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Strategies for Optimize Off-Lattice Aggregate Simulations
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We review some computer algorithms for the simulation of off-lattice clusters grown from a seed, with empha-
sis on the diffusion-limited aggregation, ballistic aggregation and Eden models. Only those methods which can
be immediately extended to distinct off-lattice aggregation processes are discussed. The computer efficiencies
of the distinct algorithms are compared.
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I. INTRODUCTION

Growth processes occurring far from equilibrium are wide-
spread in nature and technology. Examples include electrode-
position [1], viscous fingering [2], bacterial colonies [3], and
neurite formation [4]. Computer models for the growth of
clusters, generally constituted of identical particles, are use-
ful tools for the understanding of aggregation phenomena.
The main contribution of such models is to provide pathways
to investigate the underlying physical ingredients ruling the
properties observed in growth phenomena. One of the most
intriguing features of the fractal structures found in nature
and computer models is the scale invariance emerging with-
out fine-tuning of any parameter, in contrast with usual crit-
ical phenomena in which scale invariance only emerges at a
critical point [5].

The foremost example of nonequilibrim growth model is
the diffusion-limited aggregation (DLA) model introduced by
Witten and Sander [6] in 1981. The rules of the DLA model
are based on an iterative stochastic process in which the par-
ticles, one at a time, follow Brownian trajectories until they
touch and stick in an aggregate. Despite its simple rules, the
DLA model leads to very complex aggregates with multiscale
properties [7, 8] and multifractality in the growth-site proba-
bility distribution [9, 10].

If the random walks in the DLA model are replaced by bal-
listic trajectories at random directions, we have the ballistic
aggregation (BA) model [11, 12] proposed by Vold to describe
colloid aggregation. Differently from DLA, the BA model
generates asymptotically non-fractal clusters (fractal dimen-
sion equal to the space dimension) characterized by a power
law approach to the asymptotic regime [13, 14].

Finally, a third standard aggregation process was proposed
by Eden [15] as a basic model for the biological pattern forma-
tion as, for instance, tumor growth and bacterial colonies. In
this model, new particles are sequentially added to the empty
neighborhood of the cluster without overlap with previously
aggregated particles [16, 17]. Although the Eden model is
unrealistic from the biological point of view, it produces com-
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pact aggregates with a nontrivial interface scaling usually ana-
lyzed through the interface width w [18]. Intensive numerical
simulations indicate a power-law growth of the interface width
with the time, w ∼ tβ, and exponent β = 1/3 [14, 17, 19, 20],
corresponding to the Kardar-Parisi-Zhang (KPZ) universality
class [21].

The DLA, BA, and Eden models can be implemented and
simulated in a relatively easy way by constraining the particle
positions to the sites of an underlying lattice. However, it is
very well established that lattice anisotropy imposes strong ef-
fects on the cluster shape and scaling [22–25]. Although some
procedures have been proposed to remove the anisotropy of
on-lattice clusters [26–28], their successes were limited and
off-lattice simulations impose themselves as a general frame-
work for the investigation of the scaling properties and uni-
versality classes of these aggregates. Clearly, the aggregation
of a large number of particles is necessary to reach the as-
ymptotic behavior which, in turn, demands very efficient al-
gorithms for large scale off-lattice simulations with rigorous
statistical sampling. In this paper, we review several strate-
gies used to optimize computer algorithms for off-lattice ag-
gregates. Only those procedures which can be applied to gen-
eral off-lattice simulations are focused here. More sophisti-
cated but less general procedures, as conformal maps [29], are
avoided. Indeed, the conformal mapping is the most efficient
strategy to simulate two-dimensional aggregates, but it cannot
be used in higher dimensions.

II. ALGORITHMS FOR OFF-LATTICE AGGREGATION

In this section we present the description of distinct opti-
mizations for two-dimensional clusters. The generalization
for higher dimensions is straightforward. In all cases, simula-
tions start with a single particle at the origin.

A. The trajectories

Firstly, we describe optimizations for models in which par-
ticles of unitary diameter follow trajectories before stick to the
aggregate, as is the case for the DLA and BA models. In both
cases, the particles are released at random from a launching
radius rl larger than the cluster radius rmax and follow their
trajectories up to touch the aggregate or cross a killing radius
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FIG. 1: (a) Schematic representation of the “optimized random trajectories”. (b) A DLA aggregate and a mesh of cells 2rint ×2rint . Long steps
are forbidden in the gray boxes and allowed in the white ones. Also, two long steps are illustrated. (c) A zoom of the region inside the large
square in (b).

rk much larger than the system size. In the DLA, where par-
ticles follow discrete time random walks of unitary steps, a
standard method is to allow the particles outside the launching
circle take long random steps of length rext if these steps do not
brings up a particle inside the launching circle, as illustrated
in Fig. 1(a). An adequate choice is rext = max(r−rmax−δ,1),
where r is the distance of the walker from the origin and a
small tolerance δ = 5 was used. Also, the Brownian walks in
large empty areas in the inner region which delimits the clus-
ter (r < rmax) are very computer time consuming, specially
for large aggregates. Ball and Brady [30] proposed a strategy
which allows the particles inside the launching circle to take
a long step of length rint if they do not cross any part of the
aggregate, as illustrated in Fig. 1(a). Similar procedures have
been used in other works [31–33].

In the BA model, the particles follow ballistic trajectories
and the clusters do not exhibit large empty inner regions as
in the DLA model. Hence, the trajectories can be efficiently
implemented simply using a long step of size rext as in DLA
model. An important difference between BA and DLA imple-
mentations is that in the first the launching radius should be
as large as possible in order to avoid growth instabilities pro-
moted by shadowing effects [34, 35] while in the DLA, this
radius can be taken a few particle diameters larger than the
cluster radius.

A smart strategy to determine the length of the internal
steps rint is decisive for the algorithm efficiency. In order to
accomplish this task, we define a square region of side L cen-
tered on the initial seed which delimits the entire aggregate.
This region should be sufficiently large in order to guaran-
tee that aggregate does not exceed its boundary. Then, the
region is divided in a coarse-grained mesh with cells of size
2rint × 2rint as illustrated in Figs. 1(b) and 1(c). Each cell of
the mesh is associated to an element of a K ×K square matrix
A , where K = L/(2rint), which assumes 1 if the cell or one of
its nearest or next-nearest neighbors contains any particle of
the aggregate or assumes 0 otherwise. The boxes depicted in
gray (Ai j = 1) are those in which the random walk can cross
the cluster after a step of length rint , since they contain or are
adjacent to a part of the cluster. Consequently, long steps start-

ing from gray boxes are forbidden. There are two options for
a walker on a gray box: the particle executes a unitary step
or tries a shorter step of length r′int , where 1 < r′int < rint , us-
ing other auxiliary coarse-grained mesh A ′ with cells of size
2r′int × 2r′int . Indeed, several auxiliary meshes can be used in
order to maximize the efficiency. In this paper, we report sim-
ulation for 3 meshes with rint = 4, 8, and 16.

The overlap between particles can occur after a unitary step
if the preceding step brings the random walker at a distance
from the cluster particle where it sticks lower than the unity.
In this case, one just brings back the particle to the adjacent
position along the opposite direction of the movement.

B. Determination of the neighborhood

The search mechanism for determining when and where the
walker has contacted the aggregate represents the major time
consuming step in large off-lattice simulations. The spatial
coordinates of the particle belonging to the cluster are stored
in one-dimensional arrays at the sequence of aggregation. So,
the inspection of these arrays is performed whenever the walk-
ers are in the nearby of the aggregate. If none optimization is
adopted, all aggregated particles may be checked to verify if
a contact occurred or not. At least three optimizations can be
used. In the first and simplest one, we just verify the list in the
reverse order in which the particles were added to the cluster,
because the chance is larger for the aggregation to take place
on the more external particles than on the inner ones. This pro-
cedure is considered default in this work. In the second one,
particle positions are mapped on a square lattice by approxi-
mating their real coordinates to the nearest integer, producing
an on-lattice cluster. In an auxiliary square lattice Z, we la-
bel as occupied those sites belonging to the previous on-lattice
cluster as well as their nearest and next-nearest neighbors. The
search for contact is done only if the nearest integer coordi-
nates of the walker represent an occupied site of the lattice
Z. This procedure is schematically described in Fig. 2(a). In
the third optimization procedure, a coarse-grained mesh W of
cells with size �×� can be used to limit the verification to a re-
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FIG. 2: Illustration of the optimizations for off-lattice aggregation processes. (a) An auxiliary square lattice is used to determine when the
walker is neighboring the cluster. The cluster particles are represented by black circles and their neighbors are depicted in gray. (b) A mesh
with cells of size 4×4 used to restrict the search for contacts nearby the walker.

[a]

1
2

[b] [c]

FIG. 3: Growth rules for the off-lattice Eden model. Active and inactive particles are represented by open and fullfiled discs, respectively. (a)
A cluster and two active particles selected for the growth. The particle 1 has an empty region where a new adjacent particle can be added while
the particle 2 does not. (b) The growth region adjacent to the particle 1 is shown as a dashed sector. (c) A new particle is added at a random
direction in the growth region shown in (b) and the particle 2 is discarded from the list of active ones (both indicated by arrows).

gion around the walker position. In this strategy, the cells are
sequentially labeled by an index k = 1,2,3, · · · when they are
occupied by a particle of the cluster for the first time. Also, the
number of particles Nk in the cells are stored. Finally, a third
auxiliary one-dimensional array F divided in blocks with �2

elements is used to store the indexes of the particles in the ar-
rays of coordinates. Each block is associated to a cell of the
mesh. Once the analysis of the auxiliary square matrix Z has
provided that the walker may be in contact with a particle of
the cluster, the index k read in the mesh W is used to restrict
the search for a contact in the array of coordinates using F .
The cell index of a walker at real coordinates (x,y) is given by
k = Wi j, where i = nint(x/�), j = nint(y/�), and nint(x) func-
tion rounds x to the nearest integer. Indeed, the particles in
the cell k are visited by varying the index of the array F from
n = nk +1 to n = nk +Nk, where nk = �2×(k−1). Notice that
the cell j of the mesh W and its neighbor cells should be ver-

ified to check the contacts on the cell edges. In the simulation
results presented in the next section, � = 4 was used.

C. The Eden model

The off-lattice simulation of the Eden model was proposed
by Wang et al. [16] and improved by Ferreira and Alves [17]
as follows

• A particle with unitary diameter is chosen at random
from a list of active ones (Fig. 3(a)). A particle is con-
sidered active when a new one adjacent to it can be
added to the aggregate without any overlap.

• Once an active particle was chosen (Fig. 3(b)), its empty
adjacent region, where there are no overlap between a
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FIG. 4: (a) Eden cluster with 6000 particles. The border is represented by fullfiled symbols. Active particles for (b) standard and (c) optimized
off-lattice algorithms for the Eden model are shown.
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FIG. 5: CPU times as functions of the number of particles in the
off-lattice DLA model for distinct optimization strategies. Lines are
power fits.

new particle and those previously aggregated, is deter-
mined. A new particle is put in a direction randomly
chosen among the allowed ones (Fig.3(b)).

• If the active particle does not have a growth region, it is
labeled as inactive (Fig.3(c)).

In Fig, 3 the evolution rules are illustrated by two indepen-
dent growth processes. Since the interest on Eden clusters is
focused on the interface scaling, Ferreira and Alves [17] intro-
duced an optimization where any active cell inside a central
core of radius rc is labeled as inactive. Since the inactiva-
tion of the particles near or belonging to the interface must be
avoided, rc = 0.8r̄ was chosen, where r̄ is the mean radius of
the interface. This optimization was used only for r̄ > 80a.
In Fig. 4, typical growth patterns with and without this last
optimization, the corresponding borders [36], and the active
particles are illustrated. Finally, the optimizations described
in sub-section II B for determining the neighborhood of a par-
ticle can be used for the Eden model.

III. SIMULATIONS

All simulations were performed on the same computer, a
Pentium IV 3.0 GHz with 2GB of RAM memory under De-
bian Linux operating system. One process was run by time.
The algorithm codes were written in FORTRAN 90 language
and compiled with the standard options of the Intel Fortran
Compiler 9.1 [37].

A. Diffusion-limited aggregation

Off-lattice DLA clusters with N particles were grown us-
ing different combinations of the previously described opti-
mizations. In all simulations, the launching and killing radius
were taken as rl = rmax + 5 and rk = 100rl , respectively. In
1981, when Sander and Witten published their seminal work
introducing the DLA model [6] without any optimization,
the largest cluster generated on square lattices produced with
computers of that age did not reach 4000 particles. Nowadays,
this sort of simulation can be performed in a few minutes with
any standard home computer. In table I, the CPU times spent
in off-lattice simulations of a single cluster for some optimiza-
tion schedules are listed. Also, CPU times are shown as func-
tions of N in Fig. 5.

Simulations without optimizations become prohibitively
long for relatively small aggregates. For example, a single
cluster with 5× 104 particles demanded 10 days of simula-
tions. If external steps are included in the original algorithm,
for simplicity called by O1, a great improvement of the effi-
ciency is observed for very small clusters, but the simulations
are also prohibitive for N ∼ 105, since inner empty regions
become of the same magnitude than the cluster size. Sim-
ulations become more than three orders of magnitude faster
when the optimized neighborhood determination is included
in O1 optimization, now called O2. Notice that the computa-
tional time grows approximately proportional to N2 for both
optimizations O0 and O2. Simulations one order faster and
CPU times growing slower with increasing cluster size are
performed when inner steps are included in O2 optimization.
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N O0 O1 O2 O3

1×103 3.93×100 1.62×10−3 1.6×10−3 1.6×10−3

2×103 1.38×101 5.81×10−2 1.3×10−2 8.3×10−3

5×103 8.79×101 6.37×100 3.0×10−2 2.5×10−2

1×104 3.48×102 4.29×101 8.8×10−2 4.0×10−2

2×104 2.57×103 2.49×102 3.7×10−1 8.8×10−2

5×104 1.37×104 2.69×103 2.25×100 2.3×10−1

1×105 — 2.94×104 8.33×100 5.0×10−1

2×105 — — 1.74×101 1.55×100

5×105 — — 1.76×102 6.60×100

1×106 — — 8.73×102 2.60×101

CPU time T ∼ N2.1 T ∼ N2.8 T ∼ N1.9 T ∼ N1.4

TABLE I: Real CPU times in minutes for distinct optimizations ap-
plied to the DLA model. N is the number of particles; O0 refers
to the algorithm with the default optimization where the backward
inspetion of the coordinate arrays is used; O1 means that the long ex-
ternal steps of size rext were used; O2 means that external steps and
optimized neighborhood were used simultaneously; O3 the previous
optimizations plus the internal long steps of size rint (Figs. 1 and 2)
were adopted. The approximate dependence between CPU time and
cluster size are indicated in the last line.
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FIG. 6: CPU times as functions of the number of particles in the off-
lattice BA model for distinct optimization strategies. Lines are power
fits.

Also, notice that the computational time increases faster in
O1 than in the others optimizations, but for large clusters O0
and O1 optimizations are expected to be equivalent due to the
presence of large empty inner regions.

B. Ballistic aggregation

Off-lattice simulations of the BA model are very similar to
the DLA model. The main difference is that the unitary steps
performed by the walkers are in a fixed direction randomly
chosen at the beginning of the ballistic walk. Also, the launch-
ing and killing radius used were rl = 100rmax + 1000 and
rk = rl +10. In table II, the computational times for the same
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FIG. 7: CPU times as functions of the number of particles in the off-
lattice Eden model using distinct optimization strategies. Lines are
power fits.

N O0 O1 O2

1×103 2.81×10−1 1.51×10−2 1.35×10−2

2×103 6.45×10−1 2.78×10−2 2.09×10−2

5×103 1.96×100 1.08×10−1 2.27×10−2

1×104 4.78×100 4.63×10−1 3.62×10−2

2×104 1.29×101 2.03×100 6.10×10−2

5×104 5.44×101 1.43×101 1.34×10−1

1×105 1.67×102 5.99×101 2.52×10−1

2×105 6.10×102 2.85×102 4.94×10−1

5×105 3.50×103 2.18×103 1.22×100

1×106 — — 2.43×100

2×106 — — 5.01×100

5×106 — — 1.29×101

5×106 — — 2.61×101

TABLE II: Real CPU time in minutes for distinct optimizations ap-
plied to BA model. Optimizations as in table I.

strategies used for DLA are listed. Like in the DLA model,
long steps improve simulation efficiency for small clusters,
but this gain decreases with increasing number of particles.
However, optimized neighborhood determination provodes a
gain of three orders of magnitude. In Fig. 6 the CPU times are
drawn as functions of N. These times grow approximately as
T ∼ N1.7, T ∼ N2.1, and T ∼ N1.0 for O0, O1, and O2, respec-
tively.

C. Eden model

The major challenge in off-lattice simulation of the Eden
model is to determine which are the active cells. Since Eden
model does not involve walkers, strategies as those of Figs. 1
and 2(a) do not have sense. But, an efficient determination
of the empty neighborhood can be used as done for the DLA
model. The original strategy proposed by Wang et al. [16] is
called E0 and when the local search of neighbors is included,
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N E0 E1 E2

1×103 1.12×10−2 1.33×10−2 1.33×10−2

2×103 2.04×10−2 1.33×10−2 1.33×10−2

5×103 7.31×10−2 1.60×10−2 1.83×10−2

1×104 3.63×10−1 2.33×10−2 2.33×10−2

2×104 1.92×100 3.67×10−2 3.33×10−2

5×104 1.92×101 8.33×10−2 6.00×10−2

1×105 1.09×102 1.81×10−1 1.20×10−1

2×105 6.13×102 4.72×10−1 2.40×10−1

5×105 — 1.70×100 7.30×10−1

1×106 — 4.63×100 1.78×100

2×106 — 1.26×101 4.55×100

5×106 — 4.89×101 1.62×101

TABLE III: Eden Model Optimizations. Symbols E0, E1, and E2
described in text.

the model is denoted by E1. CPU times are given in table III
and Fig. 7. The last algorithm overcomes the first one in three
or more orders of magnitude. If a central core of particles
is excluded from the list of active ones, the optimization E2,
simulations become up to three times faster. Moreover, the

efficiency gain increases with the number of particles. Indeed,
CPU times grow approximately as T ∼ N2.5, T ∼ N1.4, and
T ∼ N1.2 for E0, E1, and E2, respectively.

IV. SUMMARY

Several optimizing strategies for the computer simulation
of aggregation models dispersed throughout the literature
were described in the present paper. It have been demon-
strated that the combined implementation of such strategies
can reduce in up to four order of magnitude the computer time
demanded to perform large scale simulations of off-lattice ag-
gregates with an increase of one order of magnitude in the
allocated memory. Furthermore, these procedures can be ap-
plied to the simulations of other cluster growth processes be-
yond the traditional DLA, BA, and Eden models.
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