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We study the non integrability of the Friedmann-Robertson-Walker cosmological model, in continuation of
the work [5] of Coehlo, Skea and Stuchi. Using Morales-Ramis theorem ([10]) and applying a practical non-
integrability criterion deduced from it, we find that the system is not completely integrable for almost all values
of the parameters λ and Λ, which was already proved by the authors of [5] applying Kovacic’s algorithm.
Working on a level surface H = h with h 6= 0 and h 6= − 1

4λ and using the Morales-Ramis-Simo “higher varia-
tional” theory ([11]), we prove that the hamiltonian system cannot be integrable for particular values of λ among
the exceptional values and that it is completely integrable in two special cases (λ = Λ =−m2 and λ = Λ = −m2

3 ).
We conjecture that there is no other case of complete integrability and give detailed arguments towards this.
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I. THE PROBLEM

The Friedmann-Robertson-Walker model ([7]) is a model
which explains some features of the observed universe at the
present time. Although it does not describe the real universe in
an essential way because of too many symmetries, it remains
a fundamental model.
We consider the Friedmann-Robertson-Walker (FRW) uni-
verse ([5]) where the metric takes the form

ds2 = a2(ν)
(
−dν2 +

1
1− kr2 dr2 + r2dΩ2

)

where ν is the time; a(ν) is the scale factor, which means that
if a distance is measured as d0 today, then at any other instant,
it is d0 times a; k = 0,1,−1 is the curvature of space-time and
dΩ2 is the distance element on a two-sphere.
The dynamics is described by Raychauduri equation and
Klein-Gordon equation ([7]) which derive from the Hamil-
tonian ([5],[7])

H =
1
2

(
−(p2

a + k a2)+(p2
φ + kφ2)+m2 a2 φ2 +

λ
2

φ4 +
Λ
2

a4
)

After the canonical transformation of variables pa = ipa and
a =−ia (suggested from [4]), and assuming k = 1, we get the
Hamiltonian:

H =
1
2

(
ȧ2 + φ̇2)+

1
2

a2 +
1
2

φ2− 1
2

m2a2φ2 +
1
4

λφ4 +
1
4

Λa4

where a is the scale factor of the universe; φ is the scalar field
with self-coupling constant λ and with mass m (which we will
assume to be non zero); Λ is the cosmological constant.
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The associated hamiltonian system which describes the FRW
cosmological model is Ẋ = J∇(X) where X =t (a,φ, ȧ, φ̇) and
J is the 4×4 matrix satisfying J2 =−Id4.
In [5], Coehlo, Skea and Stuchi use the Morales-Ramis the-
ory and the Kovacic algorithm (which solves second order lin-
ear differential equations) to show that the FRW model is not
completely integrable except eventually when λ and Λ satisfy
the conditions

λ =− 2m2

(n+1)(n+2)
, n ∈ IN

and

Λ =− 2m2

(N +1)(N +2)
, N ∈ IN

Furthermore, numerical evidence of integrability is illustrated
in [5] when λ = Λ =−m =−1 and when λ = Λ =−m2

3 .
This paper is a continuation of [5]. Our aims are:

• to show that the variational equation, computed along a
given particular solution of the hamiltonian system, can
be seen as a direct sum of two Lamé equations (when
λ 6= 0);

• to find the result of non-integrability already

proved in [5] when λ 6=− 2m2

(n+1)(n+2)
, n ∈ IN

or Λ 6=− 2m2

(N +1)(N +2)
, N ∈ IN using a criterion of

non integrability ([2, 3]) deduced from Morales-Ramis
theorem ([10]);

• to prove that the system is not completely integrable in
the particular case
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λ =− 2m2

(n+1)(n+2)
, with n ∈ {2, . . . ,10} using

Morales-Ramis-Simo theorem ([11]);

• to prove that the system is completely integrable in the
two cases λ = Λ =−m2 (n = N = 0) and λ = Λ = −m2

3
(n = N = 1).

• to conjecture that the system is completely integrable if,
and only if, λ = Λ =−m2 or λ = Λ = −m2

3 .

The particular case λ = 0 is a case of non integrability
which will be studied in the annex.

These results can be understood as an extension of [5] , as
we solve questions that were left open there. Since this work
was submitted, we have been aware of several other recent
works on other configurations of the Friedman-Robertson-
Walker models using the Hamiltonian viewpoint and the vari-
ational approach that we use below ([6], [9]).

In this paper (as well as in the above references), we use the
Morales-Ramis theory from [10]. To show that our Hamil-
tonian differential system does not admit new first integral,
we find a particular solution, linearize the system along this
solution; applying differential Galois theory to the linearized
equation then allows to conclude to the non-integrability of
the model.

This last point may be tedious. In [5, 6, 9], the Kovacic
algorithm was used; in [6, 9], additional techniques (systems
with homogeneous potentials) were further used. Here, we
will use a criterion (from [2, 3]) which is easy to apply and
generalizes to equations of higher order: if the linearized

(variational) equation is irreducible and has local solutions
with logarithms, then the original system was not integrable
(a more general version of our criterion is theorem 3 in [3]).

The paper is structured as follows. In section 2, we study
the structure of the variational equation. In section 3, we apply
our criterion to rediscover the non-integrability cases of [5].
In section 4, we go deeper in the analysis (higher variational
equation) to state our main theorem and conjecture about all
integrability cases of this model.

We would like to thank Maria Przybylska and Andrzej Ma-
ciejewski for good discussions on this topic, and the referee
for helpful suggestions.

II. THE (FIRST) VARIATIONAL EQUATION

The Hamiltonian H can be written:

H =
1
2

(
ȧ2 + φ̇2)+

1
2

(
φ2 +

λ
2

φ4 +a2(1−m2φ2)+a4 Λ
2

)

We choose a particular solution ([1]) X0 = (a0,φ0, ȧ0, φ̇0) on

the level surface

a = ȧ = 0 and h =
1
2

φ̇2 +
1
2
(φ2 +

λ
2

φ4)

The variational system along the solution X0 is

Y ′ = JH (H,X0) Y

=




0 0
0 0

1 0
0 1

f1 =−1+m2φ2
0 0

0 f2 =−1−3λφ2
0

0 0
0 0




Y

We note that φ2
0 is solution to the equation

v̇2 =−2λv3−4v2 +8hv

So, if λ 6= 0, then

φ2
0 =−2

λ
℘(t)− 2

3λ

where ℘(t) =℘(t,g2,g3) is the Weierstrass function with pa-

rameters

g2 =
4
3

+4hλ et g3 =
8
27

+
4
3

hλ

The variational equation can then be seen as a direct sum of
two Lamé equations
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(E1) y′′1(t) = f1(t) y1(t) with f1(t) =−2m2

λ
℘(t)−1− 2m2

3λ

and

(E2) y′′2(t) = f2(t) y2(t) with f2(t) = 6℘(t)+1

This point will be crucial in our practical application of the

”higher variational” theorem of Morales-Ramis-Simo in sec-
tion 4.

III. NON-INTEGRABILITY FOR ALMOST ALL VALUES
OF λ

With the change of variable x =℘(t) the differential equa-
tion

y′′(t) = (α℘(t)+β) y(t)

is equivalent to the differential equation

(4x3−g2 x−g3)y′′(x)+(6x2− g2

2
)y′(x)− (αx+β)y(x) = 0

and the connected components of the identity of the differen-
tial Galois groups of these two equations are isomorphic ([1]
page 4 for this result, and more generally [13] for differential
Galois theory).

We first assume that h = 0 (which induces the relation g3
2−

27g2
3 = 0).

The equation

(E1) y′′1(t) = f1(t) y1(t)

becomes

(Ẽ1) :
4
27

(3x−2)(3x+1)2 y′′(x)+

2
3

(3x−1)(3x+1)y′(x)+
(

2m2

λ
x+1+

2
3

m2

λ

)
y(x) = 0

The exponents at the singular point −1
3 are −1

2 and 1
2 , the

formal solutions at that point are s1 =
√

3x+1(1 + · · ·) and

−m2

2λ
s1 ln(3x+1)+ s2. So if m 6= 0 then there are logarithmic

terms in the local solutions at the point −1
3 .

We now will show that the equation is most of the time irre-
ducible , so that our non-integrability criterion applies.

The exponents at the other singular points are:

? at the point 2/3 : 0 and 1
2

? at the point ∞ : the roots of the indicial equation (E∞) :
2λk2−λk +m2 = 0.

A necessary condition for the equation (Ẽ1) to be reducible is
that it possesses an exponential solution ; from [12] and the
form of the local solutions at x = 1/3, such a solution should
be of the form

y(x) = (3x+1)1/2 (3x−2)e p(x)

where p(x) is a polynomial of degree d; e = 0 or 1
2 (exponent

at 2/3) and

d +
1
2

+ e+ e∞ = 0

with e∞ being an exponent at infinity (see [12] for the expres-
sion of this exponential solution).
A necessary condition for the existence of such a solution is
that the indicial equation at infinity (E∞) has a root −d− 1

2 or
−d−1 with d a natural integer. This implies

λ =− 2m2

(2d +1)(2d +2)
(for e = 0)

or

λ =− 2m2

(2d +2)(2d +3)
(for e = 1

2 )

which is equivalent to

λ =− 2m2

(n+2)(n+1)
with n ∈ IN

So, if

λ 6=− 2m2

(n+2)(n+1)

with n∈ IN then the equation (Ẽ1) is irreducible. Furthermore,
it has formal solutions with logarithmic terms; so according
to theorem 3, section 3.2 of [3] (or theorem 8 page 106 of [2]
for a shorter version) , the connected component of the iden-
tity of the differential Galois group of (Ẽ1) (and so the one
of (E1)) is not abelian. Then, according to Morales-Ramis
theorem ([10]) the Hamiltonian system is not completely inte-
grable (this was already proven using Kovacic’s algorithm in
[5]).

Now, if λ =− 2m2

(n+2)(n+1)
with n ∈ IN, then there are

still logarithmic terms but there maybe exponential solutions,
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which one checks experimentally. Then the differential
Galois group of (Ẽ1) is abelian and one cannot conclude
using Morales-Ramis (first) theorem. So we will use higher
order variational equations and the extension of the theorem
of Morales-Ramis-Simo ([11]).

First of all, we change the level of the surface and instead
of taking h = 0, we choose h such that g3

2− 27g2
3 6= 0. The

(first) variational equation has then no formal solution with
logarithmic terms at the singularity 0 of ℘(t) but it is a direct
sum of two Lamé-Hermite type equations. Practically, it en-
ables to use lemma 9 page 27 of [11] which only requires a
local study at the point 0 of the equation (the presence of logs
in local solutions at zero of one of the higher order variational
equations will be enough to conclude).

Remark 1 As it was noticed in [5], because of the symmetry
of the Hamiltonian function H in the variables, we can also
conclude that the system is not completely integrable when

Λ 6=− 2m2

(N +2)(N +1)
with N ∈ IN.

IV. NON-INTEGRABILITY FOR SOME EXCEPTIONAL
VALUES OF λ, INTEGRABILITY IN TWO SPECIAL CASES

AND CONJECTURE.

In the following of the section, we assume

λ =− 2m2

(n+1)(n+2)
, n ∈ IN.

We are going to use the theorem of Morales-Ramis-Simo
and higher variational equations ([11]).
We choose the value h of the Hamiltonian such that h 6= 0 and

h 6=− 1
4λ

so that g3
2−27g2

3 6= 0 (where g2,g3 are the parame-
ters of the Weirstrass ℘-function of section 2).
As a consequence, the first variational equation

(V E1) : Y ′ =




0 0
0 0

1 0
0 1

(n+1)(n+2)℘(t)+ (n+1)(n+2)
3 −1 0

0 6℘(t)+1
0 0
0 0




Y

is a direct sum of two Lamé-Hermite type equations. So,
according to lemma 9 page 27 of [11], one can check whether
the Galois groups of the higher order variational equations
are virtually abelian or not thanks to the computation of the
monodromy along the singularity 0 of ℘(t).

The successive variational equations are obtained using this
special well known trick [8] : let us denote

Ẋ = F(X) = J∇H(X)

the Hamiltonian system and let X0 = (a0,φ0, ȧ0, φ̇0) be a par-
ticular solution of it. Let

X = X0 + εX1 + ε2 X2

2
+ · · ·+ εk Xk

k!
+ · · ·

then

Ẋ = Ẋ0 + εẊ1 + ε2 Ẋ2

2
+ · · ·+ εk Ẋk

k!
+ · · ·

and using a Taylor expansion, we get

Ẋ = F(X0)+F ′(X0)δ+F ′′(X0)
δ2

2
+ · · ·+F(i)(X0)

δi

i!
+ · · ·

where δ = X−X0 = εX1 + ε2 X2

2
+ · · ·+ εk Xk

k!
+ · · ·.

So for each k ≥ 1, equalling the coefficients of the εk in both
expressions of Ẋ , we get the kth variational equation (V Ek):





(V E1) Ẋ1 = F ′(X0)X1

(V E2) Ẋ2 = F ′(X0)X2 +F ′′(X0)X1
2

(V E3) Ẋ3 = F ′(X0)X3 +3F ′′(X0)X1 X2 +F(3)(X0)X1
3

(V E4) Ẋ4 = F ′(X0)X4 +F ′′(X0)(4X1 X3 +3X2
2)+6F(3)(X0)X2 X1

2 +F(4)(X0)X1
4

...
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where Xi is a particular series solution (at 0) of (V Ei).

Furthermore, here, for j ≥ 4, the matrix F( j)(x0) is zero, so we get the following variational equations




(V E1) Ẋ1 = F ′(X0)X1

(V E2) Ẋ2 = F ′(X0)X2 +F ′′(X0)X1
2

(V E3) Ẋ3 = F ′(X0)X3 +3F ′′(X0)X1 X2 +F(3)(X0)X1
3

(V E4) Ẋ4 = F ′(X0)X4 +F ′′(X0)(4X1 X3 +3X2
2) +6F(3)(X0)X2 X1

2

(V E5) Ẋ5 = F ′(X0)X5 +F ′′(X0)(10X2 X3 +5X1X4) +
F(3)(X0)(10X3 X1

2 +15X2
2 X1)

...

When λ = −2m2

(n+1)(n+2) (with n ∈ IN), the first variational
equation has formal solutions at 0 of valuations n + 2− 1,
−n−1−1, −2−1 and 3−1. We choose for X1 the solution
of valuation −n− 2. Then we apply the method of variation
of constants. Let Y be a solution of (V E2) then Y = µV where
V is a fundamental matrix of series solutions of (V E1) (at the
point 0). We get µ′ = V−1(F ′′(X0)X1

2). The coefficient in t
of degree −1 of µ′ is the null vector. So we may integrate
and obtain µ as a (vector of) power series, from which we de-
duce X2 = µV and we go on. We now want to study the third
variational equation. We consider Y = νV and we compute ν′.

For n ∈ {0, . . .10}, we always find a generical non zero
residue at this stage (which means that the local solution will
have a logarithm and that the system will not be integrable).
For all values of Λ and m, we can always choose a level sur-
face h such that this residue will be non zero except in two
situations : when n = 0 and Λ = λ = −m2 and when n = 1
and Λ = λ =−m2/3 (see annex 5.2).
In both cases the residues cancel for the third variational equa-
tion. We made the computations choosing X1 as a linear com-
bination of the series solutions Yi, j and found no non zero
residue performing the computations until the 8th variational
equation. So we tried to look for (polynomial) first integrals
and found an additional one, in involution with H in both
cases. As the degree of freedom of the system is 2 we have
proved the complete integrability of the system in the two
cases Λ = λ =−m2 and Λ = λ =−m2/3.
We sum up our results in the following theorem:

Theorem 1 Let

H =
1
2

(
ȧ2 + φ̇2)+

1
2

a2 +
1
2

φ2− 1
2

m2a2φ2 +
1
4

λφ4 +
1
4

Λa4

be the hamiltonian function of the Friedmann-Robertson-
Walker system and let n be such that

λ =
−2m2

(n+1)(n+2)
(resp. Λ =

−2m2

(n+1)(n+2)
).

1. If n /∈ IN, then the differential Galois group of the first
variational equation is not virtually abelian and the sys-
tem is not completely integrable.

2. For n ∈ {2, . . . ,10}, then the differential Galois group
of the third variational equation is not virtually abelian
and the system is not completely integrable.

3. If n ∈ {0,1} and λ 6= Λ, then the differential Galois
group of the third variational equation is not virtually
abelian and the system is not completely integrable.

4. If n ∈ {0,1} and λ = Λ, then there is an additional first
integral In in involution with H and functionally inde-
pendent of H:

• if n=0 and λ = Λ =−m2,

I0 = φ ȧ−a φ̇

• if n=1 and λ = Λ =−m2/3,

I1 = ȧ φ̇+aφ− m2

3
(aφ3 +a3φ)

so the system is completely integrable in these two
cases.

Proof
For the first point, the proof is in section 3 (using the level
surface h = 0 and the first variational equation). For the
second and the third points, the proof is in section 4 and in
annex 5.2 (using the level surface h /∈ {0,−1/(4λ)} and the
third variational equation).
Lastly, for the fourth point, it suffices to check that dIn(X)
cancels when X is solution to the hamiltonian system; that
< ∇H,J∇In > cancels and that ∇H and ∇In are linearly
independent. That proves that the hamiltonian system has
two first integrals In and H which are in involution and
functionally independent. As the degree of freedom of the
system is two, we conclude that the system is completely
integrable.

Now here is the announced conjecture:
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Conjecture 1 The Friedmann-Robertson-Walker system is
completely integrable if and only if

n ∈ {0,1} and Λ = λ =
−2m2

(n+1)(n+2)
.

According to proposition 1, to prove completely this conjec-
ture, it suffices to prove that the third variational equation has
a non virtually abelian Galois group when n is an integer≥ 11
and such that λ = −2m2

(n+1)(n+2) . It seems that for n ≥ 2, the
residue (see appendix 5.2) always depends on h and hence is
not zero.

V. ANNEX

A. Variational equations and logarithmic terms

We give the intermediate computations for the k th varia-
tional equations where k = 1, . . . ,3 without giving the com-
plete developments in series of the solutions. The computa-
tions were made using Maple.

• The matrices F(k)(X0).

F ′′(X0) =
(

02,2 02,2 02,2 02,10
A1 02,2 A2 02,10

)

F(3)(X0) =
(

02,2 02,2 02,2 02,10 02,2 02,2 02,2 02,42
A3 02,2 A4 02,10 A4 02,2 A5 02,42

)

F(4)(X0) = 0

where

A1 =
(

0 2m2φ0
2m2φ0 0

)
, A2 =

(
2m2φ0 0

0 −6λφ0

)

A3 =
( −6λ 0

0 2m2

)
, A4 =

(
0 2m2

2m2 0

)
, A5 =

(
2m2 0

0 −6λ

)

• First variational equation

(V E1);Y ′ = F ′(X0) Y

A fundamental system of solutions is

V =
(

Y1,1 Y1,2 Y2,1 Y2,2
)

For i = 1,2, Y1,i =t (y1,i,0, ˙y1,i,0) and Y2,i =t

(0,y2,i,0, ˙y2,i), where y1,1 has valuation−n−1, y1,2 has
valuation n + 2; y2,1 has valuation −2 and y2,2 has val-
uation 3. Let

X1 = Y1,1

• Second variational equation

(V E2);Y ′ = F ′(X0) Y +B2

with

B2 = F ′′(X0)X
2
1 =t (

0,0,0,2m2φ0(t)y2
1,1

)

A solution of (V E2) satisfies

X2(t) = µ(t) V (t)

with

µ′(t) = V−1 B2 =

t

(
0,0,

−2m2 y2,2 y2
1,1 φ0(t)

d2
,

2m2 y2,1 y2
1,1 φ0(t)

d2

)

and d2 = y2,1 ˙y2,2− y2,2 ˙y2,1.
There is no term of degree -1 in t in the development in
0 of µ′(t).

• Third variational equation

(V E3);Y ′ = F ′(X0) Y +B3

with

B3 = 3F ′′(X0)X1 X2 +F(3)(X0)X1
3

B3 =t (
0,0,6y1,1(m2φ0(t)(µ[3]y2,1 +µ[4]y2,2)−Λy2

1,1),0
)

A solution of (V E3) satisfies

X3(t) = ν(t) V (t)

with

ν′(t) = V−1 B3 =

t

(
−6y1,2y1,1(m2 φ0(t)(µ[3]y2,1 +µ[4]y2,2)−Λy2

1,1)
d1

,

6y1,1y1,1(m2 φ0(t)(µ[3]y2,1 +µ[4]y2,2)−Λy2
1,1)

d1
,0,0

)

and d1 = y1,1 ˙y1,2− y1,2 ˙y1,1.

There is a generical non zero residue in the expression
of ν′[1] for n ∈ {0, . . . ,9} as is shown in next tabular.
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B. Numerical results

n residue of ν′[1](t) (third variational equation)

0 m2 +Λ (cancels iff Λ =−m2 = λ)

1 −3Λ−m2 (cancels iff Λ =−m2/3 = λ)

2 200hm4−56m2 +75Λhm2 +144Λ

3 −23079Λhm2−16080Λ−102116hm4 +25880m2

4 2901720Λhm2 +1070400Λ−2294240m2+
11336508hm4 +1806675h2m6 +245310Λh2m4

5 −65602125Λhm2−15132600Λ+38370360m2−
233835475hm4−16308985Λh2m4−115917879h2m6

6 −4636672395264m2 +34065966173760hm4 +10266629808960Λhm2+
1629059475456Λ+5029205015016Λh2m4 +34946518111596h2m6+

176211274785h3m6Λ+1776954866960h3m8

7 −884443483627200Λhm2−102737197946880Λ+318902786173440m2−
2769109330856400hm4−713790270416328Λh2m4−4888091932092711h2m6−

74435577371925h3m6Λ−749842264480100h3m8

8 18188769231360000Λhm2 +1616329562112000Λ−5374385551872000m2+
54256909133952000hm4 +148014408493728720h2m6 +45655069391570927h3m8+
1156297133832750h4m10 +87598957238520h4m8Λ+21816271124470080Λh2m4+

4521413998439388h3m6Λ

9 −200227669786811520000Λhm2−14066834095480320000Λ+49499389514082816000m2−
573191906897586816000hm4−6638577966765689670h4m8Λ−333689292899038270800Λh2m4−

2251082650346871561360h2m6−88506922209720557950h4m10−114667992412647561855h3m6Λ−
1163101502461355812811h3m8

10 56049210857730877610302800h3m8 +8543161503524246389650552h4m10+
71977144524368931702817920h2m6 +7837671931869489710000h5m10Λ+
130350944562836789792000h5m12 +4847238854979929210880000Λhm2+

276184874161891639296000Λ−1019619628144943549644800m2+
13391281016157722259456000hm4 +633972179303882072411835h4m8Λ+

10703074858075603962921600Λh2m4 +5493288230826857567469000h3m6Λ
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C. The particular case λ = 0

If λ = 0 , we choose a particular solution on the level sur-
face h = 0, X0 = (0,φ0,0, φ̇0) where φ0(t) = eit .
The variational equation becomes

Y ′ =




0 0
0 0

1 0
0 1

−1+m2e2it 0
0 −1

0 0
0 0




Y

The scalar equation y′′(t) = (m2e2it − 1)y(t) is equivalent
(with x = e2it ) to:

4x2y′′(x)+4xy′(x)+(m2x−1)y(x) = 0

The exponents at 0 are −1/2 and 1/2, they differ from an in-
teger and one finds formal solutions at 0 with log when m 6= 0.
Furthermore, the exponents at infinity are 1/4 + m/2i

√
x and

1/4−m/2i
√

x so the sum of the exponents at 0 and at infinity
cannot be an integer : there is no exponential solution and the
equation is irreducible. One concludes to the non integrability
using our criterion from [2, 3].
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