
232 Brazilian Journal of Physics, vol. 37, no. 1B, March, 2007

A Local Non-Abelian Gauge Invariant Action Stemming from the
Nonlocal Operator Fµν(D2)−1Fµν
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We report on the nonlocal gauge invariant operator of dimension two, Fµν(D2)−1Fµν. We are able to localize
this operator by introducing a suitable set of (anti)commuting antisymmetric tensor fields. Starting from this,
we succeed in constructing a local gauge invariant action containing a mass parameter, and we prove the renor-
malizability to all orders of perturbation theory of this action in the linear covariant gauges using the algebraic
renormalization technique. We point out the existence of a nilpotent BRST symmetry. Despite the additional
(anti)commuting tensor fields and coupling constants, we prove that our model in the limit of vanishing mass
is equivalent with ordinary massless Yang-Mills theories by making use of an extra symmetry in the massless
case. We also present explicit renormalization group functions at two loop order in the MS scheme.
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I. INTRODUCTION

We shall consider pure Euclidean SU(N) Yang-Mills theo-
ries with action

SY M =
1
4

∫
d4x Fa

µνFa
µν , (1)

where Aa
µ, a = 1, ...,N2− 1 is the gauge boson field, with as-

sociated field strength

Fa
µν = ∂µAa

ν−∂νAa
µ +g f abcAb

µAc
ν . (2)

The theory (1) is invariant with respect to the local gauge
transformations

δAa
µ = Dab

µ ωb , (3)

with

Dab
µ = ∂µδab−g f abcAc

µ , (4)

denoting the adjoint covariant derivative.
As it is well known, the theory (1) is asymptotically free

[1, 2], i.e. the coupling becomes smaller at higher energies
and vice versa. At very high energies, the interaction is weak
and the gluons can be considered as almost free particles.
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However, in spite of the progress in the last decades, we still
lack a satisfactory understanding of the behaviour of Yang-
Mills theories in the low energy regime. Here the coupling
constant of the theory is large and nonperturbative effects have
to be taken into account.

The introduction of condensates, i.e. the (integrated) vac-
uum expectation value of certain operators, allows one to
parametrize certain nonperturbative effects arising from the
infrared sector of e.g. the theory described by (1). Via the
Operator Product Expansion (OPE) (viz. short distance ex-
pansion), which is applicable to local operators, one can re-
late these condensates to power corrections which give non-
perturbative information in addition to the perturbatively cal-
culable results. If one wants to consider the possible effects
of condensates on physical quantities in a gauge theory, quite
clearly only gauge invariant operators should be considered.
The most famous example is the dimension 4 gluon conden-
sate

〈
αsF2

µν
〉
, giving rise to 1

Q4 power corrections. Via the
SVZ (Shifman-Vainshtein-Zakharov) sum rules [3], one can
extract phenomenological estimates for

〈
αsF2

µν
〉
.

In recent years, a great deal of interest arose in dimension 2
condensates in gauge theories. Most attention was paid to the
gluon condensate

〈
A2

µ
〉

in the Landau gauge, due to the work
of [4, 5], as the quantity

〈
A2

min
〉≡ min

U∈SU(N)

1
V T

∫
d4x

〈(
AU

µ
)2

〉
, (5)

which is gauge invariant due to the minimization along the
gauge orbits, could be physically relevant. In fact, as shown
in [4, 5] in the case of compact QED, the quantity

〈
A2

min
〉

seems to be useful in order to detect the presence of nontrivial
field configurations like monopoles. One can show that A2

min
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can be written as an infinite series of nonlocal terms, see [6, 7] and references therein, namely

A2
min =

∫
d4x

[
Aa

µ

(
δµν− ∂µ∂ν

∂2

)
Aa

ν−g f abc
(

∂ν

∂2 ∂Aa
)(

1
∂2 ∂Ab

)
Ac

ν

]
+O(A4) . (6)

Since the operator A2
min is nonlocal, it falls beyond the ap-

plicability of the OPE annex sum rules, which refer to local
operators.

However, in the Landau gauge, ∂µAµ = 0, all nonlocal terms
of expression (6) drop out, so that A2

min reduces to the lo-
cal operator A2

µ, hence the interest in the Landau gauge and
its dimension two gluon condensate

〈
A2

µ
〉
. A complication is

that the explicit determination of the absolute minimum of A2
µ

along its gauge orbit, and moreover of its vacuum expectation
value, is a very delicate issue intimately related to the problem
of Gribov copies [8–13].

Nevertheless, some nontrivial results were proven concern-
ing the operator A2

µ. In particular, we mention its multi-
plicative renormalizability to all orders of perturbation the-
ory, in addition to an interesting and numerically verified re-
lation concerning its anomalous dimension [14, 15]. An ef-
fective potential approach consistent with renormalizability
and renormalization group requirements for local compos-
ite operators (LCO) has also been worked out for this oper-
ator, giving further evidence of a nonvanishing condensate〈
A2

µ
〉 6= 0, which lowers the nonperturbative vacuum energy

[16]. The LCO method yields an effective gluon mass squared
m2

g ∼
〈
A2

µ
〉

of a few hundred MeV [16–19].
In [20], it was already argued that gauge (in)variant conden-

sates could also influence gauge variant quantities such as the
gluon propagator. An OPE argument based on lattice simula-
tions in the Landau gauge has indeed provided evidence that
a condensate

〈
A2

µ
〉

could account for quadratic power correc-
tions of the form∼ 1

Q2 , reported in the running of the coupling
constant as well as in the gluon propagator, see e.g. [21–26].
This OPE approach allows one to obtain an estimate for the
soft part

〈
A2

µ
〉

IR originating from the infrared sector. The OPE
can also be employed to relate this condensate to an effective
gluon mass [21].

The presence of mass parameters in the gluon propagator
have also been advocated from the lattice perspective several
times [27–32], whilst effective gluon masses also found phe-
nomenological use [33, 34].

A somewhat weak point about the operator A2
min is that it is

unclear how to deal with it in gauges other than the Landau
gauge. Till now, it seems hopeless to prove its renormaliz-
ability out of the Landau gauge. In fact, at the classical level,
adding (5) to the Yang-Mills action is equivalent to add the
so-called Stueckelberg action, which is known to be not renor-
malizable [35, 36]. We refer to [7] for details and references.
As already mentioned, also the OPE becomes useless outside
the Landau gauge for this particular operator.

In other gauges, there can be found other renormalizable
local operators, which condense and give rise to a dynamical
gluon mass. Next to the Landau gauge [14, 16–19, 37, 38] the
maximal Abelian [39, 40], linear covariant [41–43] and Curci-
Ferrari gauges [44, 45] have been investigated in the past.

The relevant operators in these other gauges are however
gauge variant, and as a consequence also the effective gluon
mass. From this perspective, it is worthwhile to find out
whether a gauge invariant framework might be found for a
dynamical mass, and related to it for 1

Q2 power corrections.

In order to have a starting point, we need a dimension 2
operator that is gauge invariant. This necessarily implies a
nonlocal operator, since gauge invariant local operators of di-
mension 2 do not exist. We would also need a consistent cal-
culational framework, which requires an action only contain-
ing local terms. Therefore, we should find an operator that
can be localized by means of a finite set of auxiliary fields, in
such a way that the local gauge invariance is respected. As
A2

min looks a bit hopeless from this viewpoint as it is a infinite
series of nonlocal terms (6), we moved our attention instead
to the nonlocal gauge invariant operator

O ≡ 1
V T

∫
d4xFa

µν

[(
D2)−1

]ab
Fb

µν . (7)

This operator caught already some attention in 3 dimensional
gauge theories in relation to a dynamical mass generation
[46].

In the following sections, we shall show that the operator
(7) can be localized, giving rise to a local, classically gauge
invariant action. Afterwards, we discuss how to investigate
the renormalizability of the action once quantized. Eventually,
we need to introduce a slightly more general classical action in
order to obtain a quantum action that is renormalizable to all
orders of perturbation theory. In the case of vanishing mass,
the equivalence of our action with usual Yang-Mills theories
can be shown. We shall point out the existence of a naturally
extended version of the usual BRST symmetry. Before turn-
ing to conclusions, we explicitly give various renormalization
group functions, verifying the renormalizability at the practi-
cal level.
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II. CONSTRUCTION OF THE ACTION AND ITS
RENORMALIZABILITY AT THE QUANTUM LEVEL

A. The action at the classical level

We can add the operator (7) to the Yang-Mills action as a
mass term via

SY M +SO , (8)

with

SO =−m2

4

∫
d4xFa

µν

[(
D2)−1

]ab
Fb

µν . (9)

As we have discussed in [7], the action (8) can be localized by
introducing a pair of complex bosonic antisymmetric tensor
fields,

(
Ba

µν,B
a
µν

)
, and a pair of complex anticommuting anti-

symmetric tensor fields,
(
Ga

µν,G
a
µν

)
, belonging to the adjoint

representation, according to which

e−SO =
∫

DBDBDGDGexp
[
−

(
1
4

∫
d4xBa

µνDab
σ Dbc

σ Bc
µν

− 1
4

∫
d4xGa

µνDab
σ Dbc

σ Gc
µν +

im
4

∫
d4x

(
B−B

)a
µν Fa

µν

)]

(10)

Therefore, we obtain a classical local action which reads

SY M +SBG +Sm , (11)

where

SBG =
1
4

∫
d4x

(
Ba

µνDab
σ Dbc

σ Bc
µν−Ga

µνDab
σ Dbc

σ Gc
µν

)
,

Sm =
im
4

∫
d4x

(
B−B

)a
µν Fa

µν , (12)

which is left invariant by the gauge transformations

δAa
µ = −Dab

µ ωb ,

δBa
µν = g f abcωbBc

µν , δBa
µν = g f abcωbBc

µν ,

δGa
µν = g f abcωbGc

µν , δGa
µν = g f abcωbGc

µν . (13)

B. The action at the quantum level

In order to discuss the renormalizability of (11), we relied
on a method introduced by Zwanziger in [47, 48]. Instead of

using (11) with m coupled to the composite operators Ba
µνFa

µν
and Ba

µνFa
µν, we introduce 2 suitable external sources Vρσµν and

V ρσµν and replace Sm by

1
4

∫
d4x

(
VσρµνBa

σρFa
µν−V σρµνBa

σρFa
µν

)
. (14)

At the end, the sources Vσρµν(x), V σρµν(x) are required to at-
tain their physical value, namely

V σρµν

∣∣∣
phys

= Vσρµν

∣∣∣
phys

=− im
2

(
δσµδρν−δσνδρµ

)
, (15)

so that (14) reduces to Sm in the physical limit.
From now on, we assume the linear covariant gauge fixing,

implemented through

Sg f =
∫

d4x
(α

2
baba +ba∂µAa

µ + ca∂µDab
µ cb

)
, (16)

In [7], we wrote down a list of symmetries enjoyed by the
action

SY M +SBG +Sg f , (17)

i.e. in absence of the sources. Let us only mention here the
BRST symmetry, generated by the nilpotent transformation s
given by

sAa
µ = −Dab

µ cb , sca =
g
2

f abccacb ,

sBa
µν = g f abccbBc

µν +Ga
µν , sBa

µν = g f abccbBc
µν ,

sGa
µν = g f abccbGc

µν , sGa
µν = g f abccbGc

µν +Ba
µν ,

sca = ba , sba = 0 , s2 = 0 . (18)

It turns out that one can introduce all the necessary exter-
nal sources in a way consistent with the starting symmetries.
This allows to write down several Ward identities by which
the most general counterterm is restricted using the algebraic
renormalization formalism [7, 49]. After a very cumbersome
analysis, it turns out that the action (11) must be modified to

Sphys = Scl +Sg f , (19)

with

Scl =
∫

d4x
[

1
4

Fa
µνFa

µν +
im
4

(B−B)a
µνFa

µν +
1
4

(
Ba

µνDab
σ Dbc

σ Bc
µν−Ga

µνDab
σ Dbc

σ Gc
µν

)

− 3
8

m2λ1
(
Ba

µνBa
µν−Ga

µνGa
µν

)
+m2 λ3

32
(
Ba

µν−Ba
µν

)2 +
λabcd

16

(
Ba

µνBb
µν−Ga

µνGb
µν

)(
Bc

ρσBd
ρσ−Gc

ρσGd
ρσ

)]
, (20)
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in order to have renormalizability to all orders of perturbation
theory. We notice that we had to introduce a new invariant
quartic tensor coupling λabcd , subject to the generalized Jacobi
identity

f manλmbcd + f mbnλamcd + f mcnλabmd + f mdnλabcm = 0 , (21)

and the symmetry constraints

λabcd = λcdab ,

λabcd = λbacd , (22)

as well as two new mass couplings λ1 and λ3. Without the new
couplings, i.e. when λ1 ≡ 0, λ3 ≡ 0, λabcd ≡ 0, the previous
action would not be renormalizable. We refer to [7, 50] for
all the details. We also notice that the novel fields Ba

µν, Ba
µν,

Ga
µν and Ga

µν are no longer appearing at most quadratically.
As it should be expected, the classical action Scl is still gauge
invariant w.r.t. (13).

III. FURTHER PROPERTIES OF THE ACTION

A. Existence of a BRST symmetry with a nilpotent charge

The BRST transformation (18) no longer generates a sym-
metry of the action Sphys. However, we are able to define a
natural generalization of the usual BRST symmetry that does
constitute an invariance of the gauge fixed action (19). Indeed,
after inspection, one shall find that

s̃Sphys = 0 ,

s̃2 = 0 , (23)

with

s̃Aa
µ = −Dab

µ cb , s̃ca =
g
2

f abccacb ,

s̃Ba
µν = g f abccbBc

µν , s̃Ba
µν = g f abccbBc

µν ,

s̃Ga
µν = g f abccbGc

µν , s̃Ga
µν = g f abccbGc

µν ,

s̃ca = ba , s̃ba = 0 . (24)

Hence, the action Sphys is invariant with respect to a nilpo-
tent BRST transformation s̃. We obtained thus a gauge field
theory, described by the action Sphys, (19), containing a mass
term, and which has the property of being renormalizable,
while nevertheless a nilpotent BRST transformation express-
ing the gauge invariance after gauge fixing exists simultane-
ously. It is clear that s̃ stands for the usual BRST transforma-
tion, well known from literature, on the original Yang-Mills
fields, whereas the gauge fixing part Sg f given in (20) can
be written as a s̃-variation, ensuring that the gauge invariant

physical operators shall not depend on the choice of the gauge
parameter [49].

B. Existence of a “supersymmetry” when m≡ 0

We define a nilpotent (anti-commuting) transformation δs
as

δsBa
µν = Ga

µν , δsGa
µν = 0 ,

δsG
a
µν = Ba

µν , δsB
a
µν = 0 ,

δs(rest) = 0 . (25)

Then one easily verifies that (25) generates a “supersymme-
try” of the action Sm≡0

phys since

δsSm≡0
phys = 0 , (26)

with

δ2
s = 0 . (27)

Taking another look at the transformations s and s̃, respec-
tively given by (18) and (24), one recognizes that

s = s̃+δs ,

{δs, s̃} = 0 . (28)

Since δs is a nilpotent operator, it possesses its own cohomol-
ogy, which is easily identified with polynomials in the original
Yang-Mills fields {Aa

µ,b
a,ca,ca}. The auxiliary tensor fields,

{Ba
µν,B

a
µν,G

a
µν,G

a
µν}, do not belong to the cohomology of δs,

because they form pairs of doublets [49]. This fact can be
brought to use in the following subsection.

C. Equivalence with Yang-Mills gauge theory when m≡ 0

If the mass m ≡ 0, we would expect that the action (19)
would be equivalent with the usual Yang-Mills gauge the-
ory, since in the nonlocal formulation (9), we would have in-
troduced “nothing”. In the local renormalizable formulation
(19), this would also be trivially true when λabcd ≡ 0 as then
we would only have added a -although quite complicated-
unity to the Yang-Mills action. Unfortunately, since renor-
malization forbids setting λabcd = 0, we must find another ar-
gument to relate Sm≡0

phys to the usual Yang-Mills gauge theory.
As proven in [50], the “supersymmetry” δs of (25) can be used
to show that

〈Gn(x1, . . . ,xn)〉SY M+Sg f
≡ 〈Gn(x1, . . . ,xn)〉Sm≡0

phys
, (29)

where

Gn(x1, . . . ,xn) = A(x1) . . .A(xi)c(xi+1) . . .c(x j)c(x j+1) . . .c(xk)b(xk+1) . . .b(xn) , (30)
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is a generic Yang-Mills functional. The expectation value of
any Yang-Mills Green function, constructed from the fields{

Aa
µ,c

a,ca,ba
}

and calculated with the original (gauge fixed)
Yang-Mills action SY M + Sg f , is thus identical to the one cal-
culated with the massless action Sm≡0

phys , where it is of course
assumed that the gauge freedom of both actions has been fixed
by an identical gauge fixing.

The foregoing result also reflects on the renormalization
group functions. As usual, we employ a massless renormal-
ization scheme known as the MS scheme. As a consequence,
we can set m = 0 in order to extract the ultraviolet behaviour.
Using (29), we conclude that all the renormalization group
functions of the original Yang-Mills quantities are not affected
by the presence of the extra fields or couplings. This fact shall
be explicitly verified in the next section.

IV. EXPLICIT RENORMALIZATION AT TWO LOOP
ORDER

Having proven the renormalizability of the action (19), we
shall now compute explicitly the two loop anomalous dimen-
sion of the fields and the one loop β-function of the tensor
coupling λabcd . The corresponding details can be found in [7]
for one loop results, while two loop results are discussed in
[50].

We have regarded the mass operator as an insertion and split
the Lagrangian into a free piece involving massless fields with
the remainder being transported to the interaction Lagrangian.
To renormalize the operator, we insert it into a massless Green
function, after the fields and couplings have been renormal-
ized in the massless Lagrangian. An attractive feature of the
massless field approach is that we can use the MINCER al-
gorithm to perform the actual computations. This algorithm,
[51], written in the symbolic manipulation language FORM,

[52, 53], is devised to extract the divergences from massless
2-point functions. The propagators of the massless fields in an
arbitrary linear covariant gauge are

〈Aa
µ(p)Ab

ν(−p)〉 = − δab

p2

[
δµν − (1−α)

pµ pν

p2

]
,

〈ca(p)cb(−p)〉 =
δab

p2 , 〈ψ(p)ψ(−p)〉 =
p/
p2 ,

〈Ba
µν(p)Bb

σρ(−p)〉 = − δab

2p2

[
δµσδνρ − δµρδνσ

]
,

〈Ga
µν(p)Gb

σρ(−p)〉 = − δab

2p2

[
δµσδνρ − δµρδνσ

]
, (31)

where p is the momentum. The necessary Feynman diagrams
were generated automatically with QGRAF [54].

We first checked that the same two loop anomalous dimen-
sions emerge for the gluon, Faddeev-Popov ghost and quarks
in an arbitrary linear covariant gauge as when the extra local-
izing fields are absent. It was also explicitly verified that the
correct coupling constant renormalization constant is found.
These results are in agreement with the general argument of
the previous subsection.

We have implemented the properties (21) and (22) of the
λabcd coupling in a FORM module, while it was assumed that

λacdeλbcde =
1

NA
δabλpqrsλpqrs ,

λacdeλbdce =
1

NA
δabλpqrsλprqs , (32)

which follows from the fact that there is only one rank 2 in-
variant tensor in a classical Lie group.

At two loops in the MS scheme, we find that

γB(a,λ) = γG(a,λ) = (α−3)a +
[(

α2

4
+2α− 61

6

)
C2

A +
10
3

TF Nf

]
a2 +

1
128NA

λabcdλacbd , (33)

where NA is the dimension of the adjoint representation of the
colour group, a = g2

16π2 and we have also absorbed a factor of
1

4π into λabcd here and in later anomalous dimensions. These
anomalous dimensions are consistent with the general obser-
vation that these fields must have the same renormalization
constants, in agreement with the output of the Ward identities
[7]. A check on (33) is that after the renormalization of the
3-point gluon Ba

µν vertex, the correct gauge parameter inde-
pendent coupling constant renormalization constant emerges.

We also determined the one loop β-function for the λabcd

couplings. As this is present in a quartic interaction it means

that to deduce its renormalization constant, we need to con-
sider a 4-point function. However, in such a situation the
MINCER algorithm is not applicable since two external mo-
menta have to be nullified and this will lead to spurious in-
frared infinities which could potentially corrupt the renormal-
ization constant. Therefore, for this renormalization only, we
have resorted to using a temporary mass regularization intro-
duced into the computation using the algorithm of [55] and
implemented in FORM. Consequently, we find the gauge pa-
rameter independent anomalous dimension
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βabcd
λ (a,λ) =

[
1
4

(
λabpqλcpdq +λapbqλcd pq +λapcqλbpdq +λapdqλbpcq

)

− 12CAλabcda + 8CA f abp f cd pa2 + 16CA f ad p f bcpa2 + 96dabcd
A a2

]
, (34)

from both the λabcdBa
µνBbµνBc

σρBd σρ and
λabcdBa

µνBbµνGc
σρGd σρ vertices where dabcd

A is the totally
symmetric rank four tensor defined by

dabcd
A = Tr

(
T a

A T (b
A T c

A T d)
A

)
, (35)

with T a
A denoting the group generator in the adjoint represen-

tation, [56]. Producing the same expression for both these
4-point functions, aside from the gauge independence, is a
strong check on their correctness as well as the correct im-
plementation of the group theory. Moreover, as it should be,
βabcd enjoys the same symmetry properties as the tensor λabcd ,
summarized in (22).

We notice that λabcd = 0 is not a fixed point due to the extra

λabcd-independent terms. If we had not included the λabcd-
interaction term in the original action, then such a term would
inevitably be generated at one loop through quantum correc-
tions, meaning that in this case there would have been a break-
down of renormalizability.

Finally, we turn to the two loop renormalization of the mass
m. The corresponding operator can be read off from (19) and
is given by

M =
(
Ba

µν−Ba
µν

)
Fa

µν . (36)

We insert M into a Aa
µ-Bb

νσ 2-point function and deduce
the appropriate renormalization constant, leading to the MS
anomalous dimension

γO(a,λ) = − 2
(

2
3

TF N f − 11
6

CA

)
a−

(
4
3

TF N fCA +4TF N fCF − 77
12

C2
A

)
a2 +

1
8NA

f abe f cdeλadbca− 1
128NA

λabcdλabcd(37)

as the two loop MS anomalous dimension. The gauge para-
meter independence is again a good check, as the operator M
is gauge invariant.

V. CONCLUSIONS

We added a nonlocal mass term (9) to the Yang-Mills ac-
tion (1), and starting from this, we succeeded in construct-
ing a renormalizable massive gauge model, which is gauge
invariant at the classical level and when quantized it enjoys
a nilpotent BRST symmetry. This BRST symmetry ensures
that the expectation value of gauge invariant operator is gauge
parameter independent. We have also proven the equivalence
of the massless version of our model with Yang-Mills gauge
theories making use of a “supersymmetry” existing between
the extra fields in that case. We presented explicit two loop
renormalization functions, thereby verifying that the anom-
alous dimensions of the original Yang-Mills quantities remain
unchanged.

Many things could be investigated in the future concerning
the gauge model described by (19).

At the perturbative level, it could be investigated which (as-
ymptotic) states belong to a physical subspace of the model,
and in addition one should find out whether this physical sub-
space can be endowed with a positive norm, which would im-

ply unitarity. The nilpotent BRST symmetry (24) might be
useful for this.

The model (19) is also asymptotically free, implying that
at low energies nonperturbative effects, such as confinement,
could set in. Proving and understanding the possible confine-
ment mechanism in this model is probably as difficult as for
usual Yang-Mills gauge theories.

It would also be interesting to find out whether a dynami-
cally generated term m(B−B)F might emerge, which in turn
could influence the gluon Green functions. This might also
be relevant in the context of gauge invariant 1

Q2 power correc-
tions, an issue that recently has also attracted attention from
the gauge/string duality side, the so-called AdS/QCD [57, 58].
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