
Brazilian Journal of Physics, vol. 35, no. 3A, September, 2005 645

Remarks on Gauge Fixing and BRST Quantization
of Noncommutative Gauge Theories

Ricardo Amorim, Henrique Boschi-Filho, and Nelson R. F. Braga
Instituto de F́ısica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 – Brazil

Received on 12 May, 2005

We consider the BRST gauge fixing procedure of the noncommutative Yang-Mills theory and of the gauged
U(N) Proca model. An extended Seiberg-Witten map involving ghosts, antighosts and auxiliary fields for non-
Abelian gauge theories is studied. We find that the extended map behaves differently for these models. For the
Yang-Mills theory in the Lorentz gauge it was not possible to find a map that relates the gauge conditions in
the noncommutative and ordinary theories. For the gauged Proca model we found a particular map relating the
unitary gauge fixings in both formulations.

I. INTRODUCTION

Noncommutative gauge fieldsY can be described in terms
of ordinary gauge fieldsy by using the Seiberg-Witten (SW)
map[1] defined by

δY = δ̄Y[y] (1.1)

whereδ andδ̄ are the gauge transformations for noncommu-
tative and ordinary theories respectively andY[y] means that
we express the noncommutative fieldsY in terms of ordinary
onesy. In this work we will consider gauge theories whose
algebra closes as

[δ1,δ2]Y = δ3Y (1.2)

without the use of equations of motion. In terms of the
mapped quantities this condition reads

[δ̄1, δ̄2]Y[y] = δ̄3Y[y] . (1.3)

This implies that the mapped noncommutative gauge parame-
ters must satisfy a composition law in such a way that they
depend in general on the ordinary parameters and also on the
fieldsy. Usually this noncommutative parameter composition
law is the starting point for the construction of SW maps. In-
teresting properties of Yang-Mills noncommutative theories
where discussed in[2–4], where these points are considered in
detail. Other noncommutative theories with different gauge
structures are also studied in [5, 6].

Originally the Seiberg-Witten map has been introduced re-
lating noncommutative and ordinary gauge fields and the cor-
responding actions. When one considers the gauge fixing pro-
cedure one enlarges the space of fields by introducing ghosts,
antighosts and auxiliary fields. In this case one can define an
enlarged BRST-SW map[7]

sY = s̄Y[y] (1.4)

wheres ands̄ are the BRST differentials for the noncommu-
tative and ordinary theories respectively andY andy here in-
clude ghosts, antighosts and auxiliary fields. It is interesting

to note that in this BRST approach the closure relation (1.3) is
naturally contained in the above condition for the ghost field.
This means that it is not necessary to construct a SW map for
the parameter.

Here we will investigate the extension of this map also to
the gauge fixed actions. Observe that in ref.[7] the Hamil-
tonian formalism was used while here we consider a La-
grangian approach. In particular we study the consistency
of such maps with the gauge fixing process. Considering the
BRST quantization of a noncommutative theory we will find
that some usual gauge choices for the noncommutative theo-
ries are mapped in a non trivial way in the ordinary model.

Recent results coming from string theory are motivating an
increasing interest in noncommutative theories. The presence
of an antisymmetric tensor background along the D-brane [8]
world volumes (space time region where the string endpoints
are located) is an important source for noncommutativity in
string theory[9, 10]. Actually the idea that spacetime may be
noncommutative at very small length scales is not new[11].
Originally this has been thought just as a mechanism for pro-
viding space with a natural cut off that would control ultra-
violet divergences[12], although these motivations have been
eclipsed by the success of the renormalization procedures.

Gauge theories can be defined in noncommutative spaces
by considering actions that are invariant under gauge trans-
formations defined in terms of the Moyal structure[1]. In this
case the form of the gauge transformations imply that the al-
gebra of the generators must close under commutation and
anticommutation relations. That is whyU(N) is usually cho-
sen as the symmetry group for noncommutative extensions of
Yang-Mills theories in place ofSU(N), although other sym-
metry structures can also be considered [3][13][14]. Once one
has constructed a noncommutative gauge theory, it is possible
to find the Seiberg-Witten map relating the noncommutative
fields to ordinary ones[2]. The mapped Lagrangian is usu-
ally written as a nonlocal infinite series of ordinary fields and
their space-time derivatives but the noncommutative Noether
identities are however kept by the Seiberg-Witten map. This
assures that the mapped theory is still gauge invariant.

In this work we will first consider (sectionII ) the case of
the noncommutativeU(N) Yang-Mills theory and investigate
the BRST gauge fixing procedure in the Lorentz gauge. Then
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the construction of the SW map between the noncommutative
and ordinary Yang-Mills fields, including ghosts, antighosts
and auxiliary fields is discussed. We will see that imposing the
Lorentz gauge in the noncommutative theory does not imply
an equivalent condition in the ordinary theory. Conversely,
imposing the Lorentz gauge condition in the ordinary gauge
fields would not correspond to the same condition in the non-
commutative theory.

Another model that will present an interesting behavior
is the gauged version of noncommutative non-Abelian Proca
field, discussed in sectionsIII andIV . For this model we study
the BRST gauge fixing in the unitary gauge. The model is ob-
tained by introducing an auxiliary field which promotes the
massive vector field to a gauge field. This auxiliary field can
be seen as a pure gauge “compensating vector field” , defined
in terms ofU(N) group elements and having a null curvature
[15, 16]. In this model we find that the general SW map re-
lates in a non trivial way noncommutative and ordinary gauge
fixing conditions. However it is possible to find a particular
SW map that relates the unitary gauges in noncommutative
and ordinary theories. Some of these points have been par-
tially considered in [5].

Regardless of these considerations, the Fradkin-Vilkovisky
theorem[17] assures that the physics described by any non
anomalous gauge theory is independent of the gauge fixing,
without the necessity of having the gauge fixing functions
mapped. This means that the quantization can be implemented
consistently in noncommutative and ordinary theories. Note
that the SW map is defined for the gauge invariant action.
This places a relation between the noncommutative and ordi-
nary theories before any gauge fixing. Once a gauge fixing is
chosen one does not necessarily expect that the theories would
still be related by the same map. In the Yang-Mills case with
Lorentz gauge we could not relate the complete theories by a
BRST-SW map after gauge fixing. However, for the gauged
Proca theory we could find a map relating the unitary gauges
in both noncommutative and ordinary theories.

II. GAUGE FIXING THE NONCOMMUTATIVE U(N)
YANG-MILLS THEORY

In order to establish notations and conventions that will
be useful later, let us start by considering the ordinary U(N)
Yang-Mills action (denoting ordinary actions by the upper in-
dex(0))

S(0)
0 = tr

Z
d4x

(
−1

2
fµν f µν

)
(2.1)

where

fµν = ∂µaν−∂νaµ− i[aµ,aν] (2.2)

is the curvature. We assume that the connectionaµ takes val-
ues in the algebra of U(N), with generatorsTA satisfying the

trace normalization

tr(TATB) =
1
2

δAB (2.3)

and the (anti)commutation relations

[TA,TB] = i f ABCTC

{TA,TB} = dABCTC (2.4)

where f ABC anddABC are assumed to be completely antisym-
metric and completely symmetric respectively.

The action (2.1) is invariant under the infinitesimal gauge
transformations

δ̄aµ = Dµα ≡ ∂µα− i[aµ,α] (2.5)

which closes in the algebra

[δ̄1, δ̄2]aµ = δ̄3aµ (2.6)

with parameter composition rule given by

α3 = i[α2,α1] (2.7)

The gauge structure displayed above leads to the definition
of the BRST differential̄ssuch that

s̄c = ic2

s̄aµ = Dµc

≡ ∂µc − i[aµ,c]
s̄c̄ = γ
s̄γ = 0 (2.8)

As s̄ is an odd derivative acting from the right, it is easy to ver-
ify from the above definitions that it indeed is nilpotent. Natu-
rally c andc̄ are grassmannian quantities with ghost numbers
respectively+1 and−1. c̄ andγ form a trivial pair necessary
to implement the gauge fixing.

The functional BRST quantization starts by defining the to-
tal action

S(0) = S(0)
0 +S(0)

1 (2.9)

whereS(0)
0 is given by (2.1) and

S(0)
1 =−2 tr s̄

Z
d4xc̄

(
− γ

β
+∂µaµ

)
(2.10)

appropriated to fix the (Gaussian) Lorentz condition, is BRST

exact. This assures thatS(0)
1 is BRST invariant, due to the

nilpotency ofs̄. Sinces̄ fµν = i[c, fµν] according to (2.2) and

(2.8), it follows thatS(0)
0 is also BRST invariant. In (2.10),β

is a free parameter, as usual.
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In generalS(0)
1 can be written as

S(0)
1 = S(0)

gh +S(0)
g f (2.11)

with the ghost action given by

S(0)
gh =−2tr

Z
d4xc̄Mc (2.12)

and the gauge fixing one by

S(0)
g f = −2tr

Z
d4xγ

(
− γ

β
+F

)
(2.13)

whereF = F (a) is a gauge fixing function andM = δF /δα.
The Lorentz gauge condition corresponds toF1 = ∂µaµ, M1 =
∂µDµ. The functional quantization is constructed by function-
ally integrating the exponential ofiS over all the fields, with
appropriate measure and the external source terms in order to
generate the Green’s functions.

The noncommutative version of this theory comes from re-
placing y = {aµ, c, c̄, γ} by the noncommutative fieldsY =
{Aµ, C, C̄, Γ} as well as the ordinary products of fields by?-
Moyal products, defined through

?≡ exp

(
i
2

θµν
←
∂ µ

→
∂ ν

)
(2.14)

whereθµν is a constant and antisymmetric matrix. The Moyal
product is associative and cyclic under the integral sign when
appropriate boundary conditions are adopted. We also assume
that the group structure is deformed by this product. In this
way, the group elements are constructed from the exponentia-
tion of elements of the algebra of U(N) by formally using? in
the series, that is,g = 1+ λATA + 1

2λATA ? λBTB + .... Gen-
eral consequences of this deformation in field theories can be
seen in [1, 4]. In particular, the appearance ofθ0i 6= 0 breaks
the unitarity of the corresponding quantum theory. Further-
more in a Hamiltonian formalism this would imply higher or-
der time derivatives which demand a non standard canonical
treatment. This last aspect does not show up here since we are
using a Lagrangian formalism.

The noncommutative action corresponding to (2.1) can be
written as

S0 = tr
Z

d4x
(
− 1

2
Fµν ?Fµν

)

(2.15)

where now

Fµν = ∂µAν−∂νAµ− i [Aµ
?, Aν] (2.16)

As expected, the noncommutative gauge transformations
δAµ = ∂µε − i[Aµ

?, ε] close in an algebra like (1.2) with com-
position rule for the parameters given by

ε3 = i[ε2
?, ε1] (2.17)

The total action is given by

S= S0 +S1 (2.18)

where

S1 =−2 trs
Z

d4xC̄

(
−Γ

β
+∂µAµ

)
(2.19)

The BRST differentials is defined through

sC = −iC ?C

sAµ = DµC

≡ ∂µC − i[Aµ
?, C]

sC̄ = Γ
sΓ = 0 (2.20)

Obviously bothS0 andS1 are BRST invariant.
The BRST Seiberg-Witten map is obtained from the condi-

tion (1.4). In this work we will consider only the expansion of
noncommutative fields in terms of ordinary fields to first order
in the noncommutative parameterθ:

Y[y] = y+Y(1)[y]+O(θ2) ,

where Y represents the noncommutative fieldsAµ,C,C̄,Γ .
Then we find from (1.4) and (2.20) that

s̄C(1) + i{c,C(1)} =
1
4

θαβ[∂αc,∂βc]

s̄A(1)
µ + i[A(1)

µ ,c] = ∂µC
(1) + i[C(1),aµ]

− 1
2

θαβ{∂α c,∂βaµ}
s̄C̄(1) = Γ(1)

s̄Γ(1) = 0 (2.21)

The corresponding solutions for the ghost and the gauge field
are

C(1) =
1
4

θµν {
∂µc,aν

}
+λ1θµν [∂µc,aν] (2.22)

A(1)
µ = −1

4
θαβ {

aα,∂βaµ+ fβµ
}

+σθαβDµ fαβ

+
λ1

2
θαβDµ[aα,aβ] , (2.23)

whereσ andλ1 are arbitrary constants.
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It is important to remark that when we extend the space of
fields in order to implement BRST quantization we could in

principle find solutions forC(1) andA(1)
µ depending on̄c and

γ. However there are two additional conditions to be satisfied,
besides eqs. (2.21): the ghost number and the dimension of
all first order corrections must be equal to those of the corre-
sponding zero order field. It can be checked that there are no
other possible contributions to the solutions (2.22) and (2.23)
involving c̄ andγ and satisfying these criteria.

For the trivial pair we find

C̄(1) = θαβ Hαβ

Γ(1) = θαβ s̄Hαβ (2.24)

whereHαβ is a function of the fieldsaµ,c, c̄ andγ with ghost
number= −1 (taking the convention that the ghost numbers
of c andc̄ are+1 and−1 respectively). Note that the sum of
the mass dimensions ofc andc̄ is 2. Then the mass dimension
of Hαβ will be the dimension of̄c plus 2. Considering these
points we find that the general form for this quantity is

Hαβ = ω1 c̄a[αaβ] +ω2 c̄∂[αaβ] +ω3 ∂[α c̄aβ] (2.25)

whereω1 , ω2 and ω3 are arbitrary parameters. From eqs.
(2.8), (2.24) and (2.25) we see that

Γ(1) = θαβ
(

ω1 γaαaβ +ω2 γ∂αaβ +ω3 ∂α γaβ

+ ω1 c̄(Dα caβ + aαDβ c)+ω2 c̄∂αDβ c

+ ω3 ∂α c̄Dβ c
)

. (2.26)

The usual Seiberg-Witten map is defined for theS0 (gauge
invariant) part of the action. When we gauge fix by includ-
ing Sgh andSg f we find a total action that is no more gauge
invariant but rather BRST invariant. This poses a non trivial
problem of whether it would still be possible to relate non-
commutative and ordinary gauge fixed theories by a SW map.

Let us consider the Lorentz gauge condition appearing in
(2.19):

F1 = ∂µAµ = 0 (2.27)

If we use the Seiberg-Witten map found above we see that this
condition would correspond to

∂µaµ = 0 (2.28)

∂µA(1)
µ [aµ] = 0 . (2.29)

That means, besides the ordinary Lorentz condition (2.28), we
find the additional non linear conditions onaµ from (2.23) and
(2.29). If we were adopting in our expansions terms up to

orderN in θ, we would find a set of conditions∂µA(n)
µ [aµ] =

0, n = 0,1, ..,N. So it seems that the condition∂µAµ = 0 is

not compatible with the solution (2.23), and its higher order
extensions, for the SW mapping.

Alternatively we could choose in the noncommutative the-
ory the non trivial non linear gauge condition (to first order in
θ )

F2 = ∂µAµ+
1
4

θαβ∂µ{
Aα,∂βAµ+Fβµ

}

− σθαβ∂µDµFαβ −
λ1

2
θαβ∂µDµ[Aα,Aβ]

= 0 . (2.30)

If we assume the map (2.23) to hold, this gauge fixing condi-
tion would correspond just to the ordinary Lorentz condition
(2.28) to first order in the noncommutative parameterθ. We
see that if we impose the Lorentz gauge in one of the theo-
ries, the SW map would lead to a somehow complicated and
potentially inconsistent gauge in the other.

Instead of just considering the map of the gauge fixing func-
tions, a more general approach is to consider the behaviour of
the actionS1 eq. (2.19) under the SW map. This action can be
written, to first order in the noncommutative parameter, as

S1 = S(0)
1 +S(1)

1 , (2.31)

whereS(0)
1 is given by (2.10) and

S(1)
1 =−2 tr s̄

Z
d4x

(
C̄(1)(− γ

β
+∂µaµ)

+ c̄ (−Γ(1)

β
+∂µA(1)µ)

)
. (2.32)

Note that the conditionF1 = ∂µAµ = 0 in the noncommu-
tative theory would be effectively mapped intoF3 = ∂µaµ = 0

if S(1)
1 could vanish. In order to see if this is possible we intro-

duce (2.23) and (2.26) in (2.32) and examine the terms with
the same field content. The part ofS(1)

1 independent of the
ghost sector is

S(1)
1noghost = −2 θαβ tr

Z
d4x

[(
∂µaµ− 2γ

β

)

×
(

ω1 γaαaβ +ω2 γ∂αaβ +ω3 ∂α γaβ

)

+ γ∂µ
(
− 1

4

{
aα ,∂βaµ + fβµ

}
+σDµ fαβ

+
λ1

2
Dµ[aα ,aβ ]

)]
. (2.33)

The terms linear in the connectionaµ in the integrand are

−2γ
β

(
ω2 γ∂[αaβ] +ω3 ∂[α γaβ]

)
+2σγ¤∂[αaβ ] (2.34)

which will vanish modulo total differentials only ifσ = 0 and
ω3 = 2ω2. Using these results the quadratic part inaµ of the
integrand can be written as
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−2
β

γ2ω1a[αaβ ] − γ
(

ω2 ( ∂[α aβ ] ∂µaµ+2 a[β∂α]∂µaµ)

+
1
4

∂µ(2{a[α ,∂β ] aµ}+{∂µa[α ,aβ]} − 4λ1 ∂µ(a[α aβ]))
)

(2.35)

modulo a total differential. The quadratic term inγ can be
set to zero choosingω1 = 0. However, there is no choice for
λ1 andω2 which makes the linear terms inγ in the expres-
sion above vanish or be written as a total derivative. Since the
terms from the ghost sector can not cancel the above ones, we

conclude thatS(1)
1 can not vanish. So it is not possible to relate

the Lorentz gauge conditions in the ordinary and noncommu-
tative theories by the SW map. Anyway, quantization can be
consistently implemented in both theories as pointed out in the
end of sectionI . We will see in sectionIV that for the gauge
invariant Proca model it is possible to find a particular BRST-
SW map relating the gauge fixing unitary conditions for both
sectors.

III. THE NON-ABELIAN PROCA MODEL

Before considering the gauge invariant noncommutative
U(N) Proca model, it will be useful to briefly present some
basic properties of the ordinary Abelian Proca theory with ac-
tion

S(0)
0 =

Z
d4x

(
−1

4
fµν f µν +

1
2

m2aµaµ
)

. (3.1)

Hereaµ represents the massive Abelian vector field. Variation
of (3.1) with respect toaµ gives the equation of motion

∂µ f µν +m2aν = 0 (3.2)

which, by symmetry, implies that

∂µaµ = 0 (3.3)

Substituting (3.3) into (3.2) we find that the vector field satis-
fies a massive Klein-Gordon equation, as expected:

(¤+m2)aµ = 0 (3.4)

This model can be described in a gauge invariant way by
introducing a compensating fieldλ . This kind of mechanism
is useful, for instance, when calculating anomalies[15, 16]. In
this case, the action (3.1) is replaced by

S(0)
0 =

Z
d4x

(
−1

4
fµν f µν +

1
2

m2(aµ−∂µλ)(aµ−∂µλ)
)

.

(3.5)

This action is invariant under the local transformationsδaµ =
∂µα andδλ = α. The equations of motion foraµ andλ are

∂µ f µν +m2(aν−∂νλ) = 0

∂µ(aµ−∂µλ) = 0 (3.6)

Note that applying∂ν to the first equation, one reobtains
the second one. In this case (3.3) does not come from the
equations of motion. However as now the model is gauge
invariant, we must impose a gauge fixing function. We may
choose for instance one of the gauge fixing functionsF1 =
∂µaµ, F2 = ¤λ or F3 = λ in order to recover the original Proca
theory.

We now consider the non-Abelian generalization of this
model. Nowaµ takes values in the algebra of U(N), exactly as
in the Yang-Mills case of the previous section.

In place of (3.2) one finds

Dµ f µν +m2aν = 0 (3.7)

Applying Dν to this equation and using the property

[Dµ,Dν]y = i[ fµν , y] (3.8)

wherey is any arbitrary function with values in the algebra,
we find as in the Abelian case that

Dµaµ = ∂µaµ = 0 . (3.9)

However, the equations of motion present non linear terms.
Using the ”Lorentz identity” (3.9) in eq. (3.7) we obtain the
equations of motion foraµ

(¤+m2)aρ− i[aµ,∂µaρ + f µρ] = 0 (3.10)

which is no longer a Klein Gordon equation.
It is worth to mention that contrarily to the Abelian case,

the non-Abelian Proca model is not renormalizable, although
the divergencies at one-loop level cancel in an unexpected way
[18],[19]. Nonrenormalizability is, in any way, an almost gen-
eral property of noncommutative field theories[4].

The next step would be to consider the gauged version of
this non-Abelian model. This will be done in the noncommu-
tative context in the next section. We will also discuss there
the gauge fixing procedure and the BRST formalism.

IV. THE GAUGE INVARIANT NONCOMMUTATIVE U(N)
PROCA MODEL

The gauge invariant version of the U(N) noncommutative
Proca model can be written as[5]

S0 = tr
Z

d4x
(
− 1

2
Fµν ?Fµν

+ m2(Aµ−Bµ)? (Aµ−Bµ)
)

(4.1)
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where the curvature is again given by eq. (2.16) and

Bµ≡−i ∂µG?G−1 (4.2)

In the above expressionsG is an element of the noncom-
mutative U(N) group andBµ is a ”pure gauge” vector field
in the sense that its curvature, analogous to (2.16), vanishes
identically. Note thatBµ is the noncommutativeU(N) version
of ∂µλ discussed in the previous section. We assume that the
algebra generators satisfy, as in the Yang-Mills case, the trace
normalization and (anti)commutation relations (2.3) and (2.4).

By varying action (4.1) with respect toAµ andG, we get the
equations of motion

DµFµν +m2(Aν−Bν) = 0 (4.3)

D̄µ(Aµ−Bµ) = 0 (4.4)

where we have defined the two covariant derivatives

DµX = ∂µX− i[Aµ
?, X]

D̄µX = ∂µX− i[Bµ
?, X] (4.5)

for any quantityX with values in the algebra. By taking the
covariant divergence of equation (4.3) and using the noncom-
mutative Bianchi identity

[Dµ,Dν]X = i[Fµν ?, X] (4.6)

one finds

Dµ(Aµ−Bµ) = 0 (4.7)

which is equivalent to equation (4.4), as can be verified. Ac-
tually, we can rewrite (4.4) or (4.7) in the convenient form

∂µAµ = DµBµ . (4.8)

So we see that if we choose, among the possible gauging fix-
ing functions,F1 = ∂µAµ or F4 = G− 1, the compensating
field is effectively eliminated and the Lorentz condition is im-
plemented.

Action (4.1) is invariant under the infinitesimal gauge trans-
formations

δAµ = Dµε
δG = iε?G (4.9)

which also implies that

δBµ = D̄µε
δFµν = i[ε ?, Fµν] (4.10)

As expected, the noncommutative gauge transformations
listed above close in an algebra as (1.2), for the fieldsAµ, G
, Bµ or Fµν. The composition rule for the parameters is as
(2.17).

The associated BRST algebra obtained again by introduc-
ing the trivial pairC̄ and Γ, corresponds to the Yang-Mills
algebra of eq. (2.20) plus the transformation of the compen-
sating field

sG = iC ?G , (4.11)

that corresponds to

sBµ = D̄µC = ∂µC− i[Bµ
?, C] . (4.12)

A gauge fixed action is constructed from (4.1) by adding
Sgh andSg f from eqs. (2.12) and (2.13) as in the Yang-Mills
case.

For the Lorentz gauge we choose as in the Yang-Mills case
F1 = ∂µAµ, M1 = ∂µDµ and we get formally the same ghost
and gauge fixing actions. The complete action is BRST in-
variant, as expected.

For the unitary gauge corresponding to the choiceF4 = G−
1, we find the ghost and gauge fixing actions

S1 = Sgh+Sg f

= −2tr s
Z

d4xC̄(G−1) (4.13)

which is obviously BRST invariant. SincesS0 = 0, as can be
verified, it follows the invariance of the complete action.

Let us now build up the BRST Seiberg-Witten map for this
model. We start again by imposing [7] thatsY= s̄Y[y] submit-
ted to the conditionY[y]|θ=0

= y that lead us again to equations
(2.21) and also to

s̄G(1)− icG(1) = −1
2

θµν∂µc∂ν g+ iC(1) g

δ̄B(1)
µ + i[B(1)

µ ,c] = ∂µC
(1) + i[C(1),bµ]

− 1
2

θαβ{∂α c,∂βbµ} (4.14)

The solutions of these equations are again obtained by
searching for all the possible contributions with the appropri-
ate dimensions and Grassmaniann characters. However now
we have the extra compensating fieldbµ. So the solutions for

A(1)
µ andC(1) are no longer the Yang-Mills solutions (2.22)

and (2.23) but rather

C(1) =
1
4
(1−ρ)θµν {

∂µc,aν
}

+λ1θµν [∂µc,aν]

+
1
4

ρθµν {
∂µc,bν

}
+λ2θµν [∂µc,bν] (4.15)
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A(1)
µ = −1−ρ

4
θαβ {

aα,∂βaµ+ fβµ
}

+σθαβDµ fαβ

+
λ1

2
θαβDµ[aα,aβ]+

ρ
4

θαβ {
bα,Dµbβ−2∂βaµ

}

+ λ2θαβDµ

(
bαbβ

)
(4.16)

In these equationsλ1, λ2 , ρ and σ are arbitrary constants.
These solutions are a generalization of those in ref. [5].

For the compensating field we find

G(1) = −1
2
(1−ρ)θαβaα

(
∂βg− i

2
aβg

)

+ iλ1θαβaαaβg+ γθαβ fαβg

+ i(λ2− ρ
4
)θαβbαbβg+O(θ2) (4.17)

with arbitraryγ.
Now we may consider the compatibility of the BRST-SW

map and the unitary gauge fixing, in the same spirit of what
was discussed in the last section. First we observe that the
conditionF4 = G−1 is mapped ing−1 plus complicated first
order corrections inθ. However, if we choose the parameters
of the map as

λ1 =
1
4
(ρ−1)

γ = 0 (4.18)

we find that the conditionsg = 1 andG = 1 are equivalent to
first order inθ, as can be verified from (4.17). So that for this
particular solution of the map, the unitary gauge in the non-
commutative theory is mapped in the ordinary unitary gauge
in the mapped theory.

Additionally, if we chooseρ = 1 implying λ1 = 0 and also

σ = 0 we find that in the unitary gaugeA(1)
µ = 0. So thatAµ

is mapped just inaµ. In this case we find that the non gauge
invariant noncommutativeU(N) Proca theory is recovered in
the unitary gauge and at the considered order inθ.

V. CONCLUSION

We have investigated the extension of the Seiberg-Witten
map to ghosts, antighosts and auxiliary fields in the BRST
gauge fixing procedure. Two non-Abelian gauge models that
present different behaviors under the BRST-SW map of the
gauge fixing conditions have been considered. For the Yang-
Mills theory we found that it is not possible to map the Lorentz
gauge condition in the noncommutative and ordinary theories.
On the other hand, for the gaugedU(N) Proca model we were
able to find a SW map that relates the unitary gauge fixing
in the noncommutative and ordinary theories. It would be in-
teresting to investigate how the BRST-SW map act in other
gauge fixing conditions and models.
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