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Time evolution of Wigner functions governed by bipartite Hamiltonian system with kinetic
coupling
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For the bipartite Hamiltonian system with kinetic coupling, we derive time evolution equation of Wigner
functions by virtue of the bipartite entangled state representation and entangled Wigner operator, which just
indicates that choosing a good representation indeed provides great convenience for us to deal with the dynamics
problem.
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1. INTRODUCTION

As is well known, Wigner function, introduced by
Wigner[1] in 1932, is a quasi-probability distribution to fully
describes the state of a quantum system in phase space. Its
partial negativity is indeed a good indication of the highly
nonclassical character of the quantum states[2]. Now Wigner
function has become a very popular tool not only to study the
nonclassical properties of quantum states but also to monitor
the decoherence of some quantum states by discussing its
time evolution[3, 4]. For a density operator ρ of a single-
mode system, the Wigner function W (x, p) is defined as
(~ = 1)[5, 6]

W (x, p) = Tr [ρ∆(x, p)]

=
1

2π

Z 〈
x+

v
2

∣∣∣ρ ∣∣∣x− v
2

〉
e−ipvdv, (1)

where ∆(x, p) is the single-mode Wigner operator, |x〉 is the
eigenvector of the coordinate operator obeying X |x〉= x |x〉 ,

|x〉= π
−1/4 exp

(
−1

2
x2 +

√
2xa†− 1

2
a†2
)
|0〉 , (2)

a† and a are the Bose creation and annihilation oper-
ators, respectively, satisfying

[
a,a†

]
= 1; they are re-

lated to coordinate operator X and momentum operator P,
namely, X =

(
a+a†

)
/
√

2 and P =
(
a−a†

)
/i
√

2. Us-
ing the technique of integration within an ordered prod-
uct of operators (IWOP)[7, 8] and the vacuum projector
|0〉〈0| = : exp

(
−a†a

)
: ( : : denotes normal ordering), we

have obtained the explicitly normal ordering form of ∆(x, p)

∆(x, p) ≡ ∆(α,α∗) = (3)

=
1
π

: e−(x−X)2−(p−P)2
: =

1
π

: e−2(a†−α∗)(a−α) : ,

where α = 1√
2
(x+ ip). Respectively performing integrations

over dx and d p leads toZ
d p∆(x, p) =

1√
π

: e−(x−X)2
: = |x〉〈x| (4)
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and Z
dx∆(x, p) =

1√
π

: e−(p−P)2
: = |p〉〈p| , (5)

where

|p〉= π
−1/4 exp

(
−1

2
p2 + i

√
2pa† +

1
2

a†2
)
|0〉 (6)

is the eigenvector of the momentum operator satisfying
P |p〉 = p |p〉. Thus for a state |ψ〉, its Wigner func-
tion’s marginal distributions 〈ψ|∆(x, p) |ψ〉 are, respectively,
|〈x| ψ〉|2 and |〈p| ψ〉|2, this is just Wigner’s original idea of
setting up a function in x− p phase space whose marginal
distributions are the probability of finding a particle in coor-
dinate space and momentum space.

On the other hand, the motion equation of Wigner func-
tion has attracted an ever increasing attention for a given
system[11]. For example, in Ref.[12], for the Hamiltonian
H1 = P2/2m+V (X) of a single particle system, one has de-
rived the time evolution of the Wigner function governed by
H1,(

∂

∂t
+

p
m

∂

∂x
− dV (x)

dx
∂

∂p

)
W (x, p, t)

=
∞

∑
l=1

(
~
2

)2l (−1)l

(2l +1)!
d2l+1V (X)

dx2l+1

(
∂

∂p

)2l+1

W (x, p, t) .

(7)

In the classical limit ~ → 0, one derives the Liouville equa-
tion (

∂

∂t
+

p
m

∂

∂x
− dV (x)

dx
∂

∂p

)
W (x, p, t) = 0. (8)

In addition, Wigner function with time evolution of a two-
body correlated system has been deduced as well, whose
Hamiltonian is H2 = 1

2m1
P2

1 + 1
2m2

P2
2 +V (X1−X2)[13]. Thus

an interesting question naturally arise: when the Hamiltonian
not only is a two-body correlated system, but also contains
kinetic coupling, i.e.,

H =
1

2m1
P2

1 +
1

2m2
P2

2 + kP1P2 +V (X1−X2), (9)
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where the potential V (X1 −X2) just depends on the relative
distance of the two particles, and the term kP1P2 is usually
called kinetic coupling term, what is the time evolution of
Wigner function governed by H? As far as we know, this
problem has not been derived analytically in the literature
before. This problem is the task of the present paper. By
mentioning two-body correlated case, enlightened by the pa-
per of Einstein-Podolsky-Rosen (EPR) in 1935[14] who no-
ticed that two particles’ relative coordinate X1−X2 and total
momentum P1 + P2 are commutative and can be simultane-
ously measured, we naturally think of the common eigen-
vector |η〉 of the relative coordinate operator X1−X2 and the
momentum sum operator P1 + P2, (see Eq.(11) below)[15].
Correspondingly, because in the entangled case only those
states simultaneously describing two entangled particles can
be endowed with physical meaning, phase space should be
understood with regard to |η〉. In the following discussion,
we mainly obtain the time evolution of the entangled Wigner
function governed by the bipartite Hamiltonian in Eq.(9) by
the aid of the entangled state representation |η〉.

2. WIGNER FUNCTION FOR TWO-BODY
CORRELATED SYSTEM

To begin with, we briefly review the aspects of the Wigner
function for the two-body correlated system. In Ref.[16], the
so-called entangled Wigner operator has been successfully

established. Based on it, the corresponding Wigner function
can be conveniently derived. This entangled Wigner operator
is expressed in the entangled state representation |η〉 as

∆(σ,γ) =
Z d2η

π3 |σ−η〉〈σ+η|exp(ηγ
∗−η

∗
γ) , (10)

where σ = σ1 + iσ2, γ = γ1 + iγ2 and

|η〉=exp
(
−1

2
|η|2 +ηa†

1−η
∗a†

2 +a†
1a†

2

)
|00〉 ,η = η1 +iη2,

(11)
obeys the eigenvector equations

(X1−X2) |η〉=
√

2η1 |η〉 ,(P1 +P2) |η〉=
√

2η2 |η〉 (12)

with X j =
(

a j +a†
j

)
/
√

2 and Pj =
(

a j −a†
j

)
/i
√

2, i.e., |η〉
is the common eigenstate of the relative position of two par-
ticles X1−X2 and their total momentum P1 +P2, and spans a
complete and orthogonal space[15]Z d2η

π2 |η〉〈η|= 1, 〈η| η
′〉= πδ

(
η−η

′)
δ
(
η
∗−η

′∗) .
(13)

Using Eq.(11) and |00〉〈00| = : exp(−a†
1a1 − a†

2a2) : and
perfoming the integration in Eq.(10) by virtue of the IWOP
technique[7, 8], we obtain the normally ordered form of the
Wigner operator ∆(σ,γ)

∆(σ,γ) =
Z d2η

π3 exp
[
−1

2
|σ−η|2 +(σ−η)a†

1− (σ−η)∗ a†
2 +a†

1a†
2

]
|00〉

×〈00|exp
[
−1

2
|σ+η|2 +(σ+η)∗ a1− (σ+η)a2 +a1a2

]
eηγ∗−η∗γ

=
Z d2η

π3 : exp
[
−|η|2 +

(
γ
∗−a†

1−a2

)
η+

(
a†

2− γ+a1

)
η
∗
]

× exp
(
−|σ|2 +σa†

1−σ
∗a†

2 +σ
∗a1−σa2 +a1a2 +a†

1a†
2−a†

1a1−a†
2a2

)
:

=
1
π2 : exp

[
−|σ|2−|γ|2 + γ(a†

1 +a2)+ γ
∗(a†

2 +a1)+σ(a†
1−a2)+σ

∗(a1−a†
2)−2a†

1a1−2a†
2a2

]
=

1
π2 : exp[−(a1 +a†

2− γ)(a†
1 +a2− γ

∗)− (σ−a1 +a†
2)(σ

∗−a†
1 +a2)] : , (14)

where we have used the following integral formula[9, 10]

Z d2z
π

exp
(

ζ |z|2 +ξz+ηz∗
)

=−1
ζ

exp
[
−ξη

ζ

]
,Re(ζ)< 0.

(15)
By setting

γ = α+β
∗,σ = α−β

∗ (16)

with α = 1√
2
(x1 + ip1), β = 1√

2
(x2 + ip2) and comparing

with Eq.(4), Eq.(14) is rewritten as

∆(σ,γ) =
1
π2 : exp

[
−2(a†

1−α
∗)(a1−α)−2(a†

2−β
∗)(a1−β)

]
:

= ∆(α,α∗)∆(β,β∗), (17)

which is just the product of two independent single-mode
Wigner operators. We refer to ∆(σ,γ) in Eq.(14) as the en-
tangled Wigner operator, since it can lead to the projector
operator of the entangled state |η〉 and the marginal distribu-
tion in (η1,η2) phase space when we perform the integration
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of ∆(σ,γ) over d2γ, i.e.Z
∆(σ,γ)d2

γ =
1
π
|η〉〈η| |η=σ. (18)

For the density matrix ρ of a given two-body correlated sys-
tem, the corresponding Wigner function is

Wρ(σ,γ) =
= Tr [ρ∆(σ,γ)] (19)

=
d2η

π3 〈σ+η|ρ |σ−η〉exp(ηγ
∗−η

∗
γ) .

3. WIGNER FUNCTION EVOLUTION GOVERNED BY H

Based on the above preliminaries, we devote this section
to studying the time evolution of the Wigner function for the
Hamiltonian in Eq.(9). For the convenient discussion, we
first introduce

M = m1 +m2, µ = (m1m2)/M, xr = X1−X2,

P = P1 +P2, Pr = µ2P1−µ1P2, µi =
mi

M
, (20)

where M, µ, P, xr and Pr are total mass, reduced mass, to-
tal momentum, relative coordinate, and mass-weight rela-
tive momentum, respectively. It then follows by substituting
Eq.(20) into Eq.(9) that

H =
(

1
2M

+ kµ1µ2

)
P2 (21)

+
(

1
2µ
− k
)

P2
r + k (µ2−µ1)PPr +V (xr).

According to the Heisenberg equation

(∂/∂t)ρ =−i [H,ρ] , (22)

we obtain

∂

∂t
〈σ+η|ρ |σ−η〉

=−i〈σ+η|
[(

1
2M

+ kµ1µ2

)
P2 +

(
1

2µ
− k
)

P2
r

+ k (µ2−µ1)PPr +V (xr)]ρ |σ−η〉

+ i〈σ+η|ρ
[(

1
2M

+ kµ1µ2

)
P2 +

(
1

2µ
− k
)

P2
r

+ k (µ2−µ1)PPr +V (xr)] |σ−η〉 . (23)

In order to simplify Eq.(23), we shall obtain the expression
of 〈η|Pr. By appealing to the Schmidt decomposition of |η〉
in the |p〉 representation[17]

|η〉= e−iη1η2

Z
d p
∣∣∣p+

√
2η2

〉
1
⊗|−p〉2 e−i

√
2η1 p, (24)

where ⊗ stands for direct product. It follows from Eq.(24)
and µ2 +µ1 = 1 that

Pr |η〉= e−iη1η2

Z
d p
[
µ2

(
p+

√
2η2

)
+µ1 p

]∣∣∣p+
√

2η2

〉
1

⊗|−p〉2 e−i
√

2η1 p

=

i
∂

∂

(√
2η1

) − (µ1−µ2)η2√
2

 |η〉 . (25)

As a result of Eqs.(12) and (25) we have

〈σ+η|
(

1
2M

+ kµ1µ2

)
P2 =

(
1
M

+2kµ1µ2

)
(σ2 +η2)

2 〈σ+η| ,

〈σ+η|
(

1
2µ
− k
)

P2
r =

(
1

4µ
− k

2

)[
i

∂

∂(σ1 +η1)
+(µ1−µ2)(σ2 +η2)

]2

〈σ+η| . (26)

Setting σ+η = τ, σ−η = λ and using ∂/∂(σ1±η1) = (∂/∂σ1±∂/∂η1)/2 and Eqs.(25) and (26) we rewrite Eq.(23) as

i
∂

∂t
〈σ+η|ρ |σ−η〉

=
{(

4
M

+8kµ1µ2

)
σ2η2− k (µ2−µ1)

[
iσ2

∂

∂σ1
+ iη2

∂

∂η1
+4(µ1−µ2)σ2η2

]
+
(

1
4µ
− k

2

)[
2i(µ1−µ2)

(
σ2

∂

∂σ1
+η2

∂

∂η1

)
− ∂2

∂σ1∂η1
+4(µ1−µ2)

2
σ2η2

]
+V
[√

2(σ1 +η1)
]
−V

[√
2(σ1−η1)

]}
〈σ+η|ρ |σ−η〉 . (27)

Due to µ
M = µ1µ2, µ1 +µ2 = 1, Eq.(27) can be converted into
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i
∂

∂t
〈σ+η|ρ |σ−η〉

=
{(

1
µ

+2k
)

σ2η2− ik (µ2−µ1)
(

σ2
∂

∂σ1
+η2

∂

∂η1

)
+A

+
(

1
4µ
− k

2

)[
2i(µ1−µ2)

(
σ2

∂

∂σ1
+η2

∂

∂η1

)
− ∂2

∂σ1∂η1

]}
〈σ+η|ρ |σ−η〉 . (28)

where

A ≡V
[√

2(σ1 +η1)
]
−V

[√
2(σ1−η1)

]
= 2

∞

∑
s=0

1
(2s+1)!

∂2s+1V
(√

2σ1

)
∂

(√
2σ1

)2s+1

(√
2η1

)2s+1
. (29)

Substituting Eq.(28) into

∂

∂t
Wρ(σ,γ, t) =

∂

∂t

Z d2η

π3 〈σ+η|ρ |σ−η〉eηγ∗−η∗γ, (30)

and performing the integration by parts we derive

i
∂

∂t
Wρ(σ,γ, t) =

Z d2η

π3 e2i(η2γ1−η1γ2)
{(

1
µ

+2k
)

σ2η2 +
(

1
4µ
− 1

2
k
)

×
[

2i(µ1−µ2)σ2
∂

∂σ1
− ∂

∂σ1

∂

∂η1
+2i(µ1−µ2)η2

∂

∂η1

]
+k (µ2−µ1)

(
−iσ2

∂

∂σ1
− iη2

∂

∂η1

)
+A
}
〈σ+η|ρ |σ−η〉

=
{(

1
µ

+2k
)

σ2

(
− i

2
∂

∂γ1

)
+
(

1
4µ
− 1

2
k
)

×
[

2i(µ1−µ2)σ2
∂

∂σ1
− ∂

∂σ1
(2iγ2)+2i(µ1−µ2)

(
− i

2
∂

∂γ1

)
(2iγ2)

]
+k (µ2−µ1)

[
−iσ2

∂

∂σ1
− i
(
− i

2
∂

∂γ1

)
(2iγ2)

]
+A
}

×
Z d2η

π3 e2i(η2γ1−η1γ2) 〈σ+η|ρ |σ−η〉

=
{(

1
µ

+2k
)

σ2

(
− i

2
∂

∂γ1

)
+
(

1
4µ
− 1

2
k
)

×
[

2i(µ1−µ2)σ2
∂

∂σ1
− ∂

∂σ1
(2iγ2)+2i(µ1−µ2)

(
− i

2
∂

∂γ1

)
(2iγ2)

]
+k (µ2−µ1)

[
−iσ2

∂

∂σ1
− i
(
− i

2
∂

∂γ1

)
(2iγ2)

]
+A
}

Wρ(σ,γ, t). (31)

Therefore, the equation of motion for the Wigner function is

i
∂

∂t
Wρ(σ,γ, t)

=
{(

1
µ

+2k
)

σ2

(
− i

2
∂

∂γ1

)
+
(

1
4µ
− k

2

)[
2i(µ1−µ2)

(
σ2

∂

∂σ1
+ γ2

∂

∂γ1

)
−2iγ2

∂

∂σ1

]
−ik (µ2−µ1)

(
σ2

∂

∂σ1
+ γ2

∂

∂γ1

)
+A
}

Wρ(σ,γ, t). (32)

Further, inserting Eq.(29) into Eq.(32) yields
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{
∂

∂t
+
{

1
2µ

[σ2− (µ1−µ2)γ2]+ kσ2

}
∂

∂γ1

+
{

1
2µ

[γ2− (µ1−µ2)σ2]+ kγ2

}
∂

∂σ1
−2

∂V
(√

2σ1

)
∂

(√
2σ1

) ∂

∂

(√
2γ2

)
Wρ(σ,γ, t)

=
∞

∑
s=1

2(−1)s

(2s+1)!

∂2s+1V
(√

2σ1

)
∂

(√
2σ1

)2s+1
∂2s+1

∂

(√
2γ2

)2s+1 Wρ(σ,γ, t). (33)

To see the physical meaning of Eq.(33) more clearly, from
Eq.(16) we find that

γ1 =
1√
2

(x1 + x2) ,γ2 =
1√
2

(p1− p2) ,

σ1 =
1√
2

(x1− x2) ,σ2 =
1√
2

(p1 + p2) , (34)

which lead to

1
2µ

[σ2− (µ1−µ2)γ2] =
1√
2

(
p1

m1
+

p2

m2

)
,

1
2µ

[γ2− (µ1−µ2)σ2] =
1√
2

(
p1

m1
− p2

m2

)
. (35)

Eq.(33) is equal to

{
∂

∂t
+
[

1√
2

(
p1

m1
+

p2

m2

)
+

(p1 + p2)k√
2

]
∂

∂γ1

+
[

1√
2

(
p1

m1
− p2

m2

)
+

(p1− p2)k√
2

]
∂

∂σ1
−2

∂V
(√

2σ1

)
∂

(√
2σ1

) ∂

∂

(√
2γ2

)
Wρ(σ,γ, t)

=
∞

∑
s=1

2(−1)s

(2s+1)!

∂2s+1V
(√

2σ1

)
∂

(√
2σ1

)2s+1
∂2s+1

∂

(√
2γ2

)2s+1 Wρ(σ,γ, t). (36)

It is seen from Eq.(36) that this equation is expressed by
center-of-mass coordinate, relative coordinate and relative
momentum. Especially, when k = 0, Eq.(36) becomes{

∂

∂t
+

1√
2

(
p1

m1
+

p2

m2

)
∂

∂γ1

+
1√
2

(
p1

m1
− p2

m2

)
∂

∂σ1
−2

∂V
(√

2σ1

)
∂

(√
2σ1

) ∂

∂

(√
2γ2

)


×Wρ(σ,γ, t)

=
∞

∑
s=1

2(−1)s

(2s+1)!

∂2s+1V
(√

2σ1

)
∂

(√
2σ1

)2s+1
∂2s+1

∂

(√
2γ2

)2s+1 Wρ(σ,γ, t),

(37)

which agrees with that of Ref.[13]. Eq.(37) is formally com-
parable with Eq.(7) as expected.

It is instructive to consider the classical limit of this equa-
tion. For this purpose, we need to reexpress Eq.(29) as

A = 2
∞

∑
s=0

~2s+1

(2s+1)!

∂2s+1V
(√

2σ1

)
∂

(√
2σ1

)2s+1

(√
2η1

~

)2s+1

, (38)

and at the same time change e2i(η2γ1−η1γ2) in Eq.(31) into
e2i(η2γ1−η1γ2)/~, then formally set ~ = 0. Provided the deriva-
tives of the Wigner function on the right hand side of this
equation do not become singular, the right hand side van-



Brazilian Journal of Physics, vol. 40, no. 1, March, 2010 101

ishes. So we have{
∂

∂t
+
[

1√
2

(
p1

m1
+

p2

m2

)
+

(p1 + p2)k√
2

]
∂

∂γ1

+
[

1√
2

(
p1

m1
− p2

m2

)
+

(p1− p2)k√
2

]
∂

∂σ1

−2
∂V
(√

2σ1

)
∂

(√
2σ1

) ∂

∂

(√
2γ2

)
Wρ(σ,γ, t) = 0. (39)

In this sense the terms on the right hand side of Eq.(37) con-
stitute the quantum mechanical corrections to the classical
Liouville equation. Comparing with Eq.(8), Eq.(39) is called
the Liouville-like equation for the two-body correlated sys-
tem.

4. CONCLUSIONS

At present, Wigner function is also an important tool to
transform the operator equation of motion for the density op-

erator into a c-number equation. However, this equation is
rather complicated and brings out the nonlocal nature of the
Wigner function. In this present work, we have considered
a two-body correlated system with kinetic coupling term in
Eq.(9) and successfully derived the time evolution equation
of the Wigner function (see Eq.(36)) by virtue of the bipar-
tite entangled state representation, which just indicates that
choosing a good representation indeed provides great conve-
nience for us to deal with the dynamics problem.
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