculated
spectra for8,10,12Be obtained by using the interaction of Eq.
2 with the set of parameter values chosen earlier. In this cal-
culation we have used the states defined by SU(3) represen-
tations and allowed angular momenta listed in Table II. The
states obtained by using representations with (2p-2h) excita-
tions are shown in square brackets in Fig. 2. We observe that
the low lying states of8Be are not likely to mix strongly with
states from (2p-2h) excitations. Table III lists the calculated
and experimental excitation energies of 0+

1 ,2+
1 ,0+

2 , and 2+2
states for comparison. The energy difference between the
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TABLE III. Excitation energies of 0+1 ,2+
1 ,0+

2 , and 2+2 states in8Be,10Be and12Be nuclei in MeV. Square brackets represent states arising
from (2p-2h) excited configurations.

8Be 10Be 12Be
Calc. Expt. Calc. Expt. Calc. Expt.
0+
1 0.0 0+

1 0.0 0+
1 0.0 0+

1 0.0 0+
1 0.0 0+

1 0.0
2+
1 3.04 2+

1 3.04 2+
1 3.04 2+

1 3.37 2+
1 3.04 2+

1 2.10
[0+

2 ] 18.68 0+
2 20.2 [0+

2 ] 3.83 0+
2 6.18 [0+

2 ] 2.98
[2+

2 ] 21.70 [2+
2 ] 6.86 [2+

2 ] 6.01

0

4

8

12

16

20

ExThExThExTh  

0
+

2
+

4
+

[2
+
]

[0
+
]

0
+

1
+

2
+

2
+

4
+

2
+

0
+ 0

+

2
+

3
+

4
+

[4
+
]

[2
+
]

[0
+
]

(2)
+

(4
-
)

2
+
,3

   

2-
0

+
,1

   

2
+

2
+

0
+

4
+

0
+

3
+
,[2

+
]

2
+
,[0

+
]

2
+

0
+

12Be
10Be8Be

E
n

er
gy

 (
M

eV
)

Figure 2. Calculated (SU(3) model and NMF) and experimental
ground state binding energy due to residual interaction between
active nucleons for Be Isotopes.

states 2+2 and 2+1 (2p-2h) for 8Be is 18.66 MeV while for
10Be and12Be it is just 3.82 MeV and 3.97 MeV respec-
tively. Therefore the ground states as well as the 2+

1 states
in nuclei 10Be and12Be are expected to have strong con-
tributions from (2p-2h) configurations. We are studying the
effect of such mixing on radii and transitions of Be isotopes.

The calculated excitation energy of 0+ (2p-2h) intruder
state in8Be is 18.6 MeV. Experimentally a 0+ state is seen
at 20.2 MeV. Using a deformed oscillator model calculation
Fayache et al [4] have reported, a value of 17.23 MeV in
8Be. As such our SU(3) model result is close to the calcu-
lated value from deformed oscillator model and not far from
the experimentally observed 0+ state energy. For the case
of 10Be our result of 3.83 MeV and the value of 6.36 MeV

calculated in ref. [4] may possibly be compared with the
energy of a 0+ state seen at 6.18 MeV, experimentally. We
may point out, however that our results are preliminary re-
sults. As pointed out by Fayache at el.[4], it is essential to
take into consideration triaxial nature of the ground state in
10Be.
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