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Theoretical calculations, computer simulations and experiments indicate the possible existence of
a ferromagnetic liquid state. Should such a state exist, demagnetization e�ects would force a
nontrivial magnetization texture governed by the shape of the liquid droplet. Since liquid droplets
are deformable, the droplet shape couples to the magnetization texture. This paper solves the
joint shape/texture problem subject to the assumption of cylindrical droplet symmetry. The shape
undergoes a change in topology from spherical to toroidal as exchange energy grows or surface
tension decreases.

I Introduction

In a spontaneously magnetized liquid state, long range

magnetic order would exist in the liquid without ap-

plication of any external �eld. The existence of a fer-

romagnetic liquid state in dipolar 
uids has been in-

dicated by mean �eld calculations [1-6] and computer

simulations [7-10]. Experiments to observe liquid fer-

romagnetism in ferro
uids [11] are challenging because

the 
uids often freeze [12, 13] or phase separate [14]

well above the predicted low temperatures for the on-

set of spontaneous magnetization. Recent experiments

on strongly interacting Fe3N ferro
uids [15] do show a

hint of a possible ferromagnetic transition. Similarly,

experiments on super-cooled Co-Pd alloys [16] indicate

the possibility of ferromagnetism in supercooled liq-

uid metals. In this case it is the strong exchange in-

teraction, and not the dipole interaction, that would

cause the spontaneous magnetization. The experimen-

tal evidence in both ferro
uid and supercooled Co-Pd

is inconclusive, since the bulk of evidence addresses the

temperature dependence of paramagnetic susceptibility

above the Curie temperature [15-18]. De�nitive proof

of ferromagnetism below the Curie temperature remains

elusive.

Although the existence of a ferromagnetic liquid

state is yet to be proven experimentally, spontaneous

polarization coupled with other order parameters has

already been observed. Some electrically polarized liq-

uid crystals [19] show a helical ordering of the dipole

moments in the liquid. In super
uid 3He the magnetic

moment couples to the superconducting order parame-

ter [20]. Many super
uid 3He phases are therefore also

magnetically ordered.

It is interesting to consider the magnetization tex-

ture (spatial variation of the orientation of magnetiza-

tion) inside a droplet of such a ferromagnetic liquid [21].

The magnetization texture likes to avoid poles [22] to

minimize its energy. However, this leads to defects in-

side the texture. For example, the rotating magnetiza-

tion texture with cylindrical symmetry inside a sphere

M(r; �; �) =M�̂; (1)

where �̂ is the unit vector for the variable �, avoids all

poles but has a vortex line running through the cen-

ter. Near the vortex of such a texture the magneti-

zation is topologically unstable [23] and might escape

into the third dimension [24] with a nonzero component

along the vortex line. Whether this happens depends

on the balance between demagnetizing and vortex en-

ergies. Simulated annealing of the magnetization inside

a cubic box suggests that replacing vortices with point

defects may be favorable [6]. However, for suÆciently

large droplets the demagnetizing energy will dominate

and only textures with vanishing demagnetizing energy

(per unit volume) will occur.

Any defect is likely to have a system-shape-

dependent energy cost causing a deformable liquid

droplet to deviate from a spherical shape. The complete

calculation of the shape of an uncon�ned ferromagnetic

liquid droplet in three dimensions, coupled with the

calculation of its magnetization texture, remains an in-

teresting and challenging unsolved problem.

This problem has a simple solution in two dimen-
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sions in zero �eld. The magnetization texture inside

any soft (zero anisotropy) ferromagnetic solid thin �lm

is given by van den Berg's algorithm [25] which avoids

all poles, and thus all magnetostatic energy, at the

expense of a domain wall through the �lm. A liquid

droplet, which can change its shape, prefers a circular

shape to minimize its surface energy. The magnetiza-

tion lines inside a circle form concentric circles accord-

ing to van den Berg's algorithm. For a circular shape

the domain wall energy is also minimized because the

domain wall shrinks to a point vortex. The circle thus

solves the coupled texture and shape problem in zero

�eld.

In a previous paper [26] addressing the thin �lm

limit, we described the evolution of magnetization tex-

ture and droplet shape under the application of an in-

plane magnetic �eld. The vortex stretches to become

a domain wall, which displaces towards the edge of the

droplet. If exchange energy is taken into account, the

droplet exhibits re
ection symmetry-breaking, immedi-

ately revealing its magnetized state.

Our present goal is to analyze the shape and tex-

ture of an uncon�ned ferromagnetic liquid droplet. The

problem is highly nontrivial even in the absence of ap-

plied �eld. To simplify the study, we restrict our at-

tention to shapes and textures with an axis of continu-

ous rotational symmetry. We �nd the texture exhibits

a planar character with a vortex line along the sym-

metry axis. When surface tension is high or magneti-

zation weak, the droplet shape remains nearly spher-

ical, with slight \bulging at the waist" and dimpling

where the vortex line meets the surface (Fig. 1). As

surface tension drops or magnetization grows, the dim-

pling increases, shortening the vortex line. Eventually

the droplet undergoes a change in topology to a toroidal

shape (Fig. 2).

II Shape, texture and energy

We consider droplets of volume V and shape 
 with

an internal magnetization texture M(r). Four terms

contribute to the energy,

Etot = Esurf +Eexch +Ecore +Edemag : (2)

The �rst term is the energy of the droplet surface, @
,

Esurf = �

Z
@


d2r = �A (3)

with A the total droplet surface area and � the sur-

face tension which we take to be isotropic. The surface

energy is minimized for a spherical droplet.

Figure 1. Apple shape obtained by minimizing eq. (13) for
M

2 = 0:17.

Figure 2. Donut shape obtained by minimizing eq. (13) for
M = 7:0.

The second term is the exchange energy, which, for

an isotropic medium, can be written as the integral over

the droplet volume of

Uexch =
1

2
�
@Mk

@xi

@Mk

@xi
; (4)

where � is the exchange constant and the summation

convention is employed [27]. The exchange constant

has units of length squared. For a metallic ferromag-

net the exchange constant typically takes a value of
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order �a2, where a is a characteristic atomic size and

� � 104 is the ratio of exchange �eld to magnetostatic

�eld [28]. For a ferro
uid, we can derive an e�ective

exchange constant re
ecting the energy cost of placing

�nite size particles into a rotating magnetic texture. By

calculating the correction to the mean �eld in a cavity

of diameter a caused by rotation of the magnetization,

we �nd � = 4�a2=15. Again, � is of order �a2, where

now � = 1 because the energy cost is magnetostatic in

origin.

The third term is the energy associated with un-

magnetized regions within the 
uid. We presume that

throughout most of the droplet the magnetizationM(r)

has constant magnitude, M , that minimizes the free

energy density f(M). Inspecting eq. (4) we see that

exchange energy density may diverge at the core of a

vortex, where Uexch � �=r2. Within a distance rc of

the center of the vortex the exchange energy density

Uexch matches the free energy density cost Ucore �

f(0) � f(M). The core radius so-obtained does not

depend on droplet shape or magnetization texture.

The �nal term in (2) is the demagnetizing energy

that arises as a consequence of the long range 1=r3 char-

acter of the dipole interaction. This weak fall-o� of the

interaction makes the total energy of the system de-

pendent on global magnetization texture and system

shape in general, challenging our notions of thermody-

namic limits [29]. The shape dependent demagnetizing

energy for dipolar systems can be best understood in

terms of the demagnetizing �eld

c

HD(r) =

Z
S

d2r0 (M(r0) � n̂(r0))
r� r0

jr� r0j3
�

Z
V

d3r0 (r �M(r0))
r� r0

jr� r0j3
: (5)

d

Here n̂ is the normal to the surface of the system. The

�rst term on the right hand side re
ects the surface

poles that are created where the magnetization has a

component normal to the surface. The second term is

the contribution from the bulk charge density that is

created by a nonzero divergence of the magnetization.

HD is called the demagnetizing �eld because it in-

hibits the magnetization, as shown by the magneto-

static energy

ED = �
1

2

Z
V

d3r HD(r) �M(r); (6)

which can be rewritten

ED =
1

8�

Z
all space

d3r jHD(r)j
2: (7)

This energy is manifestly positive de�nite and hence

inhibits the magnetization.

To avoid a demagnetizing energy by eliminating its

demagnetizing �eld, magnetization textures in crystals

break up into domains separated by domain walls. For

suitable domain structure the demagnetizing energy

can be removed entirely. The domain wall width is

set by balancing the cost in exchange energy for ro-

tating textures against the cost in magneto-crystalline

anisotropy energy when a the magnetization does not

point along an easy axis. Because a ferromagnetic liq-

uid should lack magneto-crystalline anisotropy, the do-

main wall width diverges [21] unless it is limited by

some other characteristic length [26].

The four terms in eq. (2) grow at di�ering rates as

droplet volume increases while droplet shape and tex-

ture are held �xed. We �nd

Esurf � �Rh (8)

Eexch � �M2h logR=rc

Ecore � Ucoreh

Edemag � DM2R2h:

In the above, we have taken magnetization texture (1)

in a cylinder of height h and radiusR for our calculation

of Eexch, and we have takenM(r) constant inside an el-

lipsoid of demagnetization factor D for our calculation

of Edemag. For suÆciently large droplets, Edemag dom-

inates unless a texture is found to reduce it or remove

it altogether. Anticipating that textures with vanish-

ing Edemag will emerge, the dominant energy becomes

Esurf , so large droplets will favor compact shapes. For

large R, we �nd Eexch dominates Ecore. At �xed R,

the exchange energy mimics the core energy, with an

energy cost proportional to the vortex length.

III Energy minimization

We now confront the problem of simultaneously solv-

ing for the lowest energy magnetization texture within

a droplet of a given shape while varying the shape to
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achieve the lowest total energy. To simplify our work,

we choose to work within a limited subset of the family

of possible textures and shapes. We impose cylindri-

cal symmetry, motivated both by our suspicion that

the true energy minimum may exhibit such a symme-

try and by the considerable calculational simpli�cations

that it allows.

Hence we assume the shape 
 and the magnetiza-

tion textureM(r) are symmetric under rotations about

the ẑ axis. The magnetization vector �eld obeys

M(r; �; z) =

0
@ cos� � sin� 0

sin� cos� 0
0 0 1

1
AM(r; 0; z) (9)

The droplet shape 
 is de�ned by its boundary @


which we parameterize by the function �z(r). This

family of shapes exhibits re
ection symmetry through

the z = 0 plane in addition to rotational symmetry

about the ẑ axis.

For large droplets the demagnetizing energy is dom-

inant, as we showed in eq. (9). Consider the problem

of minimizing ED within a symmetric shape. Since

ED � 0, we can solve this minimization with any tex-

ture that achieves ED = 0, which, by equation (7) re-

quires HD = 0 through all space. Inspecting (5), we

can achieve HD = 0 by eliminating all surface poles

and volume divergence.

The simplest texture with HD = 0 is given in

eq. (1). This texture is purely planar, satis�es HD = 0,

but exhibits a vortex line running along the z-axis. The

exchange energy density varies as

UEX =
�M2

2r2
(10)

and diverges at r = 0. Therefore, we impose a short

length cut-o� of r0. Inside the vortex (r < r0) we as-

sume a uniform energy density Ucore. The vortex radius

r0 can be chosen by balancing �M
2=r20 against Ucore at

r0 yielding r0 � (�M2=Ucore)
1=2. Multiplying the core

energy density by the cross-sectional area yields a vor-

tex energy cost per unit length, UV = �r20Ucore.

This texture is probably not the absolute lowest in

energy. We expect that the magnetization will rotate

out-of-plane close to the vortex core. Such a distortion

comes with a small cost in demagnetizing energy, but

brings a large savings in exchange energy. Since this dis-

tortion is limited to the region close to the vortex [24],

we may consider it as part of the core structure, and it

is not relevant for the bulk droplet shape and energy.

Large scale out-of-plane rotations cause large demagne-

tizing energy costs unless they are spatially nonuniform.

Spatial nonuniformity will raise exchange energy costs.

Hence, we expect the texture (1) is optimal suÆciently

far from the vortex.

The exchange energy can be reduced, and the vor-

tex core energy eliminated altogether, by a change in

topology from spherical to toroidal. Consider a torus

with cylindrical symmetry about the ẑ axis, with cross-

section �z(r) for Ri � r � Ro. Assuming texture (1),

and noting Ecore = Edemag = 0, the total energy is the

sum of surface and exchange energy

c

Etot = 2�

Z 2�

0

d�

Z Ro

Ri

rdr
p
1 + (dz=dr)2 +

�M2

2

Z 2�

0

d�

Z Ro

Ri

rdr

Z z(r)

�z(r)

dz

r2
: (11)

The curvature energy competes with the surface energy to determine the shape of the droplet in this model. For

shapes with spherical topology, we must add an additional term to eq. (11) of the form UV LV , where LV is the

length of the vortex. However, since the exchange energy mimics the e�ect of the vortex core energy, we set UV = 0

in the following.

The relative strength of each term is governed by a single dimensionless magnetization parameter de�ned so

that

M2 �
�M2

�L
(12)

where L is a measure of the linear droplet dimension (L � (volume)1=3). Scaling lengths by L and energy by 4�L2�,

we introduce a dimensionless form of the total energy

Etot[z(r)] =

Z Ro

Ri

rdr
p
1 + (dz=dr)2 +

M2

2

Z Ro

Ri

rdr
z

r2
; (13)
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where script quantities are dimensionless.

To calculate the shape of the droplet we used the

program Surface Evolver by Kenneth Brakke [30]. The

program approximates a surface using a triangular

mesh, and the vertices of the mesh evolve to minimize

the total energy of the surface subject to various con-

straints of the problem (�xed volume in our case).

We �nd that for small values ofM the droplet takes

a dimpled and slightly oblate \apple" shape (see Fig. 1).

This occurs because the droplet reduces its curvature

energy by reducing the length of the vortex (hence the

dimpling where the vortex meets the surface) and by

placing the bulk of the 
uid as far as possible from vor-

tex (hence the oblate shape). AsM increases, the dim-

pling grows and the vortex shortens. This occurs even

in the absence of a vortex core energy and is driven

by the diverging exchange energy density near the vor-

tex. For suÆciently largeM, the vortex shrinks to zero

length and the droplet changes topology, acquiring a

\donut" shape (see Fig. 2).

For large M the hole at the center of the donut is

large. As M decreases, the hole shrinks, and the walls

of the hole become nearly vertical forming a cylinder of

radius Ri. We can estimate this radius by balancing the

Ri dependence of the cylinder surface energy against

the Ri dependence of the magnetic energy outside the

cylinder (and thus inside the torus). We estimate

dEsurf

dRi
� 2�L� (14)

and
dEexch

dRi
� �2�RiL

�M2

2R2
i

(15)

from which it follows that Ri � �M2=2� (in dimen-

sionless variables, Ri �
1
2M

2). Thus the donut hole

remains for all values of M, vanishing as M! 0. In-

triguingly, the structure of the donut hole for small M

resembles the dimple on the apple surface at the same

value of M. The dimple is a cylindrical hole of radius

Ri, but the hole extends only part way through the

apple core, with the vortex occupying the remainder.

The energy of the apple is lower than the energy

of the donut for small M and remains lower until just

before the apple core shrinks to zero. For larger values

of M, the apple shape does not exist and the donut is

the stable shape. For a droplet with volume such that

L = 12 and vortex radius r0 = 0:1, the pinch-o� point

is close to M = 0:2.

IV Conclusion

In this paper, we �x a simple magnetization texture

and then calculate the shape. Surface evolver is suited

to optimization of shape. To express the total energy

of the droplet as a function of its shape, we required

that the magnetization be cylindrically symmetric and

con�ned to a plane. The vortex core was assumed to

be straight, and we neglected the energy of the vortex

core.

For a more rigorous study, a simultaneous calcu-

lation of the magnetization texture and the shape is

needed. Since the magnetization may rotate out of

plane near the vortex [23], and possibly break the cylin-

drical symmetry, the analysis will require breaking up

the volume of the droplet into �nite elements [31] and

evolving the shape to minimize the sum of demagnetiz-

ing, curvature, vortex and surface energies. However,

our simple analysis illustrates the nontrivial nature of

the problem and gives an idea of shapes that might

occur for ferromagnetic liquid droplets.
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