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We present a Hamiltonian treatment of the Landau-Ginzburg theory of phase transitions in the
case of incommensurate ferroelectric systems like (NH4)2BeF4.This formulation has the advantage
of treating the system as an example of a nonlinear dynamical system.

I Introduction

Analytical peculiarities of the nonlinear problems that
arise in the incommensurate structures are not, in gen-
eral, straightforward and require sometimes alterna-
tive methods, which can clarify the behaviour, of the
main properties of di�erent systems as improper fer-
roelectrics, chiral smectic ferroelectric liquid crystals,
and other. The great interest has been to study the
distinct phase transitions in incommensurate systems
without the use of any ansatz a priori. The problem
is not simple as have been shown by well established
numerical works involving these structures. McMil-
lan, Ishibashi, Dzyaloshinskii and other authors[1] have
used the known constant-amplitude ansatz (of the or-
der parameter) or PMO-ansatz (phase-modulated-only
ansatz) or solitonic hypothesis, in order to study the
free energy density of the system, and to write the op-
timized equations. Normally, it arises as a nonlinear
set of coupled Euler-Lagrange equations (in terms of
amplitude and phase of the order parameter), without
any analytical solutions. McMillan's hypothesis, insti-
gated the arising of the descommensurations array (or
phase solitons) which allowed a best understanding of
the incommensurate systems.

One of the �rst attempts to introduce an alterna-
tive treatment in order to study the mentioned prob-
lem was proposed by Ribeiro Filho et al [2], through
a Lagrangian treatment involving analogies between
the "time" evolution of the order parameter compo-
nents, in the Landau-Ginzburg theory, of the chi-
ral smectic ferroelectric liquid crystal DOBAMBC

(1 � n � decyloxybenzylidene � p0 � amino � 2 �
methylbutycinnamate) and the usual con�guration
space of a particle in a two-dimensional framework.
Another example of such methods was introduced by
Golovko [3] who presented a classical approach in or-

der to study incommensurate structures in thiourea and
other ferroelectrics systems. In recent years several
works [4] involving a Hamiltonian treatment, in order
to study the liquid crystal DOBAMBC, have roused
the interest of experimentalists and theoreticians. In
this work, it is presented a similar treatment for the
improper ferroelectric system (NH4)2BeF4. In section
II we describe the mentioned ferroelectric and some as-
pects of the canonical formalism applied to it. In sec-
tion III, we perform some analytical calculations involv-
ing the stability analysis and the �xed points linked to
the problem. Finally, in the concluding section, it is
discussed the main results of this work.

II Theory

In this section we introduce an alternative formulation
of the Landau-Ginzburg model of phase transitions[4]
for the case of the improper ferroelectric (NH4)2BeF4,
which belongs to the chemical family A2BX4[5]. In
order to construct the dynamical theory, which allow
to study the "time" evolution of the order parameter
components, in the mentioned Landau-Ginzburg the-
ory, we consider, at �rst, the correlation between the
con�guration space (q1:::; qn), with that one of the or-
der parameter components (�1; :::; �n). We can write
the expression of the Hamiltonian density H in terms
of the free energy density f as

H =
X
j

:

�j pj � f (1)

where pj is the canonical momentum conjugated to �j .
From the canonical formalism we can write the

Hamilton's di�erential equations:
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:

�j=
@H
@pj

;
:
pj= � @H

@�j
, (j = 1; :::; n)

We study here the solutions of these canonical equa-
tions rewriting them in a single equation, that is, we
combine the vectors p and � into a 2n-dimensional vec-
tor x = (p; �). It is possible to interpret the quantities
( @H

@pj
, @H

@�i
) as a 2n-dimensional vector rH , and will

introduce a 2n� 2n matrix J:

J =

�
0 �I
I 0

�
(2)

being I the n�n identity matrix. From such premises it

is possible to rewrite the Hamilton's equations uni�ed
in the form J�

:
x = -rH(x); where H is the Hamil-

tonian function and the state of the system is deter-
mined by the vector x = (x1; :::; x2n), so that the set of
these vectors constitutes the phase space of the system,
M = fxg, which, in the general case, corresponds to
a given manifold. In particular case as M = R2n, we

de�ne the scalar product (x; y) =
2nP
i=1

xiyi. Using the

matrix J it is possible to de�ne a Poisson bracket struc-
ture on the space F(M) of smooth functions (C1) on
M, that is,

c

fQ(x); P (x)g = �(rQ; JrP ) =
nX
i=1

�
@Q

@pi

@P

@�i
�
@Q

@�i

@P

@pi

�
(3)

d

which satis�es the Jacobi identity: fQ; fP;Rgg +
fP; fR;Qgg+ fR; fQ;Pgg = 0, as well as the relation
fQ(x); P (x)g = �fP (x); Q(x)g, and the Leibniz rule:
fQ;PRg = fQ;PgR + fQ;RgP . The two �rst rela-
tions also de�ne a Lie algebra structure on F(M). So,
the mentioned Hamilton's canonical equations can be
written as,

:
x= fH; xg = X (4)

which is the canonical form of the mentioned equations
of motion of a Hamiltonian system, which is character-
ized by fM; f; g; H(x)g, that is, by the phase spaceM,
the Poisson structure f; g and the Hamiltonian func-
tion H(x). X is the so-called Hamiltonian vector �eld
associated with the Hamiltonian function H(x)[6].

Ferroelectric materials besides exhibit a sponta-
neous electric dipole momentum, can also be de�ned
as substances in which is characterized a relation be-
tween the polarization and the electric �eld through
a hysteresis cycle. One of the most important crystal
families that presents the ferroelectricity phenomenom
is characterized by the chemical formula A2BX4, of the
so-called improper ferroelectics [5], which can present
other order parameters besides the polarization. The
ferroelectric (NH4)2BeF4 (Ammonium 
uorberyllatte)
is an important member of that molecular family and
presents, like other incommensurate ferroelectrics, a se-
quence of two phase transitions involving three distinct
phases: the paraelectric (or normal or prototype) or
high temperature phase (N), the incommensurate phase
(I), where the transition temperature is Ti = �90:0oC,
and, �nally, the ferroelectric commensurate phase (C)
which begins at temperature Tc = �96:0oC. The sym-
metry of the mentioned crystal in the (N) phase is or-

thorrombic D16
2h�Pcmm, the (C) phase is also orthor-

rombic C9
2� � Pn21a, and the intermediary (I) phase

is indetermined, with an incommensurate modulation
in the a-axis of the structure.[1];[5] The polar axis in
the (C) phase is parallel to the b-axis, and the lattice
parameter of the a-axis is doubled[7]. Experiments us-
ing magnetic resonance have contributed for the best
understanding of the main physical features of the dif-
ferent phases of this material when are considered the
high and low temperature regions in the (I) phase. It
has been established that in the region near the nor-
mal phase, the wave of incommensurate modulation
can be described as a "plane wave ", and as the tem-
perature leads to Tc, of the lock-in (incommensurate -
commensurate) transition, the approximated commen-
surate regions are present, but separated by static soli-
tonic lattices so-called discommensurations or domain
walls[1];[5] where the phase of the modulation wave vary
faster that one in the case of a plane wave. In reference
to the (I) phase it is worth to emphasize that the soft
mode condensation at temperature Ti, in the mentioned
crystal, leads to the modulation of the parent lattice for
an incommensurate structure whose periodicity is an ir-
rational multiple of the period of the prototype lattice.
The characterization of this (I) phase can not be ob-
tained by one of the 230 space groups but it can be
studied by the superspace group formalism.[5]

Considering the Landau-Ginzburg theory of phase
transitions of the ferroelectric (NH4)2BeF4, it is pos-
sible to establish the free energy density potential for
this crystal and isomorphous [8] as

f(x) = fh + fnh + fL (5)

where the indexes h, nh and L, means the homoge-
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neous, inhomogeneous parts and the Lifshitz invariant
of the mentioned thermodynamical potential, that is,

fh =
1

2
�(�21 + �22) +

1

4
�(�21 + �22)

2 +
1

2
(
 � �)�21�

2
2 (6)

fnh =
1

2
�[(

d�1

dx
)2 + (

d�2

dx
)2] (7)

and

fL = Æ(�1
d�2

dx
� �2

d�1

dx
) (8)

where x is the coordinate and �j(j = 1; 2) are the or-
der parameter components which transform in accord-
ing to a two-dimensional irreducible representation in
X [ko = (�

a
; 0; 0)] point on the Brillouin zone bound-

ary, and the coeÆcient � = �o(T�To) depends linearly
on temperature and it is the so-called Landau param-
eter. The other parameters are: � > j
j , � > 0 and
Æ are considered temperature independent. The Lif-
shitz term (8) is allowed by symmetry and its existence
prohibits the second-order transition directly into the
commensurate phase (C) from the normal phase (N).
Another important feature of this material is that when
temperature decreases, the coeÆcient of the quadratic
terms in �j(j = 1; 2) becomes zero for the critical

wavenumber ki = jÆj
�
, at temperature Ti, given by

�i = �o(Ti � To) =
Æ2

�
, where a second-order normal-

incommensurate transition takes place[8]. The aim of
this work is to discuss some qualitatively fundamen-
tal aspects of the physics of the mentioned ferroelec-
tric, from a Hamiltonian approach based upon a simple
one-dimensional Landau-Ginzburg model given by (5).
In this equation the expression (� � 
)��1 measures
the anisotropy factor of the thermodynamical potential
f . It is worth to stress that just below the temper-
ature Ti, the anisotropic part of (5) can be neglected
in reference to the isotropic one and therefore the so-
lution of the problem is given by the sinusoidal func-
tions �j(j = 1; 2), as we will show in the next section.
Fig. (1) shows the homogeneous part of the thermody-
namical potential in terms of the order parameter �o,
when it is considered the isotropic case ( � = 
). Us-
ing some numerical values quoted in literature [8], it is
sketched in Figs. (2) and (3), for � = 0:8 and 
 = 0:2,
the homogeneous part of the thermodynamical poten-
tial. In this case the anisotropy is not quite large, so
that the incommensurate phase is stable down to more
large range of temperature. Figs. (4) and (5), where
we use � = 0:8 and 
 = �0:4, indicate the case when
the anisotropy is large enough and, in consequence, the
contour lines deviate from the circular pattern more
clearly than in Fig. (3). In this case the temperature
range of the incommensurate phase is quite narrow be-
cause, as well established, the anisotropy energy, that
favours the commensurate phase, becomes prominent
part of the total energy on close and below Ti.

Figure 1. Thermodynamical potential U � fh versus order
parameter (xo � �o), for � = 0:8 and � = �1:6; � = 0:8.

Figure 2. Thermodynamical potential U(x1,x2), x1 � �1 e
x2 � �2, for � = �1:6, � = 0:8 and 
 = 0:2.

Figure 3. Contour lines of the homogeneous potential for
� = �1:6, � = 0:8 and 
 = 0:2.
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Figure 4. Thermodynamical potential U(x1,x2), x1 � �1 e
x2 � �2, for � = �1:6, � = 0:8 and 
 = �0:4.

Figure 5. Contour lines of the homogeneous potential for
� = �1:6, � = 0:8 and 
 = �0:4.

In order to make easy the computations involv-
ing (1) it will be considered the following analogies in
(5): x like "time" t; f ! L (the Lagrangian), where
L = T � V , being T and V the kinetic and poten-
tial energies, respectively. In this mechanical analogy
T ! fnh and V = U + UL, with U ! fh and UL ! fL
in the generalized potential depending on the "veloci-

ties "
:

�j (j = 1; 2). Using such designations we are able
calculate the canonical momenta by

pj = �
:

�j +(�1)
jÆ�j+1 (9)

with (j = 1; 2; 3 � 1) and through a usual Legendre
transformation we can write the following Hamiltonian

H =
1

2�
(p21 + p22) +

1

2
�(�21 + �22)�

1

4
�(�21 + �22)

2

�
1

2
(
 � �)�21�

2
2 +�(p1�2 � p2�1) (10)

where � = Æ2

�
� � and � = Æ

�
. When 
 6= �,

the anisotropic term makes the phase and the ampli-
tude, of the order parameter, be x-dependent, that is
�j(j = 1; 2) begin to include higher harmonics where a
given critical wavenumber ki is determined in order to
minimize

F =
1

L

Z
f(x)dx (11)

where L is the "length " of crystal. It is worth to
point out that the equation (10), with 
 6= �, also
de�nes a nonlinear Hamiltonian system, which is non-
integrable[6]. We can rewrite the Hamiltonian (10) as

H = Ho �
1

2
(
 � �)�21�

2
2 (12)

so that, if 
 = �, the system with H = Ho is integrable
and isotropic, with

G = �(p1�2 � p2�1) (13)

being the second constant of motion besides the energy.
This may be veri�ed by direct calculation of the Poisson
bracket fH;Gg = 0.

III Analytical Calculations

From the equation (11), and using the Hamiltonian
treatment, it is possible to get all results that charac-
terize the di�erent phase transitions in the mentioned
ferroelectric crystal. The transition between (N) and
(I) phases can also be described by Hamiltonian (10),
which gives rise, as we have showed in the section II,
the following system of ordinary di�erential equations,
which can be rewrite in short,

:

X= F(X), with X being
the Hamiltonian vector �eld, and

:
x1= F1(x1; x2; x3; x4) = ��1x3 +�x2 (14)

:
x2= F2(x1; x2; x3; x4) = ��1x4 � �x1 (15)

:
x3= F3(x1; x2; x3; x4) = ��x1 +�x4 + 
x1x

2
2 + �x31

(16)

:
x4= F4(x1; x2; x3; x4) = ��x2 � �x3 + 
x21x2 + �x32

(17)
where we substitute �1 by x1; �2 by x2; p1 by x3 and p2
by x4. The set of equations showed above is an example
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of a dynamical system, where the �xed points can be
determined by condition F(X) = 0. The �rst of these
points P1 : (0; 0; 0; 0) is quite interesting in our present
discussion as we will see hereafter. After performing the
stability analysis around this point it is possible to rec-
ognize several experimental features of the mentioned
ferroelectric, as we have pointed out in the last section.

Following the standard procedure [6] of such anal-
ysis in a dynamical system, that is, using a linear ap-
proximation around the equilibrium point P1 we get

:

X� JH(P1)X (18)

where the Jacobian matrix, JH(P1), is given by

JH(P1) =

0
BB@

0 � ��1 0
�� 0 0 ��1

�� 0 0 �
0 �� �� 0

1
CCA (19)

The four eigenvalues of the characteristic equation
are obtained, in this approximation, by

det(JH (P1)� �I) = �4 + 2�2(�2 + ��1�)

+ (�4 � 2��1��2 + ��2�2) = 0 (20)

and the solutions are

�1 = ��2 = [���1(� + Æ2��1) + 2Æ��
3
2�

1
2 ]

1
2 (21)

�3 = ��4 = [���1(� + Æ2��1)� 2Æ��
3
2�

1
2 ]

1
2 (22)

where � = 0 corresponds to the structural stability
breaking and we get the critical temperature, Ti =

To +
Æ2

�o�
. This temperature is therefore the normal-

incommensurate transition temperature[8] and for this
case, after some algebraic calculations, the eigenvalues

are pure imaginary, that is, � = �i jÆj
�

and the corre-
sponding eigenvectors are

xoj = A

0
BB@
�i
1
0
0

1
CCA (23)

where xoj (oj = 1; 2) corresponds to �i in (23). Fi-

nally, we get: x1 = A cos jÆj
�
x and x2 = Asen jÆj

�
x,

that is, such expressions show that the order param-
eter components �j(j = 1; 2); of this ferroelectric sys-
tem, are modulated with the critical wavelength ki =
jÆj
�
. These results characterize the onset of the incom-

mensurate structure in this material and they are in
agreement with those ones obtained, traditionally, by
other authors[8], and show that there is a continuous

transition at Ti between the (N) and (I) phases. The
wavelength of the modulation is not a simple multiple
of the lattice period in the normal phase.

From the set of equations (14)-(17) it is sim-
ple to �nd the following nine �xed points, with co-
ordinates Pi (x�1; x

�
2; x

�
3; x

�
4), of the dynamical sys-

tem: P1(0; 0; 0; 0); P2(0; n;�Æn; 0); P3(0;�n; Æn; 0);
P4(n; 0; 0; Æn); P5(�n; 0; 0;�Æn); P6(m;m;�Æm; Æm);
P7(m;�m; Æm; Æm); P8(�m;m;�Æm;�Æm) and the

last point P9(�m;�m; Æm;�Æm); where n = (��
�
)
1
2

and m = ( ��
�+


)
1
2 . The analysis of the last eight

�xed points (P2; :::; P9) is quite similar to that one em-
ployed in P1(0; 0; 0; 0) in spite of the algebraic work
be quite extended. Normally, we consider again the
linearized system Jij = @Fi

@xj
= F

j
i , so that J = [Jij ]

and using the equations (14)-(17) we �nd: F 1
1 = 0;

F 2
1 = �; F 3

1 = ��1; F 4
1 = 0; F 1

2 = ��; F 2
2 = 0;

F 3
2 = 0; F 4

2 = ��1; F 1
3 = �� + 
x22 + 3�x21 � A1;

F 2
3 = 2
x1x2; F

3
3 = 0; F 4

3 = �; F 1
4 = 2
x1x2 � B;

F 2
4 = �� + 
x21 + 3�x22 � A2; F

3
4 = 0; F 4

4 = ��.
Therefore the characteristic equation is given by

�4 + [2�2 � (A1 +A2)�
�1]�2 +�4 + ��2A1A2

+ ��1�2(A1 +A2)� ��2B2 = 0 (24)

where

A1 = ��+ 
x�22 + 3�x�21 (25)

A2 = ��+ 
x�21 + 3�x�22 (26)

B = 2
x�1x
�
2 (27)

and the main algebraic results of these calculations have
been summarized and discussed in the appendix.

IV Conclusions

In this work we explicit the possibility in using the
mathematical background of dynamical systems in or-
der to discuss the phase transitions problem in the fer-
roelectric crystal (NH4)2BeF4. This treatment can
be extended to other members of the chemical fam-
ily A2BX4. For this, it was introduced a Hamiltonian
treatment, in addition to the mechanical analogy, con-
sidering the mentioned ferroelectric material as a typi-
cal Hamiltonian system.

Summarizing the discussion underlined in section
III and appendix we have found four distinct values for
the Landau parameter �: �o", 0, �

+
o and ��o . In the

neghbourhood (the left and right sides) of each di�er-
ent �-value, the phase space presents di�erent features.
In the case � = �o", it is observed, to the right side,
that there is only a �xed point which is unstable hy-
perbolic. To the left side, of this �-value, there is also
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a unique �xed point, which is elliptic. When � = 0,
in both left and right sides, the �xed points are elip-
tic. For � > 0 there is only one critical point while
for � < 0 (which is the more important case for the
Landau-Ginzburg model) there are nine �xed points.
In the case of � = �+o implicates that in the points
P1; :::; P5 there is not change of behaviour. With refer-
ence to the points P6; :::; P9, the change is identical to
those one in �o" despite all hyperbolic points are local-
ized in the left side while the elliptic ones in the right
size. For ��o we note that there are not changes for the
points P1; :::; P5, while P6; :::; P9 are hyperbolic in both
sides (left and right), but in the case � < ��o the eigen-
values are real, while for � > ��o they are complex. So,
from the analysis above only two �-values ( �o" e �+o )
separate hyperbolic and elliptic points. It is worth to
emphasize that the temperature associated with these
two �-values are those obtained by other authors [8]
and corresponds to the presence of the phase transition
in the mentioned ferroelectric material.

From the characteristic equation (20) and matrix
(23) it is showed the arising of an incommensurate plane
wave involving the order parameter components �1 (or
x1) and �2 (or x2) in terms of a critical wavenumber
ki, while the critical temperature between the (N) and
(I) phases has been obtained, quickly, when we have
considered the stability analysis, in the linear approxi-
mation, around the point P1(0; 0; 0; 0). Using the equa-
tions (34), (35), (28) and (29), from the appendix, we
get

�+o = �(
Æ2

�
)(
 + �)[� + (�2 � 
2)

1
2 ]�1

which corresponds to the critical temperature

T+
o = To � (

Æ2

�o�
)(
 + �)[� + (�2 � 
2)

1
2 ]�1

where the commensurate phase becomes unstable with
respect to spatially modulated solution. The wave-
length of the modulation wave, it is computed from
the modulus of the eigenvalues, in (31), that is,

� =
jÆj

�
[2(�2 � 
2)

1
2 ]

1
2 [� + (�2 � 
2)

1
2 ]�

1
2

It is interesting to point out that in spite of the crit-
ical temperature T+

o has been previously computed[8],
meanwhile that expression does not represent in fact
the actual lock-in temperature Tc which takes place,
in reality, at much lower temperature than T+

o . With
reference to (NH4)2BeF4 it is worth to stress that the
lock-in phase transition temperature, can be obtained,
with more accuracy, from (11), when the free energy
density potential model includes other physical contri-
butions like external �elds [9]. Using such thermody-
namical potential models it is found a �rst-order lock-in
phase transition in this material.

In order to discuss our Hamiltonian treatment we
decide to use an established and simple model be-
cause, normally, the lock-in temperature calculation
is quite cumbersome, when it is considered the in
u-
ence of an external electric �eld on incommensurate-
commensurate (lock-in) phase transition in this ferro-
electric material, which gives a good agreement with
experiment.

In summary, we have got new analytical results
as well as those ones obtained by other authors for
(NH4)2BeF4, using a simple and elegant Hamiltonian
approach, showing the eÆcacy of this alternative formu-
lation for studying phase transitions and other features
of improper ferroelectrics. The great advantages of this
analytical approach has been the straightforward way
in getting informations as well as many physical proper-
ties can be discussed more clearly. In comparison with
the standard formalism used by di�erent writers [8] we
can stress that this Hamiltonian treatment is more sim-
ple and avoid some hypothesis used by them.

Despite the simplicity of the thermodynamical po-
tential model, used in this work, it shows, more clearly,
the possibility in using the Hamiltonian treatment for
the Landau-Ginzburg theory of phase transitions. This
approach creates new possibilities in studying phase
transitions employing nonlinear dynamical techniques
which have been discussed in other branches of Physics.
Another aspect already underlined before [4] is that us-
ing the mathematical recourses of the nonlinear dy-
namics it is possible to study, more carefully, the
chaotic structures that are present, experimentally, in
the neighbourhood of the lock-in phase transition in
this material. From such evidences it will be possible
to analyze the chaoticity, in terms of Poincar�e maps,
the Liapunov exponent, power spectrum and the corre-
lation function.

In this work we have concentrated in studying some
aspects of the critical points present in (NH4)2BeF4
and in discussing the behaviour of the Landau param-
eter, which is dependent of temperature.
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Appendix

The solution of (24) for the �xed points P6; :::; P9,
explicited in the text through its coordinates x�1, x

�
2,

x�3, x
�
4, shows that x

�2
1 = x�22 = m2 = ��

�+

.So, from(24)

we �nd:

A1 = A2 = A = (
�2

1 + ��1

)��

Æ2

�
(28)

B2 = [(
�

� + 

)2
]2 = c2�2 (29)

Substituting (28) and (29) in (24) we have

�2 = Z �D
1
2 (30)

where

D =
c2�2

�2
+ 4b�

�2

�
+ 4�4 (31)

Z =
�b�

�
� 2�2 (32)

b =
2

1 + 
��1
(33)

In the case D < 0 we see that �2 and � are complex,
taking into account that the coeÆcient of �2 in (31) is

positive, implicates that D is negative for � localized
between the roots of equation D = 0, that is,

�Do+ = 2��2c�2[�b+ (b2 � c2)]
1
2 (34)

�Do� = 2��2c�2[�b� (b2 � c2)]
1
2 (35)

Z it will be zero for the root of (32), so that

�Zo = �2�b�1�2 (36)

whose location it will be discussed later. From (28) and
(29) we have b > 0, because � > j
j, and b > c. These
two last conditions linked with (34) and (35) show that
�Do� < �Do+ < 0. So, the �-values are located be-
tween �Do� and �Do+, and becomes D < 0. Such
values belongs to the existence's domain of �xed points
P6; :::; P9, which are real for � < 0 as we have previously
explicited. It is possible to verify that �Zo belongs to
the interval (�Do� , �Do+ ), that is, between ( �D ,
�Do+), where �D=

1

2
( �Do+ + �Do�). Using(34) and

(35) we have

�Zo � �Do� =
2��2

b2c2
[b(b2 � c2) + b2(b2 � c2)

1
2 ] (37)

The two terms in the right side of (37) are positive
because from(28) and (29), b > 0 and b > c. So,
�Zo > �Do� and, on the other hand, we see that

�D= � 2��2

c2
b < �Zo, and thus it shows that �Zo is

located to the right of �D. It is also possible to verify
that �Zo is located to the left of �Do+. From (34) and
(37) we get:

�Do+� �D=
2��2

c2
a1 (38)

�Zo� �D=
2��2

c2
a2 (39)

with a1 = (b2 � c2)
1
2 and a2 = (b� c2b�1), being both

positive and a1 > a2, so that �Do+ > �Zo. So, the
eigenvalues can be computed noting the following hy-
pothesis: (I) when �Zo < � < �Do+, we have, in this
case, Z < 0 and �2 = �z � id, where z = jZj and

d = jDj
1
2 , such that the four eigenvalues found are con-

jugate complex, that is, �+1 = ���2 and �+2 = ���1,

with expressions �+1 = r
1
2 (cos �+

2
+ i sin �+

2
); �+2 =

�r
1
2 (cos �+

2
+ i sin �+

2
); ��1 = r

1
2 (cos ��

2
+ i sin ��

2
) and

��2 = �r
1
2 (cos ��

2
+ i sin ��

2
), where r = (z2 + d2)

1
2 ,

�+ = tan�1(�d
2
) + � e �� = 2� � �+, being valid:

Re(�+1) = Re(��2) < 0 e Re(�+2) = Re(��1) < 0;
(II) when �Do� < � < �Zo, the results are equiva-
lent, but in this case Z = z, and not Z = �z, and
�+ = tan�1(d

2
) and �� = ��+; (III) when it is con-

sidered the hypothesis D � 0, then �2 2 R and �

it will be real or pure imaginary depending on the
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sign of �2, which it will be determined by the rela-
tion between Z2 and D as showed in (31) and (32),
that is, Z2 � D = (b2 � c2)�2�2 � 0, and we can
say that the sign (�2) is equal to the sign (Z) and
�2 6= 0, 8� < 0, so that �2+ = 0 for � = 0 and

�2� = Z �D
1
2 = 2Z < 0. Then D � 0 if � � �Do� or

� � �Do+. When � � �Do� =) � < �Zo () Z > 0;
if � � �Do+ =) � > �Zo () Z < 0. In summary we
see that: (a) � � �Do� =) �+1 = (Z + D

1
2 )

1
2 > 0;

��1 = (Z � D
1
2 )

1
2 > 0; �+2 = �(Z + D

1
2 )

1
2 < 0

and ��2 = �(Z � D
1
2 )

1
2 < 0, all real; (b) �Do+ �

� < 0 =) �+1 = i(
���Z +D

1
2

���) 12 ; ��1 = i(
���Z �D

1
2

���) 12 ;
�+2 = �i(

���Z +D
1
2

���) 12 and ��2 = �i(
���Z �D

1
2

���) 12 ; (c)
� = 0 =) �+1 = �+2 = 0; ��1 = ���2 = 2i�.

The solution of (24) for the points P2, ...,P5, in ac-
cording with the values of its coordinates, are x�1 x

�
2 = 0

and x�21 + x�22 = n2 = ��
�
, so that substituting these

expressions in equations (25)-(27) and, after some alge-
braic manipulations we �nd the following characteristic
equation:

�4 +2(�2 �A0��1)�2 + (�2 + ��1A0)2 � ��2c02�2 = 0
(40)

when A0 = �b0�� Æ2

�
; b0 = 
+�

2�
= 1

b
; c0 = 3��


2�
.

The equation (40) is equivalent to (24) when substi-
tute A ! A0, c ! c0, so that the equations (30){(32)
can be rewritten as :

�2 = Z 0 �D0 1
2 (41)

D0 =
c02�2

�2
+ 4b0�

�2

�
+ 4�4 (42)

Z 0 =
�b0�

�
� 2�2 (43)

Although the equations (41)-(43) be similar to (30)-
(32), the eigenvalues obtained do not present the same
features. For the points P6; :::; P9, the properties of the
eigenvalues are strongly in
uenced by relations b > 0
and b > c obtained from (28) and (29). In the case of
points P2; :::; P5, despite b

0 > 0 be valid, meanwhile the
relation b0 > c0 is not valid. So, from(41)-(43) we have
c0 > b0 and b0 > 0. The �rst of these two conditions
implicates that the equation D0 = 0 does not have real
roots (the argument in the root of (34) is negative). Be-
ing the coeÆcient of �2 in (42) positive, then D0 > 0,
8�. It is worth to point out that � � 0 it is a neces-
sary and suÆcient condition for the existence of points
P2; :::; P5 (because n = (��

�
)
1
2 ). The minimum of D0 is

found by:

�= �2�b0
�2

c02
< 0 (44)

D0 = 4�4 c
02 � b02

c02
> 0 (45)

and Z 0 it will be zero for

�Z0

o
= �2�b0

�2

b02
< 0 (46)

and from (46), (44) and c0 > b0 :
���Z0

o

�� > j�j =)

�Z0

o
< � and jZ 0j �

���D0 1
2

���. Therefore, the eigenval-

ues are given for � = 0, as being: �+1 = �+2 = 0;
��1 = ���2 = 2i� and for � < 0, the sign in front
of D0 1

2 indicates the sign of �2, by virtue of (45),

that is: �+1 = (Z 0 + D0 1
2 )

1
2 ; ��1 = i(

���Z 0 �D0 1
2

���) 12 ;
�+2 = �(Z 0 +D0 1

2 )
1
2 and ��2 = �i(

���Z 0 �D0 1
2

���) 12 .
In the solution of (24) for the point P1(0; 0; 0; 0)

we have: x�1 = x�2 = 0; A1 = A2 = �� = ��
Æ2

�
= �b"� � Æ2

�
= A", (b" = �1); B = 0 = c"2�2,

(c" = 0). Substituting, b ! �1 = b", c ! c" = 0 e
A! A", in the equations (30)-(32) we get:

�2 = Z"�D"
1
2 (47)

D" = �4�
�2

�
+ 4�4 (48)

Z" =
�

�
� 2�2 (49)

and in this case the conditions (b > 0, b > c) are not
valid. In this case are valid: b" < 0 and b" < c" = 0.
The eigenvalues will have distinct features of the other
two cases already discussed. When D" < 0: this hy-
pothesis occurs for � > �Do", where �Do" is the root of
equation D" = 0, so that

�Do" =
Æ2

�
> 0 (50)

Z" = 2�Do" (51)

and the results are identical to those ones obtained for
D < 0 in the case of points P6; :::; P9. When D" � 0 we

have � � �Do" =
Æ2

�
and in this case we get the relations

Z"2�D" = �2

�2
� 0 and jZ"j � D"

1
2 . For the computa-

tion of eigenvalues we consider, analogously, the cases:
� = 0 and get �+1 = �+2 = 0; ��1 = ���2 = 2i�;
and for � 6= 0 we have pure imaginary eigenvalues,

that is, �+1 = i(
���Z" +D"

1
2

���) 12 ; ��1 = i(
���Z"�D"

1
2

���) 12 ;
�+2 = �i(

���Z" +D"
1
2

���) 12 and ��2 = �i(
���Z"�D"

1
2

���) 12 .


