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Av. Libertador 8250, 1429 Buenos Aires, Argentina and
d Universidad Favaloro, Solı́s 453, 1078 Buenos Aires, Argentina

Received on 5 October, 2006

We consider the phase diagram of two-flavor quark matter under neutron star constraints for the case of two
nonlocal, covariant quark models within the mean field approximation. In one of these models (Model I) the
nonlocality arises from the regularization procedure, motivated by the instanton liquid model, whereas in the
second one (Model II) a separable approximation of the one-gluon exchange interaction is applied. We find that
Model II predicts a larger quark mass gap, and the corresponding critical temperature at µ = 0, Tc(0) ' 140
MeV, is in better agreement with recent lattice QCD results than the prediction of the standard local NJL model,
which exceeds 200 MeV. For both models we have considered various coupling strengths in the scalar diquark
channel, showing that different low-temperature quark matter phases can occur at intermediate densities: a
normal quark matter (NQM) phase, a superconducting quark matter (2SC) phase and a mixed 2SC-NQM phase.
In most cases, a narrow gapless 2SC phase region is also obtained at finite temperatures.

Keywords: Quark matter; Neutron stars; High density

I. INTRODUCTION

Within the last decade the investigation of the thermody-
namics and phase structure of strongly interacting matter has
been driven by the results of the experimental programs with
ultrarelativistic heavy ion beams at CERN-SPS and BNL-
RHIC, as well as by the unprecedented quality of data from
lattice QCD simulations. A new picture of the state of matter
created in these experiments has emerged, according to which
the physical nature of the sought-for quark-gluon plasma
(QGP) is a perfect liquid of strongly correlated hadron-like
resonances rather than an ideal gas of quasifree quarks and
gluons [1]. Turning to the domain of finite chemical poten-
tials, guidance from lattice QCD is limited to µ ≤ T (where
Taylor expansion techniques can be applied), and experimen-
tal programmes such as CBM at FAIR Darmstadt are still in
a first stage. Therefore, predictions for the QCD thermody-
namics at low temperatures and high baryon densities have
to be developed within effective models for strongly coupled,
nonperturbative QCD, to be tested against observational con-
straints from neutron stars [2].

For two-flavor isospin symmetric quark matter the QCD
phase diagram has been explored in the frame of different
quark models. All of them agree in finding that a two-flavor
color superconducting phase (2SC) occurs at low tempera-
tures and moderate chemical potentials [3]. However, when
one considers different chemical potentials for each quark fla-
vor and color, and compact star conditions are imposed —i.e.,
color and electric charge neutrality conditions, together with
β equilibrium—, the situation is more complicated and differ-
ent models lead to qualitatively different results. For exam-
ple, it has been claimed [4] that in the interior of nucleon stars
the 2SC phase would be disfavored against the color-flavor-
locking (CFL) one. In contrast, results from models with self-

consistently determined quark masses [5, 6] indicate that the
2SC phase is favored in an intermediate regime of densities,
before strange quarks become relevant. There are also results
arising from a noncovariant nonlocal quark model [7] which
show that the 2SC phase is not present in asymmetric quark
matter for standard values of the diquark coupling if one as-
sumes Gaussian regulator functions [8]. In this model, for
strong diquark couplings one does find a 2SC phase, together
with a gapless 2SC (g2SC) and a “mixed phase” region in
which normal quark matter (NQM) and 2SC phases coexist.

Given these qualitatively different results, it is important to
investigate the situation in the case of effective models that
go beyond those used in Refs. [4, 6, 8], in the sense that
they include fully covariant nonlocal interactions. Nonlocal-
ity arises naturally in the context of several successful ap-
proaches to low energy quark dynamics, such as the instan-
ton liquid model [9] and the Schwinger-Dyson resummation
techniques [10]. The same happens in lattice QCD [11]. It is
also argued that nonlocal models have several advantages over
the local ones (e.g., the Nambu-Jona-Lasinio model [12] and
its generalizations). Indeed, nonlocal interactions regularize
the models in such a way that anomalies are preserved [13]
and charges properly quantized, the effective interaction is fi-
nite to all orders in the loop expansion and there is no need
to introduce extra cut-offs, soft regulators lead to small next-
to-leading order corrections [14], etc. This type of models
has been successfully used to investigate meson [15–18] and
baryon [19] properties at vanishing temperature and chemical
potential, and the phase diagram of isospin symmetric matter
has also been studied within this context [20–23]. Now our
aim is to extend these analyses to the case in which compact
star conditions are imposed.

The article is organized as follows. In Sect. II we introduce
the model under consideration. Then, in Sect. III we present
the numerical results obtained for the case of a Gaussian reg-
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ulator, considering different ratios between the coupling con-
stants. In Sect. IV we discuss the features of the obtained
phase diagrams, while in Sect. V we state our conclusions.

II. FORMALISM

Let us begin by stating the Euclidean action for the nonlocal
chiral quark model in the case of two light flavors and anti-
triplet diquark interactions,

SE =
∫

d4x
{

ψ̄(x)(−i/∂+m)ψ(x)

−G
2

j f
M(x) j f

M(x)− H
2

[ ja
D(x)]† ja

D(x)
}

. (1)

Here m is the current quark mass, which is assumed to be
equal for u and d quarks. The nonlocality can be introduced
now in different ways [24]. In what follows we will work
within two alternative scenarios, that we call “Model I” and
“Model II”, in which the currents jM,D(x) in Eq.(1) are given
by nonlocal operators. In the case of Model I [16, 17], the
effective interactions are based in an instanton liquid picture
of QCD. The nonlocal currents read

j f
M(x) =

∫
d4yd4z r(y− x)r(x− z) ψ̄(y)Γ f ψ(z) ,

ja
D(x) =

∫
d4y d4z r(y− x)r(x− z) ψ̄C(y) iγ5τ2λa ψ(z) , (2)

where we have defined ψC(x) = γ2γ4 ψ̄T (x) and Γ f = (11, iγ5~τ),
while~τ and λa, with a = 2,5,7, stand for Pauli and Gell-Mann
matrices acting on flavor and color spaces, respectively.

On the other hand, Model II [15, 25] arises from a separable
form of the effective one-gluon exchange picture. In this case
the nonlocal currents jM,D(x) are given by

j f
M(x) =

∫
d4z g(z) ψ̄(x+

z
2
) Γ f ψ(x− z

2
) ,

ja
D(x) =

∫
d4z g(z) ψ̄(x+

z
2
) iγ5τ2λa ψ(x− z

2
) . (3)

The functions r(x−y) and g(z) in Eqs. (2) and (3) are nonlocal
regulators characterizing the corresponding interactions.

The effective action in Eq. (1) might arise via Fierz re-
arrangement from some underlying more fundamental inter-
actions, and is understood to be used —at the mean field
level— in the Hartree approximation. In general, the ratio of

coupling constants H/G would be determined by these micro-
scopic couplings; for example, OGE interactions, as well as
instanton model interactions, lead to H/G = 0.75. However,
since the precise derivation of the effective couplings from
QCD is not known, there is a significant theoretical uncer-
tainty in this value. In fact, so far there is no strong phenom-
enological constraint on H/G, except for the fact that values
larger that H/G∼ 1 are quite unlikely to be realized in QCD,
since they might lead to color symmetry breaking in the vac-
uum. We will leave the ratio as a free parameter, analyzing the
results obtained for values lying within a range from 0.5 to 1.

The partition function of the system at temperature T and
quark chemical potentials µ f c is given by

Z =
∫

Dψ̄ Dψ e−SE (µ f c,T ) , (4)

where the Euclidean action is obtained from Eq. (1) by going
to momentum space and performing the replacements

p4 → ωn− iµ f c ,

∫ d4 p
(2π)4 → T

∞

∑
n=−∞

∫ d3~p
(2π)3 . (5)

Here p4 is the fourth component of the (Euclidean) momen-
tum of a quark carrying flavor f and color c, and ωn are
the Matsubara frequencies corresponding to fermionic modes,
ωn = (2n+1)πT (we are assuming that quark interactions de-
pend on T and µ f c only through the arguments of the reg-
ulators). Notice that we have introduced different chemical
potentials for each quark flavor and color.

To proceed it is convenient to perform a standard bosoniza-
tion of the theory. Thus, we introduce the bosonic fields σ, πa
and ∆a, and integrate out the quark fields. In what follows we
work within the mean field approximation (MFA), in which
these bosonic fields are replaced by their vacuum expectation
values π̄a = 0, σ̄ and ∆̄a. Moreover, we adopt the usual 2SC
ansatz ∆̄5 = ∆̄7 = 0, ∆̄2 = ∆̄. Within this approximation, and
employing the Nambu-Gorkov formalism, the mean field ther-
modynamical potential per unit volume can be written as

ΩMFA = −T
V

lnZMFA =

=
σ̄2

2G
+
|∆̄|2
2H

− T
2

∞

∑
n=−∞

∫ d3~p
(2π)3 lndet

[
S−1

T

]
. (6)

Here the inverse propagator S−1(σ̄, ∆̄) is a 48× 48 matrix in
Dirac, flavor, color and Nambu-Gorkov spaces, given by

S−1 =




−/p+
ur +Σur 0 0 0 0 0 γ5τc

2 ∆ 0
0 −/p+

ub +Σub 0 0 0 0 0 0
0 0 −/p+

dr +Σdr 0 −γ5τc
2 ∆∗ 0 0 0

0 0 0 −/p+
db +Σdb 0 0 0 0

0 0 γ5τc
2∆∗ 0 −/p−ur +Σur

∗ 0 0 0
0 0 0 0 0 −/p−ub +Σub

∗ 0 0
−γ5τc

2∆ 0 0 0 0 0 −/p−dr +Σdr
∗ 0

0 0 0 0 0 0 0 −/p−db +Σdb
∗




(7)
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where we have used the definitions

p±f c = ( ωn∓ iµ f c , ~p ) , (8)

Σ f c = m + σ̄ h(p+
f c, p+

f c) , (9)

∆ = ∆̄ h(p+
ur, p−dr) , (10)

with f = u,d and c = r,g,b. The functions h(p,q) have been
introduced in order to have a common notation for both Model
I and Model II. One has

h(s, t) =





r(s2) r(t2) (Model I)

g
([

s+t
2

]2)
(Model II)

(11)

We have taken into account that, as we will see below, the
usual 2SC ansatz implies µ f r = µ f g. Thus, in Eq. (7), entries
with subindices ur and dr are intended to be multiplied by an
112×2 matrix in rg space, while τc

2 stands for a τ2 Pauli matrix
acting in this space.

For finite values of the current quark mass, ΩMFA turns out
to be divergent. We regularize it by defining

ΩMFA
(reg) = ΩMFA − Ωfree + Ωfree

(reg) , (12)

where Ωfree is obtained from Eq. (6) by setting ∆̄ = σ̄ = 0, and
Ωfree

(reg) is the usual regularized form for the thermodynamical
potential of a free fermion gas. Now the mean field values σ̄
and ∆̄ can be obtained from the coupled gap equations

dΩMFA
(reg)

d∆̄
= 0 ,

dΩMFA
(reg)

dσ̄
= 0 . (13)

So far we have introduced different chemical potentials for
each quark flavor and color. When the system is in chemi-
cal equilibrium, not all of them are independent. Within the
previously introduced 2SC ansatz, only one color-dependent
chemical potential is needed to ensure color charge neutrality,
and the µ f c can be written in terms of only three independent
quantities: the baryonic chemical potential µB, the quark elec-
tric chemical potential µQq and the color chemical potential
µ8. Defining µ≡ µB/3, the corresponding relations read

µur = µug = µ+
2
3

µQq +
1
3

µ8

µdr = µdg = µ− 1
3

µQq +
1
3

µ8

µub = µ+
2
3

µQq −
2
3

µ8

µdb = µ− 1
3

µQq −
2
3

µ8 . (14)

Now, in the core of neutron stars, in addition to quark matter
we have electrons. Thus, within the mean field approximation
for the quark matter, and considering the electrons as a free
Dirac gas, the full grand canonical potential is given by

Ω f ull = ΩMFA
(reg) +Ωe , (15)

where

Ωe =− 1
12π2

(
µ4

e +2π2T 2µ2
e +

7π4

15
T 4

)
, (16)

µe being the electron chemical potential (for simplicity we
have neglected here the electron mass).

In addition, it is necessary to take into account that quark
matter has to be in beta equilibrium with electrons through the
beta decay reaction

d → u+ e+ ν̄e . (17)

Thus, assuming that antineutrinos escape from the stellar core,
we must have

µdc−µuc =−µQq = µe . (18)

If we now require the system to be electric and color charge
neutral, the number of independent chemical potentials re-
duces further: µe and µ8 are fixed by the conditions of van-
ishing electric and color densities, i.e.

ρQtot = ρQq −ρe = ∑
c=r,g,b

(
2
3

ρuc− 1
3

ρdc

)
−ρe = 0

ρ8 =
1√
3 ∑

f =u,d

(
ρ f r +ρ f g−2ρ f b

)
= 0 , (19)

where

ρe =− ∂Ω
∂µe

=−∂Ωe

∂µe
, ρ f c =− ∂Ω

∂µ f c
=−

∂ΩMFA
(reg)

∂µ f c
. (20)

Consequently, in the physical situation we are interested in,
for each value of T and µ we should find the values of ∆̄,
σ̄, µe and µ8 that solve Eqs. (13), supplemented by Eqs. (18)
and (19).

III. NUMERICAL RESULTS

In this section we present our numerical results, showing
the features of the phase diagrams and the behavior of relevant
physical quantities for Models I and II. According to previous
analyses carried out within nonlocal scenarios [22], the results
are not expected to show a strong qualitative dependence on
the shape of the regulator. Thus we will concentrate here on
simple and well-behaved Gaussian regulator functions, taking
(in momentum space)

r(p2) = exp(−p2/2Λ2) (Model I) (21)

g(p2) = exp(−p2/Λ2) (Model II) (22)

Here Λ is a free model parameter, playing the rôle of an ultra-
violet cut-off. We have chosen a different normalization for
Models I and II in view of the relation between the respective
regulating functions [see Eq. (11)], which determine the low
T and µ phenomenology.
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A. Parameterization

For definiteness, for both Models I and II we choose here
input parameters m, Λ and G which allow to reproduce the
empirical values for the pion mass mπ = 139 MeV and de-
cay constant fπ = 92.4 MeV, and lead to a phenomenolog-
ically acceptable value for the chiral condensates at vanish-
ing T and µ f c. For Gaussian regulators, taking into account
the chosen normalization of the cut-offs, it is seen that within
the MFA both models lead to the same expressions for the
considered physical quantities at T = µ = 0. However, this
is not the case when one goes beyond the MFA. In partic-
ular, the expressions for the pion mass and decay constant
are different, therefore different sets of input parameters have
to be used. The parameters considered here for Model I are
m = 5.14 MeV, Λ = 971 MeV and GΛ2 = 15.41, while for
Model II we have taken m = 5.12 MeV, Λ = 827 MeV and
GΛ2 = 18.78. With these sets we get for both models a phe-
nomenologically reasonable value for the chiral condensate,
namely 〈0|q̄q|0〉1/3 = −250 MeV. The remaining free para-
meter is the coupling strength H in the scalar diquark channel.
In view of the difficulty of fixing this parameter from hadron
phenomenology at zero T and µ, we study here the depen-
dence of the results with H by choosing different values for
the coupling ratio H/G in the range from 0.5 to 1.

B. Order parameters and phase transitions

For fixed values of the temperature T and the chemical po-
tential µ, the mean field values σ̄ and ∆̄, as well as the chem-
ical potentials µe and µ8, can be numerically obtained from
the gap equations (13), together with the neutron star con-
straints (18) and (19). Let us begin by considering the case
H/G = 0.75, which is motivated by various effective models
of quark-quark interactions. Our results for σ̄, ∆̄, µe and µ8 are
shown in Fig. 1, where we plot these quantities as functions of
µ for different representative values of the temperature. Left
and right panels correspond to Models I and II, respectively.
For T = 0 (solid lines), at low chemical potentials the system
is in both cases in a chiral symmetry broken phase (CSB),
where quarks acquire large dynamical masses. By increasing
the chemical potential one reaches a first order phase transi-
tion in which the chiral symmetry is approximately restored,
and the system gets into a phase which is not homogeneous
but favors the coexistence of a 2SC phase and a normal quark
matter (NQM) phase. In this mixed phase zone the electric
neutrality is realized globally: the different phases have op-
posite electric charges which cancel each other, with a com-
mon equilibrium pressure. The chemical potential µe, which
for T = 0 vanishes in the CSB phase but is nonzero in the
mixed phase, also shows a discontinuity across the transition.
As expected, the growth of the color chemical potential µ8
in the 2SC component of the mixed phase is approximately
proportional to that of the corresponding ∆̄, which governs
the amount of breakdown of the color symmetry due to quark
pairing. When the temperature is increased (see dashed curves
in Fig. 1, corresponding to T = 40 MeV), this mixed phase is
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FIG. 1: Behavior of the mean fields σ̄ and ∆̄ and the chemical poten-
tials µe and µ8 for Models I (left) and II (right) as a function of the
chemical potential, for three different values of the temperature. The
curves correspond to the case H/G = 3/4. Full lines correspond to
T = 0, dashed lines to T = 40 MeV and dotted lines to T = 100 MeV.
In the case of T = 0, lines marked with stars and dots correspond to
the 2SC and NQM phases respectively.

no longer favored and the system goes into a pure 2SC phase.
For T = 40 MeV, this shows up as a second order transition
in the case of Model I, and a first order transition in the case
of Model II. Now, for both models, when one moves along
the first order transition line from T = 0 towards higher tem-
peratures, one arrives at a triple point (3P). At this point the
CSB and 2SC phases coexist with a third, normal quark matter
(NQM) phase, in which the chiral symmetry is approximately
restored and there is no color superconductivity. Finally, if
T is still increased, one reaches an “end point” (EP) where
the first order transition from CSB to NQM phases becomes a
smooth crossover. The behavior of the dynamical masses and
the electric chemical potential µe along this smooth transition
is shown in Fig. 1, see curves corresponding to T = 40 MeV
(Model I) and T = 100 MeV (dotted lines, Models I and II).

C. Quark matter phase diagrams

The described features of the phase diagrams for Models I
and II can be visualized in the graphs shown in Fig. 2, where
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FIG. 2: Phase diagrams for Models I (left) and II (right) for differ-
ent values of H/G. Full and dashed lines indicate first and second
order phase transition curves respectively, dotted lines correspond to
crossover-like transitions, and dashed lines delimit the gapless 2SC
band. Different phases are denoted as NQM (normal quark matter
phase), CSB (chiral symmetry broken phase) and 2SC (two-flavor
superconducting phase), while the regions marked as “Mixed” cor-
respond to the NQM-2SC mixed phase. EP and 3P denote the end
points and triple points respectively.

we plot the transition curves on T − µ diagrams for different
ratios H/G, and show the regions corresponding to the dif-
ferent phases and the position of triple and end points. In
the graphs, solid and dotted lines correspond to the mentioned
first order and crossover transitions, respectively. Between
NQM and 2SC regions we find that in all cases there is a sec-
ond order phase transition, which corresponds to the dashed
lines in the diagrams of Fig. 2. Close to this phase border,
the dashed-dotted lines in the graphs delimit a band that cor-
responds to the so-called gapless 2SC (g2SC) phase. In this

region, in addition to the two gapless modes corresponding
to the unpaired blue quarks, the presence of flavor asymmet-
ric chemical potentials µdc−µuc 6= 0 gives rise to another two
gapless fermionic quasiparticles (the numerical determination
of this phase border is somewhat subtle in these models, ow-
ing to the nonlocality of the interactions). In any case, for the
range of parameters considered here, the g2SC region is found
to be too narrow to lead to sizeable effects.

IV. DISCUSSION

Let us discuss some qualitative features of the curves dis-
played in Figs. 1 and 2. On one hand, for both models the 2SC
phase region becomes larger when the ratio H/G is increased.
This is not surprising, since H is the effective coupling gov-
erning the quark-quark interaction that gives rise to the pair-
ing. As a general conclusion, it can be stated that, provided the
ratio H/G is not too low, the nonlocal schemes favor the ex-
istence of color superconducting phases at low temperatures
and moderate chemical potentials (notice that, for the para-
meters considered here, we do not find color superconductiv-
ity only in the case of Model II with H/G = 0.5). This is in
contrast e.g. with the situation in the NJL model [5], where
the existence of a 2SC phase turns out to be rather dependent
on the input parameters. In addition, our results are qualita-
tively different from those obtained in the case of noncovariant
nonlocal models [8], where above the chiral phase transition
the NQM phase is preferable for values of the coupling ratio
H/G . 0.75. In those models, a color superconducting quark
matter phase can be found only for H/G≈ 1.

It is also interesting to compare our results with those ob-
tained for isospin symmetric quark matter. For the same para-
meter sets, the corresponding phase diagrams for H/G = 0.75
are shown in Fig. 3. By comparing them with those of Fig. 2,
it can be seen that the 2SC region becomes reduced when one
imposes color and electric charge neutrality conditions. This
is indeed what one would expect, since the condition of elec-
tric charge neutrality leads in general to unequal u and d quark
densities, disfavoring the u-d pairing. We notice, however,
that the effect is relatively small, and the positions of triple
and end points as well as the shape of the critical lines remain
approximately unchanged.
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FIG. 3: Phase diagrams for symmetric matter corresponding to Mod-
els I (left) and II (right). Here we use H/G = 0.75

Finally, we have studied the dependence of the phase tran-
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sitions on the model parameters, changing the input value of
the chiral condensate within a phenomenologically reasonable
range 220 MeV≤−〈0|q̄q|0〉1/3 ≤ 280 MeV. From this analy-
sis, it is seen that the qualitative features of the phase diagrams
are not significantly modified. In particular, it is seen that one
finds in general some sort of color superconducting phases at
low temperatures and moderate chemical potentials, for in-
termediate values of the ratio H/G. In addition, the values
for the critical temperature at µ = 0 are quite stable, yielding
about 120 MeV for Model I and 140 MeV for Model II. This
would favor the description given by Model II, in which the
result is closer to the values provided by lattice calculations.

V. CONCLUSIONS

We have considered the phase diagram of two-flavor quark
matter under neutron star constraints for two nonlocal, covari-
ant quark models within the mean field approximation. In the
first case the nonlocality was due to the regularization pro-
cedure, motivated by the instanton liquid model (Model I),
whereas in the second model a separable approximation of
the one-gluon exchange interaction was applied (Model II).
Although for the Gaussian regulators considered in this work
the vacuum gap equations are identical, both models differ
in their fluctuation spectrum and therefore in their parame-
ters (current quark mass m, coupling strength G, UV cutoff Λ)
which have been fixed by the pion mass,the pion decay con-
stant and the chiral condensate. As result of the numerical
evaluation of the corresponding gap equations at finite tem-

perature and chemical potential, we have obtained that Model
II predicts a larger quark mass gap and a chiral symmetry
breaking (CSB) phase transition line which extends 15-20 %
further into the T − µ plane when compared to Model I. The
prediction for the critical temperature at µ = 0 in Model II,
TCSB ∼140 MeV, is closer to the results of recent lattice QCD
simulations than the prediction of both Model I and the well-
known local NJL model. Considering different values for the
coupling strength in the scalar diquark channel, we have found
that under neutron star constraints different low-temperature
quark matter phases can occur at intermediate densities: nor-
mal quark matter (NQM), pure superconducting (2SC) quark
matter and mixed 2SC-NQM phases, respectively. The criti-
cal temperature for the 2SC phase transition is a rising func-
tion of µ for Model I whereas it is rather flat for Model II,
due to the different µ dependences associated with the scalar
diquark gaps. A band of gapless 2SC phase appears at the
border of the superconducting region, but this occurs in gen-
eral at nonzero temperatures and should not represent a robust
feature for compact star applications.
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