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Non-local Effects on the Heavy-Ion Fusion at Sub-Barrier Energies
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We investigate the effect of Pauli non-locality in the heavy-ion optical potential on sub-barrier fusion reac-
tions. The São Paulo potential, which takes into account the Pauli non-locality and has been widely used in
analyzing elastic scattering, has also recently been applied to heavy-ion fusion. However, the approximation
employed in deriving the São Paulo potential, based on the Perey-Buck semi-classical treatment of neutron in-
duced reactions, must be assessed for charged particles tunneling through a barrier. It is the purpose of this note
to look into this question. We consider the widely studied system 16O + 208Pb at energies that span the barrier
region from 10 MeV below to 10 MeV above. It seems that the non-locality plays a minor role. We find the São
Paulo potential to be quite adequate throughout the region.
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I. INTRODUCTION

Heavy ion reactions in the vicinity of the Coulomb bar-
rier have revealed many surprising features over the last two
decades. The enhancement of the measured fusion cross sec-
tion when compared to the simple, one-dimensional barrier
penetration model [BPM] was eventually attributed to the in-
fluence of the couplings to several reaction channels [1]. More
recently, when comparing the optical potentials, taken to be of
the Woods-Saxon (WS) form, that describe the elastic scatter-
ing angular distribution to the ones that describe fusion, it was
found that the diffuseness of the real part of the latter is almost
twice that of the former [2–4]. Quite recently, another inter-
esting feature in fusion was discovered. The data at deep sub-
barrier energies were found to be hindered when compared
to theoretical cross sections with potentials adjusted to fit the
data at higher energies [5]. This latter phenomenon is sug-
gested to be a consequence of internal repulsion that makes
the potential well shallower [6, 7]. Such repulsion may come
about due to the operation of Pauli blocking, not considered
in the usual double-folding potentials which are used to gen-
erate the WS ones alluded to above. What about the effect of
exchange? Here we give the answer.

Both channel coupling and exchange lead to non-locality in
the effective potential. In [8] we called the two types of non-
localities, the Feshbach and Pauli non-localities respectively.
The Pauli non-locality is present in the bare potential and has
a very mild energy dependence. On the other hand, the Fes-
hbach non-locality arising from channel couplings is accom-
panied by a rather strong energy dependence, which conspic-
uously manifests itself in the form of the so-called Thresh-
old Anomaly (TA) arising from the dispersion relation mani-
festly obeyed by the Feshbach, polarization, potential (nowa-
days the TA is an unfortunate name since the absence of the
anomaly is in fact THE anomaly). Of course, when used in
coupled-channel calculations, the non-locality is transformed

into a non-dispersive energy dependence. In so far as the Pauli
non-locality is concerned, the resulting locally equivalent non-
dispersive energy dependent potential has been constructed by
our group [8–11] and it is coined the São Paulo potential. We
shall use this potential here to investigate the relevance of the
Pauli, exchange, non-locality on the fusion cross section at en-
ergies around the barrier. The paper is organized as follows.
In section II we give an account of the São Paulo potential.
In Section III we calculate the fusion cross section for 16O +
208Pb and compare it with the data. We assess the effect of the
Pauli non-locality and found it to be minor. In Section IV we
present our concluding remarks.

II. THE SÃO PAULO OPTICAL POTENTIAL

The São Paulo potential (SPP) has been in use for about one
decade, especially in the analysis of heavy-ion elastic scatter-
ing data [9, 11–26]. It is based in part on the idea of sin-
gle folding employed for alpha-nucleus scattering by Jackson
and Johnson [27] in order to get the Perey-Buck (PB) nonlo-
cal effects [28] extended to heavy ions. In Refs. [8–10], the
Jackson-Johnson idea was extended to heavier systems and
the resulting potential, which is a modification of the double-
folding one, was shown to be quite accurate in accounting for
a large body of elastic scattering data for a wide range of sys-
tems, including 16O + 208Pb. The PB non-locality was origi-
nally derived for neutron-nucleus scattering. The effect of the
Coulomb repulsion seems to be as well described accurately
by the semi-classical PB-based SPP.

Recently, the SPP has been employed to the calculation of
heavy-ion fusion cross sections [29]. Here, one would expect
more sensitivity to the tunneling effect and consequently on
the sensitivity of the PB non-locality in the SPP on this im-
portant quantal phenomenon. In this paper, we discuss this
issue by a careful analysis of the non-locality in the heavy-ion
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fusion at below- and above-barrier energies.
The heavy-ion optical potential is non-local owing to two

effects: the dispersive non-locality related to channel cou-
plings (the Feshbach non-locality), and to the Fermionic
nature of the constituents (exchange or Pauli non-locality).
The Feshbach non-locality is accompanied by strong energy-
dependence which manifests itself through the dispersion re-
lation satisfied by the real and imaginary parts of the Fes-
hbach channel coupling polarization interaction. The Pauli
non-locality, on the other hand, is accompanied by a weak en-
ergy dependence arising from the energy content of the effec-
tive nucleon-nucleon interaction (the G-matrix). In this work
we are interested only in the effect of the Pauli non-locality.
Thus we assume a local energy-independent imaginary po-
tential of the total optical potential and a corresponding local
electromagnetic interaction. We can write [9, 10]

U(~R,~R′;E) = V (~R,~R′;E)+ [iW (R′)+VC(R′)]δ(~R−~R′) (1)

where V denotes the real part of the potential, W the imaginary
part and VC is the Coulomb potential. The scattering integro-
differential Schroedinger equation that has to be solved is
then,

−~
2

2µ
52 ψ(~R)+

∫
U(~R,~R′;E)ψ(~R′)d~R′ = Eψ(~R). (2)

Perey and Buck [28] and Frahn and Lemmer (FL) [31] sug-
gested the following simple Gaussian for V (~R,~R′;E), after ig-
noring its energy dependence,

V (~R,~R′) = VNL

(
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2
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1

π3/2b3
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, (3)

where b is the range of the Pauli non-locality. It is convenient
to write down the usual expansion in partial waves,
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where Q` are polynomials and φ is the angle between ~R and ~R′
[28]. Thus, the integro-differential equation can be recast into
the following form:

−~
2

2µ
d2u`

dR2 +[E−VC(R)− iW (R)

−`(`+1)~2

2µR2

]
u`(R) =

∫ ∞

0
V`(R,R′)u`(R′)dR′. (7)

The local-equivalent `- and energy-dependent potential is
defined as

VLE(R)+ iWLE(R) =
1

u`(R)

∫ ∞

0
V`(R,R′)u`(R′)dR′. (8)

The `-dependence of the interaction VLE(R) is in fact negli-
gible and it approximately satisfies the following non-linear
equation:

VLE(R) = VNL(R)e−γ[E−VC(R)−VLE (R)−iW (R)]. (9)

In accord with Jackson and Johnson [27], the non-locality pa-
rameter is given by:

γ = µb2/2~2. (10)

Here, µ is the reduced mass of the two nuclei and b is related
to the nucleon-nucleus non-locality parameter b0, determined
through systematics to be 0.85 fm [28], through b = b0m0/µ,
with m0 being the nucleon mass.

For neutron-nucleus systems, Perey and Buck have associ-
ated the nonlocal interaction with a Woods-Saxon shape po-
tential. For nucleus-nucleus, we have associated [9, 10] the
energy-independent nonlocal real potential VNL[(R + R′)/2)],
that appears in the PB and FL form, with the double folding
potential,

VNL(R) = VFold(R), (11)

where VFold(R) is calculated following the procedure de-
scribed in Ref. [10]. With this, and ignoring W (R) in Eq. (9),
which is of minor consequence, we obtain the SPP, namely,

VLE(R) = VFold(R)e−γ[E−VC(R)−VLE (R)]. (12)

Eq. (12) has been commonly expressed by the equivalent form
in terms of the local relative velocity v2(R) = 2[E−VLE(R)−
VC(R)]/µ, and the SPP acquires the simple form,

VLE(R;E) = VFold(R)e−4v2(R)/c2
(13)

where (b0m0c/~)2 is numerically very close to 4.

III. APPLICATION TO FUSION

To test the use of the SPP in tunneling problems and com-
pare it to the exact solution of the integro-differential equa-
tion, we have considered the fusion system 16O + 208Pb at
center of mass energies that span a region 10 MeV below the
Coulomb barrier up to 10 MeV above it. In the analysis, we
have assumed a Woods-Saxon shape inner imaginary poten-
tial to simulate the flux absorption by the fusion process, with
the following parameters: W0 = 200 MeV, ri0 = 0.8 fm, and
ai = 0.2 fm. In Fig. 1 we show the fusion cross section ob-
tained through three different procedures: i) using the exact
integro-differential equation, Eq. 2, ii) the SPP (Eq. 13) as the
local-equivalent potential, and iii) the simple double-folding
interaction as the local nuclear interaction (no non-locality).
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FIG. 1: Fusion data (from Refs. [32, 33]) for the 16O + 208Pb system.
The solid line represents the results of three different calculations as
described in the text. The dashed line corresponds to CC calculations
as presented in Ref. [29].
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FIG. 2: The SPP, folding and real part of the exact local equivalent
potential for three different partial waves, calculated for Ec.m. = 69.6
MeV. The position of the barrier radius is indicated in the figure.

There is hardly any difference among the results of the three
calculations, represented by the solid line in Fig. 1, indicat-
ing that non-local effects in fusion are negligible. The dashed
line in Fig. 1 represents the coupled channel (CC) results with
the SPP interaction. The CC calculation has been performed
considering the couplings to inelastic channels as described
in Ref. [29]. Clearly the CC effect (Feshbach non-locality)
plays a much more important role than the Pauli non-locality.
Even so, although approaching the data, the CC results do
not describe precisely the experimental fusion cross sections.
A possible explanation to this discrepancy might be the sev-
eral approximations commonly assumed when performing CC

calculations [30]. On the other hand, one could think that a
double folding potential involving frozen densities is not ap-
propriate to the description of the fusion process, due to the
strong overlap of the two colliding nuclei at small interaction
distances. However, the fusion process is mostly sensitive to
the interaction in a region around the barrier radius. In the
case of 16O + 208Pb, the s-wave barrier radius is RB ≈ 11.7 fm,
while the sum of the radii of the nuclei is R1 + R2 ≈ 9.4 fm.
Owing to the small value of the nuclear diffuseness, a≈ 0.56
fm, no large superposition between the nuclear densities oc-
curs in the region where tunneling becomes operative.

To understand the reason of the lack of effect of the Pauli
non-locality on the fusion cross sections, in Fig. 2 we show the
SPP, the folding potential, and the angular momentum depen-
dence of the real part of the exact local equivalent potential
obtained through Eq. 8. The exact VLE has insignificant `-
dependence and it is very well described by the SPP except
at very small distances (R ≈ 0). The folding potential has a
larger strength at small distances, of little consequence to the
tunneling problem in this highly absorbing system. In fact, for
energies near the barrier height and distances close to the bar-
rier radius (RB), the relative velocity is very low and therefore
Eq. 13 indicates that the SPP is very similar to the folding po-
tential at the surface region. This explain why the non-locality
in the heavy-ion interaction has no relevance for near-barrier
fusion, though very important in describing the elastic scatter-
ing data at higher energies.

IV. CONCLUSION

In this paper, we have carefully assessed the effect of
the Pauli non-locality, as treated in the São Paulo potential,
on the heavy ion fusion at energies in the vicinity of the
Coulomb barrier. We also calculated the effect using the
original double-folding + Perey/Buck non-locality by solving
the corresponding integro-differential Schrodinger equation
and compared these calculations with the case with no non-
locality (the local double-folding potential). In earlier works,
we have demonstrated that the Pauli non-locality is very im-
portant to describe in a consistent manner the elastic scatter-
ing process in a wide energy range. Here, it was found that
exchange effects that give rise to the Pauli non-locality have a
minor role on tunneling at energies around the barrier.
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