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We consider the BRST gauge fixing procedure of the noncommutative Yang-Mills theory and of the gauged
U(N) Proca model. An extended Seiberg-Witten map involving ghosts, antighosts and auxiliary fields for non-
Abelian gauge theories is studied. We find that the extended map behaves differently for these models. For the
Yang-Mills theory in the Lorentz gauge it was not possible to find a map that relates the gauge conditions in
the noncommutative and ordinary theories. For the gauged Proca model we found a particular map relating the
unitary gauge fixings in both formulations.

I. INTRODUCTION to note that in this BRST approach the closure relation (1.3) is
naturally contained in the above condition for the ghost field.
This means that it is not necessary to construct a SW map for
the parameter.

Here we will investigate the extension of this map also to
the gauge fixed actions. Observe that in ref.[7] the Hamil-
tonian formalism was used while here we consider a La-
grangian approach. In particular we study the consistency

- ] of such maps with the gauge fixing process. Considering the
whered ands are the gauge transformations for noncommu-grsT quantization of a noncommutative theory we will find

tative and ordinary theories respectively ang] means that  {hat some usual gauge choices for the noncommutative theo-
we express the noncommutative fieldsn terms of ordinary  yies are mapped in a non trivial way in the ordinary model.
onesy. In this work we will consider gauge theories whose

algebra closes as

Noncommutative gauge field&can be described in terms
of ordinary gauge fieldg by using the Seiberg-Witten (SW)
map[1] defined by

oY =dY[y] (1.1)

Recent results coming from string theory are motivating an
increasing interest in noncommutative theories. The presence
of an antisymmetric tensor background along the D-brane [8]
world volumes (space time region where the string endpoints
are located) is an important source for noncommutativity in
string theory[9, 10]. Actually the idea that spacetime may be
noncommutative at very small length scales is not new[11].
5 x 5 Originally this has been thought just as a mechanism for pro-
101,821 Y1y = 85 Y1y - (1.3) vidi?]g sgace with a natural gut (J)ff that would control ultg-

This implies that the mapped noncommutative gauge paraméiolet divergences[12], although these motivations have been
ters must satisfy a composition law in such a way that theyeclipsed by the success of the renormalization procedures.
depend in general on the ordinary parameters and also on theGauge theories can be defined in noncommutative spaces
fieldsy. Usually this noncommutative parameter compositionby considering actions that are invariant under gauge trans-
law is the starting point for the construction of SW maps. In-formations defined in terms of the Moyal structure[1]. In this
teresting properties of Yang-Mills noncommutative theoriescase the form of the gauge transformations imply that the al-
where discussed in[2—4], where these points are considered gebra of the generators must close under commutation and
detail. Other noncommutative theories with different gaugeanticommutation relations. That is why(N) is usually cho-
structures are also studied in [5, 6]. sen as the symmetry group for noncommutative extensions of
Originally the Seiberg-Witten map has been introduced reYang-Mills theories in place oBU(N), although other sym-
lating noncommutative and ordinary gauge fields and the cornetry structures can also be considered [3][13][14]. Once one
responding actions. When one considers the gauge fixing prdas constructed a noncommutative gauge theory, it is possible
cedure one enlarges the space of fields by introducing ghost® find the Seiberg-Witten map relating the noncommutative
antighosts and auxiliary fields. In this case one can define afields to ordinary ones[2]. The mapped Lagrangian is usu-
enlarged BRST-SW map[7] ally written as a nonlocal infinite series of ordinary fields and
their space-time derivatives but the noncommutative Noether
identities are however kept by the Seiberg-Witten map. This
assures that the mapped theory is still gauge invariant.

[01,8,]Y = &3Y (1.2)

without the use of equations of motion. In terms of the

mapped quantities this condition reads

sY = §YJy] (1.4)

wheres ands are the BRST differentials for the noncommu-
tative and ordinary theories respectively ahdndy here in-

In this work we will first consider (sectiol ) the case of
the noncommutativel (N) Yang-Mills theory and investigate

clude ghosts, antighosts and auxiliary fields. It is interestinghe BRST gauge fixing procedure in the Lorentz gauge. Then
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the construction of the SW map between the noncommutativerace normalization
and ordinary Yang-Mills fields, including ghosts, antighosts 1
and auxiliary fields is discussed. We will see that imposing the tr(TATB) = 2578 (2.3)
Lorentz gauge in the noncommutative theory does not imply 2
an equivalent condition in the ordinary theory. Converselyand the (anti)commutation relations
imposing the Lorentz gauge condition in the ordinary gauge
fields would not correspond to the same condition in the non- [TATB] = ifABCTC
commutative theory. A 1By _ 4ABCTC
Another model that will present an interesting behavior {ToT5 = a7 (2:4)
is the gauged version of noncommutative non-Abelian Procghere fABC andd”BC are assumed to be completely antisym-
field, discussed in sectioti$ andIV . For this model we study metric and completely symmetric respectively.
the BRST gauge fixing in the unitary gauge. The modelis ob- The action (2.1) is invariant under the infinitesimal gauge
tained by introducing an auxiliary field which promotes the transformations
massive vector field to a gauge field. This auxiliary field can _
be seen as a pure gauge “compensating vector field” , defined day = Dyo = dpa —ifay,a] (2.5)
in terms ofU (N) group elements and having a null curvature
[15, 16]. In this model we find that the general SW map re-which closes in the algebra
lates in a non trivial way noncommutative and ordinary gauge
fixing conditions. However it is possible to find a particular E— —
SW map that relates the unitary gauges in noncommutative [01,82] 8, = dzay (2.6)
and ordinary theories. Some of these points have been par- . .
tially considered in [5]. with parameter composition rule given by
Regardless of these considerations, the Fradkin-Vilkovisky
theorem[17] assures that the physics described by any non
anomalous gauge theory is independent of the gauge fixing,
without the necessity of having the gauge fixing functions The gauge structure displayed above leads to the definition
mapped. This means that the quantization can be implementef] the BRST differentiaf such that
consistently in noncommutative and ordinary theories. Note
that the SW map is defined for the gauge invariant action.

az =i[az,aq] (2.7)

This places a relation between the noncommutative and ordi- sc = ic?

nary theories before any gauge fixing. Once a gauge fixing is 53, = DyC

chosen one does not necessarily expect that the theories would . .

still be related by the same map. In the Yang-Mills case with = duc —ifay,c]

Lorentz gauge we could not relate the complete theories by a S =Y

BRST-SW map after gauge fixing. However, for the gauged sy =0 (2.8)
Proca theory we could find a map relating the unitary gauges

in both noncommutative and ordinary theories. As Sis an odd derivative acting from the right, it is easy to ver-

ify from the above definitions that it indeed is nilpotent. Natu-
rally c andc are grassmannian quantities with ghost numbers
Il. GAUGE FIXING THE NONCOMMUTATIVE ~ U(N) respectively+1 and—1. Eandyform a trivial pair necessary
YANG-MILLS THEORY to implement the gauge fixing.

The functional BRST quantization starts by defining the to-
In order to establish notations and conventions that willtal action
be useful later, let us start by considering the ordinary U(N)
Yang-Mills action (denoting ordinary actions by the upper in-

dex(9) §9=g°%4+g? (2.9)

7 1 Where%o) is given by (2.1) and
SV =tr d <2fwa> 2.1) ,
0) = o~ Y
=-2trs d*xc|—=+9 a“) 2.10
where s ( g o (2.10)
appropriated to fix the (Gaussian) Lorentz condition, is BRST
fuv = 0uay — 0vay —ifay, av] (2.2) exact. This assures thi()) is BRST invariant, due to the
nilpotency ofs. Sincesfy = i[c, fw] according to (2.2) and

is the curvature. We assume that the connedjotakes val-  (2.8), it follows thaté)o) is also BRST invariant. In (2.10R
ues in the algebra of U(N), with generatdr8 satisfying the s a free parameter, as usual.
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In generalﬁo) can be written as

io) _ Sgr)]) + Sg)f) (2.11) g3 =l[ex % €] (2.17)
with the ghost action given by The total action is given by
Z
Sé?f = —2tr d*xcMc (2.12) S=%+S (2.18)
where

and the gauge fixing one by

z z ¢
0= _atr d4xy<—\é + 7) (2.13) S =-2trs d'xC (—B +0uA“> (2.19)

where¥ = # (a) is a gauge fixing function anid = & /3a. The BRST differentiasis defined through

The Lorentz gauge condition correspondgio= d,a, My =
duDH. The functional quantization is constructed by function-

ally integrating the exponential @& over all the fields, with sC = —iCxC
appropriate measure and the external source terms in order to sA. = D,C
generate the Green’s functions. = 9,C —i[A.*C]
The noncommutative version of this theory comes from re- =T
placingy = {ay, ¢, C,y} by the noncommutative field¢ = S =0 (2.20)
{A,C,C,I'} as well as the ordinary products of fields by
Moyal products, defined through Obviously bothSy andS; are BRST invariant.

The BRST Seiberg-Witten map is obtained from the condi-
i - tion (1.4). In this work we will consider only the expansion of
* = exp(ze“" apav) (2.14)  noncommutative fields in terms of ordinary fields to first order
in the noncommutative parametér

whereb” is a constant and antisymmetric matrix. The Moyal
product is associative and cyclic under the integral sign when

appropriate boundary conditions are adopted. We also assum

that the group structure is deformed by this product. In thi w%ereY represents the noncommutative fieldg,C,C,I".

way, the group elements are constructed from the exponenti Hen we find from (1.4) and (2.20) that

tion of elements of the algebra of U(N) by formally usi

the series, that ig = 1+MTA+ IAATALABTB + . Gen- L @
eral consequences of this deformation in field theories can be sC¥ +i{c,C7}
seenin [1, 4]. In particular, the appearanc®¥f+ 0 breaks (1) | iraD) 1) L i

the unitarity of the corresponding quantum theory. Further- SAC +ilAr g = 9, +ilc™ 3

Yyl =y+ Y[y +0(6?),

1
21emﬁ[aac, dpc]

more in a Hamiltonian formalism this would imply higher or- _ }eaﬁ{a c,9pa,}
der time derivatives which demand a non standard canonical 2 amp
treatment. This last aspect does not show up here since we are W = r@
using a Lagrangian formalism. T — o (2.21)
The noncommutative action corresponding to (2.1) can be '
written as The corresponding solutions for the ghost and the gauge field
are
‘ 1
S = tr d4x(— EFW*F“")
1
(2.15) c® = 2oV {o.ca} + BV Buca)  (2.22)
where now
. A = Lo fag dga, 1 Ty} + 069D, feg
Fav = 0uA — 0AL — T [Au T A (2.16) 4 "
A
As expected, the noncommutative gauge transformations + EGO‘BDH[aa,aB], (2.23)

OA, =0 —i[A, 7 €] close in an algebra like (1.2) with com-
position rule for the parameters given by whereg andA; are arbitrary constants.
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It is important to remark that when we extend the space ofiot compatible with the solution (2.23), and its higher order
fields in order to implement BRST quantization we could inextensions, for the SW mapping.
principle find solutions foc® andA.fll) depending orT and Alternatively we could choose in the noncommutative the-
y. However there are two additional conditions to be satisfied®!Y the non trivial non linear gauge condition (to first order in
besides eqs. (2.21): the ghost number and the dimension 89
all first order corrections must be equal to those of the corre-

sponding zero order field. It can be checked that there are no " 1 apau

other possible contributions to the solutions (2.22) and (2.23) Fo = 0"Aut 070 {Aa,0pAu+ oyt

involving ¢ andy and satisfying these criteria. M

For the trivial pair we find — 06%PoMDyFop — 79“30“%['%,%]
= 0. (2.30)

~(1
c = e Hap If we assume the map (2.23) to hold, this gauge fixing condi-
r@ — gob SHup (2.24) tion would correspond just to the ordinary Lorentz condition

(2.28) to first order in the noncommutative paraméeile
whereH,g is a function of the fieldsy, c,c andy with ghost  see that if we impose the Lorentz gauge in one of the theo-
number= —1 (taking the convention that the ghost numbersries, the SW map would lead to a somehow complicated and
of c andc are+1 and—1 respectively). Note that the sum of potentially inconsistent gauge in the other.
the mass dimensions ofandcis 2. Then the mass dimension  Instead of just considering the map of the gauge fixing func-
of Hyp will be the dimension of plus 2. Considering these tions, a more general approach is to consider the behaviour of
points we find that the general form for this quantity is the actionS; eq. (2.19) under the SW map. This action can be

written, to first order in the noncommutative parameter, as

Heg = w1Ca a, +0Co, a, + w0, C: (2.25)
op By o a®% s-594gY, (2.31)
where wy, Wy and wz are arbitrary parameters. From egs. 0.
(2.8), (2.24) and (2.25) we see that wheres,” is given by (2.10) and
z Y
r = 6% (wya,a, +wpyd,a, +wsd,ya, sV =-2us d“X(al’(*E +0ya)
+ wc(D,ca,+a,D,c)+wcd,D,c _ @
B % b b + c(——+6pA<1)“)) . (2.32)
+ wsaucDBc) : (2.26) B

) ) ) ) Note that the conditior¥; = o*A, = 0 in the noncommu-
_ The usual Seiberg-Witten map is defined for fagauge  tative theory would be effectively mapped infg = d#a, = 0
invariant) part of the action. When we gauge fix by Ir]Clud'if S(ll) could vanish. In order to see if this is possible we intro-

ing S and §¢ we find a total action that is no more gauge . ) .
invariant but rather BRST invariant. This poses a non trivialduce (2.23) and (2.26) in (2.32) and examine the terms with

. . ' ; )
problem of whether it would still be possible to relate non-the same field content. The part 8f’ independent of the
commutative and ordinary gauge fixed theories by a SW magfIhost sector is
Let us consider the Lorentz gauge condition appearing in

z
(2.19): 1 2y
n)oghost = —26%tr d4X[(aua“— E)
F1=0"A, =0 (2.27) X (wlvat,aB +wzv6aag+wsaavag)
If we use the Seiberg-Witten map found above we see that this + yoi(—->la ,0.a +f | +oD,f
condition would correspond to N ( 4{6“ oS B“} Hiap
1
u + 5Dp[a(,,aB])} . (2.33)
Fau = 0 (2.28) The terms linear in the connectiap in the integrand are
*MAMa,] = 0. (2.29)

That means, besides the ordinary Lorentz condition (2.28), we —%V(wzya[a ay + oo36[a yam) + ZoyDa[a ay, (2.34)

find the additional non linear conditions epfrom (2.23) and

(2.29). If we were adopting in our expansions terms up tayhich will vanish modulo total differentials only & = 0 and
orderN in 6, we would find a set of conditiorﬁi*AL") lay] = ws = 2up. Using these results the quadratic parjnof the
0,n=0,1,..,N. So it seems that the conditi@®A, = 0 is  integrand can be written as
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This action is invariant under the local transformatioag =
dua anddA = a. The equations of motion fa, andA are

2
—Eyzool a,a; — Y((,Oz (0,8, 0ua"+2a,0, 0,a")
1., ouf? +mP(@ —dA) = 0
+407(2{2, 05 4} +{0ua,, 3y } — AA10u(a. ))) du@—a"\) = 0 (3.6)

(2.35) Note that applying®, to the first equation, one reobtains

modulo a total differential. The quadratic termyncan be ~ the second one. In this case (3.3) does not come from the
set to zero choosingy = 0. However, there is no choice for €duations of motion. However as now the model is gauge
A1 andw, which makes the linear terms inin the expres- invariant, we must impose a gauge fixing function. We may
sion above vanish or be written as a total derivative. Since th&n00se for instance one of the gauge fixing functighs=
terms from the ghost sector can not cancel the above ones, Wed", F2 =D or F3= A in order to recover the original Proca

. . . theory.
conclude thaéll) can not vanish. So itis not possible to relate ooy

the Lorentz gauge conditions in the ordinary and noncommus- We now consider the non-Abelian generalization of this
gaug y model. Noway, takes values in the algebra of U(N), exactly as

tative theone_s by the SW map. Anyway, quantization can befn the Yang-Mills case of the previous section.
consistently implemented in both theories as pointed out in the In place of (3.2) one finds

end of sectiori. We will see in sectioiV that for the gauge
invariant Proca model it is possible to find a particular BRST-
SW map relating the gauge fixing unitary conditions for both Duf? + mfa’ =0 (3.7)
sectors.

Applying Dy to this equation and using the property

Ill.  THE NON-ABELIAN PROCA MODEL :

[Du» Dvly = |[fuv ,Y) (3.8)
Before considering the gauge invariant noncommutativevherey is any arbitrary function with values in the algebra,

U(N) Proca model, it will be useful to briefly present some We find as in the Abelian case that

basic properties of the ordinary Abelian Proca theory with ac-

tion

Z 1 1 However, the equations of motion present non linear terms.
%@ —  d% (_fwfuv + mza“a“> ) (3.1) Using the "Lorentz identity” (3.9) in eq. (3.7) we obtain the
4 2 equations of motion foa
Herea, represents the massive Abelian vector field. Variation
of (3.1) with respect tay, gives the equation of motion (O4m)aP —i [a,,0HaP + fH°] =0 (3.10)
which is no longer a Klein Gordon equation.
0, W + mfa’ =0 (3.2) It is worth to mention that contrarily to the Abelian case,
the non-Abelian Proca model is not renormalizable, although
which, by symmetry, implies that the divergencies at one-loop level cancel in an unexpected way

[18],[19]. Nonrenormalizability is, in any way, an almost gen-
eral property of noncommutative field theories[4].
0ua" =0 (3.3) The next step would be to consider the gauged version of
. ) i i _this non-Abelian model. This will be done in the noncommu-
Substituting (3.3) into (3.2) we find that the vector field salis-ta¢ive context in the next section. We will also discuss there

fies a massive Klein-Gordon equation, as expected: the gauge fixing procedure and the BRST formalism.

(O+nP)a, =0 (34) |V THE GAUGE INVARIANT NONCOMMUTATIVE ~ U(N)

. . . . . PROCA MODEL
This model can be described in a gauge invariant way by

introducing a compensating fieM This kind of mechanism
is useful, for instance, when calculating anomalies[15, 16]. Ir]D
this case, the action (3.1) is replaced by r

The gauge invariant version of the U(N) noncommutative
oca model can be written as[5]

z
Z 4 1 v
= tr d%(—ZFy*F"
Y = d4x(_ifwf“v+;mz(au_apx)(au_a“)\) : = ( 2 ™*

(3.5) + P (A —By) x (A — B“)) (4.1)
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where the curvature is again given by eq. (2.16) and As expected, the noncommutative gauge transformations
listed above close in an algebra as (1.2), for the fiéidsG
, By or Fy. The composition rule for the parameters is as
By=—i0,GxG* 4.2)  (2.17).
. . The associated BRST algebra obtained again by introduc-
In the above expressior is an element of the noncom- g the trivial pairC and ", corresponds to the Yang-Mills

mutative U(N) group and, is a "pure gauge” vector field gigepra of eq. (2.20) plus the transformation of the compen-
in the sense that its curvature, analogous to (2.16), vamsh%%ting field

identically. Note thaB,, is the noncommutativ (N) version
of dyA discussed in the previous section. We assume that the
algebra generators satisfy, as in the Yang-Mills case, the trace SG=iCxG (4.11)
normalization and (anti)commutation relations (2.3) and (2.4). ’

By varying action (4.1) with respect #§, andG, we get the

) . that corresponds to
equations of motion

DyF™ £ mR(AY—BY) — 0 423) sB, = D,C=0,C—i[B,*C]. (4.12)
5H(A“_ BY) =0 (4.4) A gauge fixed action is constructed from (4.1) by adding
where we have defined the two covariant derivatives ghsgnd%f from egs. (2.12) and (2.13) as in the Yang-Mills
For the Lorentz gauge we choose as in the Yang-Mills case
DpX' = 0uX —i[AuTX] #1 = 0,A%, M1 = 9,DH and we get formally the same ghost

— o . and gauge fixing actions. The complete action is BRST in-
DuX = 0uX —i[Bu7 X] (45)  variant, as expected.

. : : . For the unitary gauge corresponding to the chgige- G—
for any quantityX with values in the algebra. By taking the 1, we find the ghost and gauge fixing actions

covariant divergence of equation (4.3) and using the noncom-
mutative Bianchi identity

S

S;thSZ;f

[Dy, DX = i[Fw 7 X] (4.6) “2trs  d*C(G—1) (4.13)

one finds
which is obviously BRST invariant. Sinces = 0, as can be

verified, it follows the invariance of the complete action.
Du(A*—BY) =0 4.7) Let us now build up the BRST Seiberg-Witten map for this
model. We start again by imposing [7] the¥ = SY[y] submit-
which is equivalent to equation (4.4), as can be verified. Acted to the conditioiY[y],._. = ythat lead us again to equations

tually, we can rewrite (4.4) or (4.7) in the convenientform  (2.21) and also to -0

H_D,BH
0yA" = DyB" . (4.8) sGY —icGY = —%ewaucav9+ic(l)g

So we see that if we choose, among the possible gauging fix- =) | i) 1) (L
ing functions, #1 = 9,A" or ¥4 = G — 1, the compensating OBy +i[Bi", ¢ = ‘?Luc( ) +i[Cc™, by

field is effectively eliminated and the Lorentz condition is im- _ LoaBsa coonb 414
plemented. 587 {0a C,0pby} (4.14)

Actign (4.1) is invariant under the infinitesimal gauge trans- - The solutions of these equations are again obtained by
formations searching for all the possible contributions with the appropri-
ate dimensions and Grassmaniann characters. However now
we have the extra compensating fiéld So the solutions for

A = P“a AY andc® are no longer the Yang-Mills solutions (2.22)
0G = iexG (49)  and (2.23) but rather
which also implies that
1
B cl — 21(1—p)6“" {0uc.av} +A10% [0,c,a)]
8Fw = ife7 Fw)] (4.10) + 2P0 {duc b A0 b)  (4.15)
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we find that the conditiong= 1 andG = 1 are equivalent to
first order inB, as can be verified from (4.17). So that for this

A&” - _ﬂeo‘ﬁ {aq, 0pau+ fBu} -|-0'6°‘BDufaB particular solution of the map, the unitary gauge in the non-
A 4 commutative theory is mapped in the ordinary unitary gauge
+ 209D, [ag, ag) + 26% {by, Dybg — 2053} in the mapped theory.
2 4 Additionally, if we choose = 1 implying A1 = 0 and also
+ )\ZOO‘BDH<b(,bB) (4.16) ¢ = 0we find that in the unitary gaugll;” = 0. So thatA,

is mapped just irgy. In this case we find that the non gauge
In these equation&y, A2 , p and o are arbitrary constants. invariant noncommutativel (N) Proca theory is recovered in
These solutions are a generalization of those in ref. [5]. the unitary gauge and at the considered ordé in
For the compensating field we find

G — —%(l—p)G“Baa (aﬁg—lzaﬁg> V. CONCLUSION
+ iA6%Paqagg +y6™ fupg We have investigated the extension of the Seiberg-Witten
; P\nap 2 map to ghosts, antighosts and auxiliary fields in the BRST
i(A2—=)8%byb O(6 4.17 '
+ it 4) absg +O(€") ( ) gauge fixing procedure. Two non-Abelian gauge models that

present different behaviors under the BRST-SW map of the
Wy gauge fixing conditions have been considered. For the Yang-
map and the unitary gauge fixing, in the same spirit of WhaNiIIstheorywe fqund thatitis not pos_sible to map the Loremz
was discussed in the last section. Eirst we observe that tré2u9e condition in the noncommutative and ordinary theories.
condition¥4 = G—1is mapped irg— 1 plus complicated first n the o'_[her hand, for the gaugedN) Proca model we were
order corrections ifd. However, if we choose the parameters _able o find a SW map that rel_ates the unitary gauge flx!ng
of the map as in the.nonco_mmutgtlve and ordinary theories. It woulq be in-

teresting to investigate how the BRST-SW map act in other

gauge fixing conditions and models.

with arbitraryy.
Now we may consider the compatibility of the BRST-S

1
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