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These notes concern the material covered by the authors during 4 classes on the Escola Brasilei@aida Mec
Estatstica, University of @0 Paulo at 8o Carlos, February 2004. They are divided in almost independent
sections, each one with a small introduction to the subject and emphasis on the computational strategy adopted.

1 Introduction probability monotonically increases. Fig. 2 shows the qual-
itative behaviour of this parameter. Neay (above), this

This article is an expanded version of the notes used by theorder parameter is given by

authors in the course taught in the 2004 edition of the Brazil-

ian School of Statistical Mechanics (EBME), held in Febru-

ary of 2004 at the & Carlos campus of the State University P(p)~(p—p)? for 0<p—p.<<<1,

of Sao Paulo (USP). The various sections are mostly inde-

pendent of each other, and can be read in any order. Dif-whereg is a universal critical exponent, which depends only

ferent styles and notations, independently adopted by eacton the lattice dimension, not on the local lattice geometry

author while writing their first versions, were kept. (its valueg = 5/36, for instance, is the same for square,
The subject of all sections can be interpreted as the sametriangular or any other two-dimensional lattice). The thresh-

in a broad sense, namely the consequences of lacking multiold p. = 0.59274621(13) [1] is valid for the square lattice.

ple characteristic scales (time, size, etc) in both equilibrium However, this is not a universal quantity: the triangular lat-

statistical models (two next sections), and complex dynamictice, for instance, hag. = 1/2. See [2] for this and other

systems (remainder sections). interesting issues.

2 Percolation

Mathematicians prefer to define percolation starting from an
infinite lattice. For simplicity, let’s consider a square lattice.
Each site is randomly tossed to be present or absent, accord-
ing to a fixed concentration By considering links between
nearest neighbour present sites, one studies the structure of
clusters (or islands) which appears. Fig. 1 shows a piece of
such a lattice, as an example.

This system presents a phase transition, when one varies
the concentratiop. For small enough values pf all islands
are finite, including the largest one (highlighted by black cir-
clesin Fig. 1). Starting from any present site, itis impossible
to go too far away from this point by walking only through
nearest neighbouring present sites: eventually one returns
back to the starting point. On the other hand, by increas-
ing p, suddenly the largest cluster becomes infinite, at a very
precise critical valug,, and then one can cover infinite dis-
tances starting the walk from any present site belonging to
this cluster. The parameter of order for this transition can be
defined as follows. One takes a site at random, and measur
the probabilityP(p) that this site belongs to the largest clus-
ter. Forp < p., this largest cluster being finite on an infinite
lattice, this probability vanishes. Fpr> p., however, this

Figure 1. Finite piece of an infinite square lattice. Small black cir-
cles define the largest cluster. All other smaller clusters are denoted
€8y open circles.
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Figure 2. Probability for a random site to belong to the largest
cluster.
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The exponential form above is only the asymptotic lead-
ing factor of G(x). Exactly atp = p., however, long-range
correlations appear, i.€5(p) diverges, Fig. 3, and another
leading factor emerges, namely the power-law

G(z) ~az™" for large = and p=p. .

For lattice dimensions other thah= 2, the critical expo-
nent isd — 2 + n, instead. Again, the critical exponent

is universal (in two dimensions; = 5/24). Contrary to
the exponential decay which defines the typical length
this power-law lacks any characteristic length scalepAt
any finite piece of the infinite lattice is not enough to de-
scribe its complete critical behaviour: correlations overflow
the boundaries of this piece, whatever is its finite size. For
this and any other critical system, the classical perturbatior
approach of determining first the behaviour of a small piece
of the system, including later the influences of all the rest
(the “perturbation”), does not work at all: the “rest” is never

Many further different quantities can be considered. One Negligible.

of then is the correlation functio@(x), defined as follows.
For a given configuration like that on Fig. 1, one takes two
sites distantc from each other, and counis = 1 if they
belong to the same clustercluded the largest ongother-
wise one countg = 0. Then, one takes many other pairs
of sites distant the same valugand perform the average of

g. Finally, one considers many other configurations tossed

under the same concentratipnand perform the configura-
tion average. For fixegd and large values af, this function
exponentially decays as a functionaaf

G(z) ~ e ?/¢®)  for large z and p#p. ,

where the so-called correlation lengglip) measures the
range of correlations, or, alternatively, the typical diameter
of an island. Even the lattice being infinite, one does not
need to consider distances larger tifén): a finite piece of

Near butnot exactlyat the threshold., the correlation
length itself incorporates this criticality as

E(p) ~Ip—p|™" for |p—pc <<<1,

wherev is another universal critical exponent (in two di-
mensionsy = 4/3). Note the importance of excluding the
largest cluster from the above definition of correlation func-
tion: the correlation length remains finite below as well as
above the threshold.. By further increasing abovep,,
some finite islands glue on the already existent infinite clus-
ter, and the average diameter of the remainder islands de
creases. Fig. 3 shows the qualitative aspect(pf. The
exponent is the same on both sides @f. The multiplica-
tive factors of|p — p.|~” omitted from the last equation,

the lattice, larger than this size, presents the same behaviouthowever, are two different constants.

as the whole infinite lattice.
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Figure 3. Correlation length (typical diameter of an island).

Another interesting quantity is the mean cluster size
x(p), the average number of sites belonging to each island
again excluding the largest cluster. Assigning a unit “mass”
to each present site, this quantity can be interpreted as th
typical mass of an island. It reads

X(P) ~p—pe| 7 for |[p—p|<<<1,

where~ is the corresponding critical exponent, also univer-
sal (in two dimensionsy = 43/18). The qualitative plot for
x(p) is shown in Fig. 4. Again, the universal exponent is the
same below and above., but the amplitudes multiplying
|p — p.|~7 are different.
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Figure 4. Mean cluster size (typical mass of an island).

All these quantities are related to the average number

ns(p) of s-clusters per site, wheredenotes the cluster size,

or mass. The order parameter, the correlation length, the

mean cluster size and others can be obtained frQ(p),
which is then called th@otential or generating function.
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counts the total number of-islands and multiply withs,
getting the total number of sites belonging to saiklands.
Then, one divides the result by the total number of lattice
sites, getting the quoted probability. Remember thdp)
is the number ofs-islandsper site) Thus, the sum over
s which appears in the above equation corresponds to the
probability of picking a random site belonging to afiy
nite island (of course, only finite values efare scanned
by this sum.) Finally, the concentratignof present sites
is the probability for a random site to belong either to the
infinite cluster (if any) or to any other island, obtained by
summing up the probabilitieB(p) and ", s ns(p) of each
case, respectively. In Fig. 2, the region above the curve for
P(p) and below the straight5°-diagonal corresponds just
to all sites belonging tfinite islands.

The mean cluster sizg(p) is also related tons(p)
through

X(p) =D s*ns(p)

which rid off further explanations.
Both P(p) and x(p) are one-site averages, obtained by

(The term “per site” means to consider an enormous lattice scanning the lattice site by site. Thus, for each site, the prob-
piece, and divide the counting by the number of sites inside ability sn(p) to belong to some-island is considered in

it, i.e. ns(p) is indeed the density of-clusters.) In particu-
lar, atp,. this size distribution follows a power-law,

ns(pc) ~sT

wherer is another universal exponent (in two dimensions,
7 = 187/91). Again, the system lacks any characteristic
size scale: gb., one cannot neglect clusters larger than any
predefined cut off.

Near but not exactly at. and for large sizes, n;(p) is
a generalised homogeneous function [3pof p. and1/s,
i.e. it obeys the property

n[Ag(p_pC)aAs_l] AT n(p_pms_l) )

whereA is an arbitrary number, and is a further critical,
also universal exponent (in two dimensioas,= 36/91).
The critical point corresponds to both variabjes p. and
1/s vanishing. By choosing = s, one obtains

ns(p) = s~ fl(p —pe)s?]

which allows an interesting interpretation. By measuring
ns(p) in units of n,(p.), i.e. by takingns(p)/ns(p.), one
does not need to consider it as a function of two vari-
ablesp and s: it depends only on the single combination
z=(p—pc)s’.

The order parametd?(p), Fig. 2, for instance, is related
tons(p) through

p="Pm)+>_ snip) -
The reasoning behind this formula is simple. For a fixed

sizes, one can determine the probability:s(p) of picking
a random site belonging to somésland. (Why? First, one

the two last equations. The correlation length) is dif-
ferent, it is a two-site average. In this case, one needs to
scan all pairs of lattice sites which belong to the same is-
land. The class of-islands contribute, then, with a weight
proportional tos?n,(p). (Why? The probabilitys n(p)

to pick the first site inside this class is multiplied with the
numbers — 1 of remainder sites of the same island: any
of them could be the second site, in order to form a pair.
For large islandss ands — 1 can be confounded.) Instead
of determiningé(p) directly from the correlation function
G(z) ~ e~*/¢®) one can compute a related quantity de-
noted here with the same symlggp) by

2(p) = Za B’ 7 1ap)
g (p) - ZS 82 ns(p) )

where R, measures the average radius: for eaghland,
one first computes its gyration radius defined By =
>, mi?/s, wherer; is the distance between siteand the
center of mass, and then averages oves-alands.

At a first glance, one is tempted to relate the average
mass to the average radius through the Euclidean relation
mass ~ radius?. However, percolation clusters are not
compact objects. Instead, they dractals with dimension
D alittle bit smaller then the Euclidean dimensi@nThus,
the correct relation isnass ~ radius”. Nearp,, a typ-
ical fractal island with radiug has masg” smaller than
the volumet?, due to the holes which characterise the frac-
tal. The volume fractiog? /¢¢ actually occupied by this is-
land equals the probabilit}(p). From this equality, namely
P = ¢P /¢4, one finds the scaling relation

D=d-p3/v .

The fractal dimensiorD is also a universal critical expo-
nent (in two dimensionsD = 91/48). By transforming
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the s-sums into integrals, a procedure valid near the criti-
cal point, and by profitting from the generalised homoge-
neous form ofw,(p) in order to change the variable from
toz = (p — p.)s?, one can find various other scaling rela-
tions between critical exponents, for instance

ns,(p) = s~ fl(p — pe)s”,s/LP]

a function of only two variables (p — pe)s® and
w = s/LP, instead ofp, s and L. In particular, exactly

w=9_1= 1 atp., one can perform integrals in instead ofs, getting a
o series of useful finite-size-scaling relations
T—2
B= ’ ¢ v/v
o XL(pC) ~ L% =1 5
3—T1
Y= )
g
Pr(pe) ~ L7 = L7AlV
=1+ ol , L(Pe)
5
d
D=
T—1" €n(pe) ~ L% =L,
1 , ,
Do = 7 etc. The exponenp, = ~/v is called theanomalous di-
mensionof the corresponding quantify(p), ¢p = — /v is
g7 1 the same for the order paramefp), etc. Not surprisingly,
ve=—=—">/1 the correlation length shares the same dimengjo#- 1 of
the length finite sizd., last relation. It has an interesting in-
y=02-nv , terpretation, normally used as an argument in favour of the

finite-size-scaling hypothesis: instead of diverging.athe

etc. Exponentsr andd concern respectively the tempera- lot of &(p) for a finite lattice presents a peak near the

ture dependence of the specific heath, and the magnetic field _. o : .
o ' . ight of which is proportional to the lattice lengtk
dependence of the magnetisation. They were not directly €19 'to C S Propo t(_) a, to the at.t ce length )
treated in the present text. The corresponding equations ' 19ure 5 gives the qualitative behaviour of some generic
were included above for completeness. Indeed, these varduantityQ(p) which diverges ap.., for an infinite lattice, ac-
ious critical exponents are not independent from each other:COrding to its characteristic critical exponept.e. Q(p) ~

knowing two of them, for instance and o, one automat-
ically knows all others. Equivalently, the many power-law

|p — pc| 9. The plot, however, corresponds to a finite lattice
of length L. The divergence is replaced by a cut off peak,

dependences which characterise the critical behaviour ardVith @r(p) ~ L#/v for values ofp inside an interval of

related to each other.
Contrary to mathematicians, physicists prefer finite lat-
tices, for instance & x L square, a lattice piece like that

width L=/* aroundp.. If the thresholdp. is known, one

can profit from this finite-size behaviour in order to deter-
mine the anomalous dimensi@r, = ¢/v, by measuring

Q1 (p.) for different lattice sizes. An estimate fp. itself
can be also obtained, by tuning the precise concentration for
which the log-log plot ofp againstL is a straight line.

shown in Fig. 1. It is treated by choosing some artificial rule
to define the neighbourhood along its boundary. A particu-
larly convenient rule is to take the bottom-row spins to re-
place the missing up-neighbours of the top-row. Symmetri-
cally, one chooses the top-row spins as down-neighbours of
the bottom-row. This rule is usually called periodic bound-
ary condition, the lattice becoming a cylinder. One ad-
vantage is the preserved translation symmetry, all rows are
rigorously equivalent. Considering also periodic boundary
condition along the vertical direction, all columns equiva-
lent, the cylinder turns into a torus.

The infinite lattice limit is considered by including the
lattice size as a further parametefL into the generalised
homogeneous relation, the so-called finite-size-scaling hy-
pothesis

nAY (p=pe), APsTH AL = AP n(p—pe,sTHLTY)

where\ is an arbitrary number related to the previous one 0
by A = AP. From this, one can express the density; (p)
of s-clusters as

I
0 0.5 1

p

Figure 5. Finite size cut off of a divergence.
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The finite-size-scaling form

QINY(p—p), AL =A% Q(p — pe, L7Y)

exhibits the anomalous dimensigr, for this quantity().

By choosing\ = L, one reveals an interesting property: the
plots of Q1 (p)/Qr(p.) against(p — p.)L'/* will collapse
on the same curve for different lattice sizesThis equation

is obtained by performing the properintegration on the
finite-size-scaling relation.

Particularly useful are quantities with vanishing anoma-
lous dimensiongg = 0. Plotted againsk, they are asymp-
totically constant for large values df, when the correct
concentratiorp = p. is chosen. The so-called Binder cu-
mulant [4] and the correlation between opposite surfaces [5]
are general examples of these quantities. For percolation,
one has the spanning probabil8y (p) around, say, the hor-
izontal direction. For a fixed. x L finite lattice, it varies
with the concentratiop as a sigmoid curve schematically
shown in Fig. 6.

>
=
©
o
o R
C)_I'
(@]
£
c
&
Q_ L
2 L

r

0

PP.. R

concentration

Figure 6. Spanning probability for two lattice sizésand L’
(L' > L). Due to its anomalous dimensiafy = 0, for larger
and larger lattices this function approaches the step< p.) =
0; S(p.) =r"; S(p>pc) =1, also highlighted by two heavy
straight lines plus the open dot. By fixing an arbitrary vahat the
vertical axis, one finds the sequenge’ ... forincreasing lattice
sizes, which converges ig.

In the limit of infinite lattice size, this curve approaches a
step function, suddenly jumping from 0 (valid for alk p.)
to an isolated universal valué exactly atp = p.. Then, it
immediately jumps again fromi to 1 (which remains for all
p > p.). Itis a kind of order parameter, vanishing along all
the disordered phase. However, instead of gradually increas
ing according to the smooth curye—p,.)® when the thresh-
old is surpassed, it becomes immediately constant along al
the ordered phase, i.e. it behavegasp. ), with a zero ex-
ponent instead gf. Thus the anomalous dimension$xp)
is ¢s = 0, whereaspp = —j3/v for the order parameter
P(p).

A simple an efficient way to get the value gf is to ex-
trapolateSy, (p) for larger and larger lattices. By fixing some
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valuer on the vertical axis of Fig. 6, one measures the cor-
responding valuesy,,, pr,, L, --. for increasing lattice
sizesLy, Lo, L3 ... In [6], the formula

Ay (r)
L

A2 (’I")
L2

+

pr) = pe+ 717 [Aolr) + b

is proposed for thd.-dependence of this series. The fitting
of this form to real Monte Carlo data is excellent, giving
numerical estimates for the thresheldwithin an accuracy
of one part in10%, for an acceptable computational effort
[6]. One can fix any value of at the vertical axis, Fig. 6.
The rate of convergence is dictated byL'/¥, for increas-
ing values ofL.

A faster rate of convergence, and hence a better accu-
racy, can be obtained by choosing- r*, the critical univer-
sal value which in some cases is exactly known through con-
formal invariance arguments. Within this convenient choice,
one hasAy(r*) = 0 in the above equation, accelerating
the convergence rate tg/L'*'/¥ [6]. Better yet is to con-
sider the probability of wrapping along the torus, instead
of spanning. In this case, the convergence rate is dictated
by 1/L?>t1/¥, and the already quoted best known estimate
pe = 0.59274621(13) was reported [1].

In [6], the spanning between two parallel lines distant
L/2 from each other is verified: one counts= 1 if there is
some island linking these two lines = 0 otherwise. Then,
St.(p) is the configuration average of This definition mul-
tiplies the statistics by a factor @f. for the same configura-
tion, one considers rows 1 afd- L/2, also 2 an@ + L/2,
etc, and repeats the same for columns. Larger lattices can be
monitored in this way, allowing for instance a much better
definition of the threshold distribution tails [7].

The canonical way to simulate the percolation problem
on computers corresponds to a fixed concentratior\c-
cording to this value, one tosses a random distribution, then
measures the quantity of interest for this particular con-
figuration, and finally tosses many other configurations and
repeats the whole process. At the end, one has a single av-
erage valug)(p) for the fixed concentratiop. In order to
get the whole functior)(p), one needs to repeat the pro-
cess for many other values pf Even so, the result is not a
continuous function op.

Here, we will show a way to get the continuous depen-
dence betwee® andp [1]. One starts with an empty lat-
tice. Then, the lattice is filled-up, one random site at each
step. After each new site, one determines the vgyeof
the quantity of interest, where is the number of present
sites so far, and accumulates it on-@istogram. When the
lattice is completely filled with all itsV sites present, one
starts the same process again, from the empty lattice. After
la sufficient large numbekd/ of repetitions, one divides all
N + 1 entries of the histogram by/: now it stores the “mi-
crocanonical” averageg,,, i.e. the averages @} for fixed
numbers, =0, 1, 2... N of present sites.

Once the histograrg,, is complete, the simulation step
is over, we miss now simply to treat the data already stored
on it. The “canonical” average can be obtained from
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N step is over.Q(p) is simply a polynomial irp, the coeffi-
n Nen cients of which are stored i,,. The continuous character
Qlp) = Z Ox p"(1-p) @n of Q(p) may be of fundamental importance. To find the
n=1 rootsp, p’... shown in Fig. 6, for instance, one needs to
solve the equationSr(p) = r, Sp/(p’) = r, etc, which
would be a hard work without knowin§;, as a continuous

function ofp.
During the simulation process, the determinatiogpf
for the current configuration is not necessarily an easy task,
if the quantity@ does not depend only on the local situa-
B G tion where the last site was occupied. However, the filling-

up process makes the structure of clusters easy to study:
only three situations should be analysed for each new site
included. First, if this new site is isolated from all others,

[ K ] it forms a new one-site cluster and receives a new cluster-
label, namely its own numberaccording to the chronolog-
ical order it appeared. Second, this new siteould sim-
ply aggregate itself to an already existent cluster, being the
next-neighbour of another previous sitebelonging to this
cluster: in this case, the new site receivésas its cluster
label. The third possibility, for which non-locality should

{ F ] [ D } { G } be considered, corresponds to join two or more old clusters
into a single larger one. The structure of cluster labels is ex-
emplified in Fig. 7. Each site points to another previous site
belonging to the same cluster. Only the root of each cluster
[ K ] points to itself.

_ _ In order to join a cluster into another, one needs to find
Figure 7. Tree structure of cluster labels. The root for this par- jio root, and change its status: now it points to some site of

ticular cluster is sité<. In order to find the ultimate label for site :
F, one needs a two-step search, because it does not point directl);he other cluster. To find the root of some cluster could be

to the root (up). Once this process is performed for the first time, @ Multi-step search procedure, going from site to site along
however, the pointer becomes direct (down), saving computer time@ tree branch, until finding the only one which points to it-

from now on. self, the root. In doing so, one can return back through the
same path, updating all pointers to the real root. This saves
whereC}; is the combinatorial factor. Note thatvas intro- computer time for future searches. The following recursive

duced as a continuous parameter, only after the simulationC-language routine performs this task.

int root(S) int S; {
/* finds the cluster root of site S; the array Cluster[S]
points to some site belonging to the same cluster as S */
int S;
if((s=Cluster[S])==S) return(S);
return(Cluster[S]=root(s));

}

3 Broad Histogram Method simplicity, the Boltzmann constant is taken to be unitary.
For macroscopic systems, the number of statés enor-
The main purpose of equilibrium statistical physics is to ob- mous. Consider a system wifii binary units, for instance

tain the canonical average a set of V Ising spins which can point eithetp or down.
One states of the whole system is a fixed distribution of

S, Qee Ee/T spinsup anddown. The total number of such states2i¥,

<Q>r= W which is unimaginably huge for a macroscopic Thus, for

most cases the sums appearing in the above equation canno
of some quantityy) of interest, when the system under study be analytically performed.
is kept at fixed temperaturB. The sums run over all pos-
sible statess. For each of them@), and E, represent the The so-called Monte Carlo method performs these sums
values of the quantityp and the energy, respectively. For for a restricted sub-set of states, instead of scanning all of
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them. In doing so, one can control the degree of approxima-tion of the sampling set. That is why they are absent from
tion by choosing the sampling set of statess, ... sy, to the above equation.
be representative enough, according to the desired accuracy. The important feature of this Metropolis recipe is to pro-
For instance, in order to construct a completely random vide a Markov chain of states obeying the Gibbs canonical
state, one chooses each Ising spin to pambr down ac- distribution, i.e. each state appears along the chain accord-
cording t050% chance. The random sampling approach ing to a probability proportional te~ /7. Alternatively,
corresponds to perform the sums withid states tossed each energye appears along the Markov chain according
in this way. However, it would work properly only in the to a probability proportional tg(E) e~ #/7. In reality, the
limit 7 — oo, where differences in energy are irrelevant. argument works in the reverse sense: given this canonical
Normally, the numbep(E) of states sharing the same en- distribution, one can construct a recipe to toss random states
ergy F is a fast increasing function df. (For finite sys- obeying it. Normally, this construction is based on some
tems, besides a lower bound, there is also an energy uppearguments like detailed balance, and others. The above de-
bound. Thusg(E) normally presents a peak in between scribed Metropolis algorithm is one of these recipes.
these bounds. However, only the energy region whére) If the protocol of allowed movements is ergodic, i.e. if
increases, from low to high energies, is important. One any states is reachable starting from any other, the degree
can forget the ultra-hight-energy region of the spectrum, of approximation depends only avi. Namely, the error is
whereg(E) decreases back, because equilibrium is impos- proportional tol //M. The protocol defined by performing
sible there: for that, one would need a negative tempera-only single spin flips is obviously ergodic. Thus, in princi-
ture.) Within this random sampling approach, high-energy ple, one can surpass any predefined error tolerance, simply
states near the peak gfF) are more likely to belong to the by improving the statistics with larger and larger values of
sampling sub-set. In the averaging process, on the contrary}/ (also more and more computer time, of course). Other
the Boltzmann factoe—Z:/T prescribes large weights just issues are indeed important, as the quality of the random
for low-energy states, which are seldom sampled under anumber generator one adopts. This canonical importance
completely random choice. In short, a sub-set of completely sampling Monte Carlo method is by far the most popular
random states would be a good sample for high energiesjn computer simulations of statistical models. However, it
which are not so important for the averages, but presents gresents a strong limitation: one needs to fix the tempera-
poor sampling performance within the more important low ture7" in order to construct the Markov chain of sampling
energies. states. At the end, for each complete computer run (which
In order to solve this drawback, the importance sampling can represent days, months or even years), one has the aver-
Monte Carlo method incorporates the Boltzmann factor into age< @ >r only for that particular value df'. One needs
the choice ofM random states. In order to construct the to repeat the whole process again for each other vale of
sampling set, one chooses states according to a probabilone wants to record.
ity proportional toe—%:/T. The pioneering recipe to per- The same canonical average can be re-written as
form this task is the half-century old Metropolis algorithm
[8]. One starts to construct the sample set from a single _E/T
random states;. Then, some variant of; leads to a new <Q>r= Yp <QE)>g(E)e /
states, for instance a random spin is flipped 4n, leading g 9(E)e /T
to s which is then a candidate to bg. If the energy dif- where
ferenceAE = E, — E,, is negative, thery is accepted,
ands, = s is included into the sampling set. Otherwise, 1
one accepts only within a probabilitye*gE/T. In order <QE)>= g(E) Z Qs
to implement this conditional acceptance, one tosses a ran- s(B)
dom number- between 0 and 1, and compares it with the is the microcanonical, fixed average. The sum runs over
quoted probability: ifr < e 2E/T states is accepted, all g(E) statess(E) sharing the same enerdy. Both g(E)
i.e. s, = s is included into the sampling set. However, and< Q(E) > do not depend on the temperatdrgthey
if r > e 2E/T sis discarded and, = s, is repeated in  are quantities dependent only on the energy spectrum of the
the sampling set. Following the same rule, the third elementSystem, nothing to do with thermodynamics which describes
s3 is constructed fronss, s, from s, and so on, up te,;. its interactions with the environment. The temperaflisgp-
This sequence where each state is constructed from the prepears only in the Boltzmann factoss /7, which presents
vious one is called a Markov chain. At the end, one simply & known mathematical form independent of the particular
determines the unweighted average system under study. For a fixed temperature, each energy
contributes to the average according to the probability

M
< ~ s; E)e—E/T
@>r ZQ"’ Pr(E) = 9(E) N o—E' /T
i=1 Sm g(E)e B/
among thesé\/ states. Note that the Boltzmann weights which can be related to the probabilig (E) correspond-
e~ E+i/T are already taken into account during the construc- ing to another temperatuf, by
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B(A—2) with the same temperatures, for a largérx 90 lattice, a
Pri/(E) = ¢ 1T Pr(E) ] still small but 8-fold larger size. Instead of onlg, the loss
S e T pr(E) in statistics corresponds now to a factorl6fmillions! The

. o : . situation would be even worse for larger lattices, because
Thus, in principle, one can re-use data obtained from simu-

lations performed at the fixed valde in order to optain the Itrr:s gig(s)rr]mlg? Lg:;tcgf;lsnni?(ﬁ)tﬁgg 2;?:;?’ Reweight-

averages corresponding to the other temperatiranstead

of simulating the same system again. This is the so-called

reweightingmethod [9], which became famous after rein-

vented 3 decades later [10]. 10° ¢
As an example, consider the Ising model o ax L

square lattice, with periodic boundary conditions. Only

nearest neighbouring spins interact with each other through

a coupling constanf. Normally, one counts energy.J

for each pair of parallel spinsip-up or down-down), and

+J otherwise. Here, we prefer an alternative counting:

only pairs of anti-parallel spinguf-down or down-up) con- 100 L

tribute with an energy+2.J, while pairs of parallel spins

do not contribute. FoZ = 32, the probabilityPr(E) is

displayed in Fig. 8 for two slightly different temperatures 107 btk b

T = 2.247 andT” = 2.315, one below and the other above oo o0 0'teznergy coi'(leensity 0% o

the critical temperaturg, = 2.269 (all values measured in

units of J). This narrow temperature range corresponds toFigure 9. The same as Fig. 8, with the same temperatures, now for

3% of T,. Energy density means/2L?, the average en- @ 8-foldlarger0 x 90 lattice.

ergy per nearest neighbouring pair of spins (lattice bonds).

Instead of using reweighting through the last equation, both _ Reweighting methods based on the last equation do not
curves were independently constructed solve the problem they are supposed to solve. One can-

not extract the thermal averages for a temperaftrecom
Monte Carlo data obtained with another fixed temperature
T, unlessT andT” are very near to each other. One still
Qo0 [T T T needs to run the whole computer simulation again and again
for a series of temperatures within the range of interest.
However, as a solace, it solves another important problem:
it allows one to get the thermal average ) >r as a
continuous function of 7. After determining< @ >r,

< Q@ >7,, < Q >r, ... by repeating the simulation for

a discrete series of fixed temperatufigs 75, 73 ..., the
above reweighting equation allows the interpolation in be-
tween these values [11].

The first successful attempt to obtain thermal averages
over a broad temperature range from a single simulation was
o . W the multicanonical sampling [12]. In order to reach this goal,
004 008 O anergy density 02 first one needs to abandon the Gibbs distribuftpriE), be-

cause it covers a very narrow energy range, hence a very
Figure 8. Squared energy probability distribution for the Ising narrow temperature fa”geT- Instead of the canonical ‘?‘epe”'
model on 2 x 32 lattice, forT = 2.246 (1% belowT, = 2.269) dencePr(E) o g(E)e””/T which produces the undesired
andT’ = 2.315 (2% aboveT}). For the sake of comparisons, both ~ Very narrow curves in Fig. 9, the simplest choice is a com-
peaks were normalised to unit. pletely flat probability distribution, i.e. a constaRt, (F)
within the whole energy range of interest, where the label

Note the vertical axis of Fig. 8, displaying the squared M stands for multicanonical. How to get such a flat distri-
probability. On the other hand, the error is inversely propor- bution? The idea is to gradually tune the acceptance of can-
tional to the square root of the statitics, i.¢/M. Hence, didates to belong to the Markov chain, in real time during
this plot can be interpreted as the statistics one needs insidéhe computer run: one rejects more often states correspond-
each energy level, in order to fulfill a previously given error ing to already over-populated energies, while less populated
tolerance. In order to obtain the right curvg’ from the ~ energies are accepted. In order to get a completely flat dis-
left one (), by using the reweighting equation, one would tribution, the acceptance rate corresponding to each energy
pay a price in what concerns accuracy. Near the maximumZ£ would be proportional ta/g(E). Howeverg(E) as well
corresponding td”, the statistics foff” is 10 times poorer. ~ 8S< Q(E) > are not known, otherwise the thermal aver-
For this tiny32 x 32 system size, the price to pay is not so 9€< Q >r could be directly obtained. Thus, one needs

bad. Consider now Fig. 9, showing the same probabilities 10 Measurg/(E) from the computer simulations. This can

[P (E)/Pmax] °

[P(E)/Pmax]?
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be done during the run, by booking the numbgrE) of These two microcanonical averages are relateg )
attempts to populate each energly If the final distribu- through the broad histogram equation [14]
tion is really flat, these numbers are proportional{&),
because only a fraction proportional 1@g(E) of these at- J
tempts were really implemented, i.el(E) = Kg(E). In  9(E) <N"(E) > = g(E+AE) < N (E+AE) >
this way, one determineg E') apart from an irrelevant mul-
tiplicative factor K which cancels out in the previous for-
mula for< @ >r. During the same run, the microcanonical : )
average< Q(E) > can also be measured, by determining the virtual moverllents one chooses as the pr_otocol. the total
the value of for each visited state, and accumulating these nu.mberZS(E) N O_f allpwed movemer_lts Wh'Ch. transform
values onE-histograms. Again, different recipes could be £ into E+AE, considering aly(E) possible starting states,
invented in order to gradually tune the acceptance rate leadis the same numbéx__ . ) N of reverse movements
ing to a final flat histogram. Perhaps the most effective of which transform bac + AE into E, now considering all
them is proposed in [13], where a multiplicative tolerance g(E + AE) possible starting states.
factor f controls the distribution flatness. One starts witha ~ The microcanonical averagesc N'P(E) > and
large tolerance, and gradually decreases the valyetof < N(E) > can be determined by any means. If one
wards unity. knows how to get their exact values, the ex@dt') can be
The broad histogram method [14] follows a different ©obtained from the above equation. Otherwise, some approx-
reasoning. Instead of defining a dynamic recipe, or rule, imate method should be adopted, for instance some Monte
like Metropolis or multicanonical approaches, the focus is Carlo recipe. In this case, the only requirement the dynamic
the direct determination of(E) by relating this function  rule needs to fulfillis the uniform visitation among the states
to two othermacroscopic quantities< N'"P(E) > and sharing the same energy, separately. The relative visitation
< NI(E) > defined as follows. First, one defines a rates to different energy levels is unimportant, one does not
protoco| of allowed movements which potentia”y could be need to care about detailed balance and other complicated
performed on the current state For instance, the sing|e issues. Thus, the choice of the particular dynamic rule can
spin flips already mentioned. They are virtual movements, b€ made within much more freedom than would be neces-
which are not implemented: they are not necessarily the sary for canonical averages. In particular, any dynamic rule
same movements actually performed in order to define thewhich is good to determine canonical averages (Metropolis,
Markov chain of states, from which one measures the de-Mmulticanonical, etc) is equally good for microcanonical, but
sired quantities. They have nothing to do with acceptancethe reverse is not true.
rates or probabilities, each virtual movement can be only al- ~ Once the microcanonical averages N"P(E) > and
lowed or not. In order to avoid confusion, let’s cdyinamic < N“(E) > are known as functions of, one uses the
rule the sequence of movements actually implemented in @bove equation in order to determipeE’). For instance,
order to construct the Markov chain, with its characteristic starting from the lowest energy, of interest, and pre-
acceptance probabilities, rejections, detailed balance arguscribing some arbitrary value fgi( £y ), this equation gives
ments and so on. This rule is not part of the broad histogramg(£1) whereE; = E, + AE. Now, fromg(E1 ), one deter-
method, any such a rule able to determine microcanonicalMinesg(E») whereEs; = E; + AE, and so on. In this way,
averages is good. g(F) is obtained along the whole energy range of interest,
movements is the reversibility, i.e. if some movement out when< @ > is calculated. For that, the microcanon-
s — s isallowed, then’ — sis also allowed. Furthermore, ical average< Q(E) > was previously determined in the
one chooses a fixed energy jumyE: any choice is valid, ~Same way asc N'P(E) > and< N"(E) >, during the
thus the user can choose the more convenient value. FoSame computer run.

This equation is exact, completely general, valid for any
model [15]. It follows from the required reversibility of

each state corresponding to energy, one counts the total In order to implement this broad histogram method,
numberN P of allowed movements one could potentially When treating some generic problem, the only tool the user
implement, increasing the energyfior AE: < N'P(E) > needs is a good calculator for microcanonical averages
is the microcanonical average of this counting, ovey@alf) < N"(E) >, < N™(E) > and< Q(E) >. The accu-
states, i.e. racy obtained at the end depends only on the quality of this

tool, because the broad histogram relation itself is exact, and

p 1 p does not introduce any bias.
< N"(E) > = 9B > N, The advantages of this approach over importance sam-
s(B) pling, reweighting or multicanonical are three, at least. First,

the already commented freedom to choose the microcanoni-
cal simulator, for which only a uniform visitation inside each
energy level is required, independent of other levels. No
need of a precise relation between visits to different levels
(detailed balance, etc).

Second, and more important advantage, each visited

1 states of the Markov chain contributes for the averages with

< NIE)>= — Z N macroscopicquantitiesN*» and N3*, instead of the mere

S
9(E) s(E) counting of one more state accumulated B+histograms.

the sum running over all statesFE) with energyE. Analo-
gously, for each such state, one counts the total nuivgér

of allowed potential movements which result in an energy
decrement ofAF, i.e. the new energy would b8 — AFE,
and computes the microcanonical average
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This behaviour improves very much the accuracy. More-
over for larger and larger lattices, these macroscopic quanti- 0"
ties provide a deeper probe to explore the internal details

of each state: the computer coast to construct each new
Markov state increases with system size, then it is not a 107 L
profitable approach to extract only the information concern-

ing how many states were visited, or how many attempts
were booked, as importance sampling or multicanonical ap-
proaches do. Within broad histogram, on the other hand, the
numberV (E) of visits to each energy level plays no role at 07 ¢
all: it needs only to be large enough to provide a good statis-
tics, nothing more. The real information extracted from each
Markov states resides on the values of** and N3». 10”

V(E)/Vmax

0.04 ‘ 0.68 ‘ 0.‘12 ‘ 0.‘16 _‘ O.‘20 ‘ 0.‘24
Third advantage, following the previous one, the pro- energy density

file of visits to the various energy levels are not restricted Figure 10. Optimum profile of visits along the energy axis, for the
to some particular form, canonical or flat. The user can Ising model on 82 x 32 lattice, in order to obtain equally accurate
choose it according to the desired accuracy. For instancegcanonical averages betwen= 2.246 and7” = 2.315. Compare

if one is interested in getting canonical averages over theWith Fig. 8.

temperature range betwe&h = 2.246 and7’ = 2.315,

for the Ising model exemplified in Fig. 8, the ideal profile is
shown in Fig. 10, where the number of visit{ F) is nor-
malised by its maximum value. This profile was obtained
by superimposing the canonical distributions correspond-
ing to the extreme temperatures within the desired interval
Fig. 8, forming an umbrella. Only inside a narrow energy
range, between densitiési24 and0.170, one needs a large
numberV,,. of visits. Outside this range, one can sample
a smaller number of Markov states, saving computer time
without compromising the overall accuracy. These advan-
tages and others are exhibited with details in [16].

This dynamic rule was applied according to a previously
planned visit profile, equivalent to Fig. 10, covericantin-
uously an entire interval of temperatures within a uniform
accuracy. For 82 x 32 lattice, the exact partition function is
available [19], and we can compute the deviations obtained
'for the specific heat, for instance. At the peak, in particular,
these deviations are the largest, shown in Fig. 11 as a func-
tion of the statistics. Different symbols correspond to the
possible valued\E' = 1 or 2, fixed for the energy jump in
the broad histogram equation.

A simple dynamic rule [17] seems to be a good micro- 10°
canonical calculator. Combined with the broad histogram,
it gives good results. It was inspired by an earlier work re- w8

lated to a distinct subject [18]. Although one can use it for
general situations, an easy generalisation, let's consider, for
simplicity, the nearest neighbour Ising model on a square
lattice, within the single spin flip dynamic rule. The energy
spectrum consists of equally spaced levels, separated by a
gap of4.J, considered here as the energy unit. By flipping
just one spin, the energy can jump toF + 2 or E + 1, stay 0% L 5
at F, or decrease t& — 1 or ¥ — 2, depending on its four
neighbours. In order to measure canonical averages at fixed .
E, the quoted dynamic rule is: 1) start from some random Ty
state with energy in betweel — 2 and F + 2, an inter-

val covering 5 adjacent levels; 2) accept any tossed move-Figure 11. Deviations relative to exact values of the specific heat
ment which keeps the energy inside this interval, rejecting peak,32 x 32 Ising model. The line show$/v/Vinax, in order

all others; 3) accumulate statistics only for the central level to compare the slopes. Diamonds correspond\#@ = 1, and

E, whenever the current state falls there, by chance, alongsauares ta\E = 2.

its five-level-bounded Markov walk. One predicate in favour

of this rule is the complete absence of rejections within the d tintrod further bias. besides th I st
single averaged levell: any movemento it or out it is 10€s not introduce any further bias, besides the normai sta-
tistical fluctuations. Another interesting quantity is the cor-

accepted. Although this property alone is not a guarantee . ) . _
of uniform visitation withinE’ (because rejections occur for relation between opposne.surfa.ces of the f|n|_te Iatnpe .[5]'
For the L x L square lattice Ising model, with periodic

visit attempts to other neighbouring levels, ancestors of ea(:hb d diti d it is defined foll

visit to £ along the Markov chain), we believe the sampling 20undary conditions and evel it is defined as follows.

performance of this dynamic rule is good. Let's see the re- FOr @ given state, one verifies the spins along a fixed hor-
izontal rowi, and booksS; = +1 or —1 if their majority

sults.
pointsup or down, respectively. On ties, one books = 0.
Then, one repeats the same for another parallel roas-
tant L /2 from ¢, and booksS; = +1, —1 or 0. Finally, one

N
o
<0

deviation
a

<

10’ 10°
Vmax

.
10°

11

10

This plot shows in practice that broad histogram method
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determines the product= 5;5;, and perform the average

of this quantity over allL possible pairs of parallel lines dis-
tant /2 from each other (rows and columns). The quoted
surface correlation is the canonical average > of this
. c
quantity. 5
o
o
5
(8]
]
Q
3
S
1.0 n
2.266 ‘ 2.268 ‘ 2.2‘70 ‘ 2.2‘72 ‘ 2.2‘74 ‘ 2.276 ‘ 2.2‘78
32 temperature

os | Figure 13. A zoom performed on the previous plot.

surface correlation

These forms are asymptotically valid for largeand
near 7., where X is an arbitrary length. By choosing
A = |T — T,|7¥ and taking the limitL — oo, one finds

‘ ‘ ‘ ém = —B/v andg, = 0. On the other hand, by choos-
218 temperature 2% ing A = L and tuning the system exactly &, one finds
<m>p~ L = L7 #/Vand< r >p ~ L% = L% At

T, and for largeL, < r > becomes size independent, i.e.

Figure 12. Surface correlation function for the< L square lattice =~ < r >7 = r*. A possible approach to find the critical tem-
Ising model,L = 32, 46, 62, 90 and 126. For larger and larger peraturel’, is by plotting< r > againstl for two different

lattices, these plots approach the step function defined by the boldjattice sizes, and finding the crossing of both curves. Fig. 12

straight lines plus the circle. shows< r > for 5 different lattice sizes, obtained by the
broad histogram method. The maximum numbgg,, of
sampled states per energy level was 10° for L = 32 and

In the thermodynamic limi, — oo, this quantity is a 46, and8 x 108 for L = 62, 90 and 126.
kind of order parameter, Fig. 12, vanishing above the critical
temperaturd’.. For increasing lattice sizes, it approaches a
step function:< r >p = 1 belowT,; < r >p = r* at
T., wherer* is a universal value; ang r >r = 0 above 064
T.. The distinguishing feature 6f » >7, compared with
the usual order parameter (the magnetisatiom >r) is
its constant behaviouselow the critical temperature. On
one hand< m > ~ (T. — T)” near and belowl,. On
the other hand, also beld¥, one has< » >+ = 1, hence,
instead ofg, the corresponding exponevenishes[5]. For
finite systems, considering the finite size scaling hypothesis,
this comparison can be better appreciated within the gener-
alised homogeneous forms

126

0.62

Binder cumulant

0.60

2.266 ‘ 2.268 ‘ 2.270 ‘ 2.272 ‘ 2.274 ‘ 2.276 ‘ 2,2‘78
m[)\l/u(T — T, ALY = A= (T =T, L") temperature
Figure 14. The Binder cumulant within the same zoom.

where the alternative notatieam > = m(T —T,., L)

is adopted, and .
The so-called Binder cumulart v > [4] also presents

zero anomalous dimension. It was very often used in or-

der to find critical temperatures of many systems, following
r[/\l/”(T —T )AL=\ (T —T., LY | the same idea of finding the crossing between two curves
< u >7 againstT’, obtained for different lattice sizes. This
23-years-old method is generally considered one of the most
accurate ways to study critical systems. Fig. 13 shows a
zoom of the last Fig. 12, while Fig. 14 shows the Binder

where< r >y = r(T —T,,L™1).
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cumulant obtained from the same computer runs, thus with  Criticality is a notion that comes from thermodynamics.
the same accuracy. The surface correlation function seemdn general, thermodynamic systems become more orderec
to work better than the Binder cumulant. The reason for that and decrease their symmetry as the temperature is lowered
may be traced from the scaling behaviour on three distinct Cohesion overcomes entropy and thermal motion, and struc-
points, namelyl' = 0, T — oo and, of course, the critical tured patterns begin to emerge. Thermodynamic systems
pointT = T,.. The system is invariant under scaling trans- can exist in a number of phases, corresponding to differ-
formations not only at the critical point, but also f6r= 0 ent orderings and symmetries. Phase transitions that take
andT — oo. Thus, besides the thermal exponergnd the place under the condition of thermal equilibrium, for which
magnetic exponen, both describing the critical behaviour temperature is a well-defined quantity and the free energy
nearT,, there are other (non-critical) exponents related to is minimized, are well understood. These equilibrium sys-
the lattice dimensionality which describes the behaviour of tems are ergodic and have had time to settle into their most
the system under scaling transformation néar= 0 and probable configuration, allowing simplifying statistical as-
nearT — oo. By construction, both the Binder cumulant sumptions to be made. Although most phase transitions in

< u >7 and the surface correlation functien r > re- nature are discontinuous, in the sense that at least one re
spect the correct critical behaviour néar However, only sponse function - a first-order derivative of the free energy
< r >p, Not< u >r, does the same nedi = 0 and - suffers a discontinuous jump at the transition point, some
T — oo [5]. Thus, being forced to obey the correct be- systems may show a critical point at which this disconti-
haviours in three different points along tlieaxis, < r > nuity does not happens. As a system approaches a critica
has less freedom to deviate from the corréct—> oo be- point from high temperatures, it begins to organize itself
haviour, even for small system sizes. at a microscopic level. Near but not exactly at the critical

point, correlations have an exponential decay - as an exam-
ple for the Ising model, wher&(7) is the spin, the spin-

4 Self-Organized Criticality spin correlation has the typical behaviar S(7)S(0) >,
— < 58(0) >,> ~ exp(—r/E) r~A, where¢ is called the
4.1 Introduction correlation length. Close to the critical point, large struc-

) L . tural fluctuations appear, yet they come from local interac-
Self-organized criticality (abbreviated as SOC from here (i,ns  These fluctuations result in the disappearance of a

on) describes a large and varied body of phenomenological.haracteristic scale in the system at the critical point - in

data and theoretical work. Because its current meaning hagpe example above, the same spin-spin correlation function
evolved far from any initial precise meaning the term may is now < S(7)S(0) >, — < S(0) > 2 ,~4 which
have had, we will in these notes adhere to a broad charactery - /(- having _)TOO in the formTer equation, It is fair

ization, if only for pedagogical purposes. to say that the lack of a characteristic scale is the hallmark of

The or_|g|nal motivation for SOC came from recursive a critical process. This behavior is remarkably general and
mathematics. Iterated maps have been show to generatﬁwdependent of the system’s dynamics

fascinating images fractals - which are now in common ) ) i
usage, both in the sciences and in popular culture. Some The kind of structures that SOC aspires to explain look
of these patterns looked very similar to naturally occurring ke equilibrium thermodynamic systems near their critical
ones, such as river erosion patterns, plant and leaf structureR0int. Typical SOC systems, however, are not in equilibrium
and geological landscapes, to name but a few. The questiorY_V'th thgw surroundlngs_,.but have instead non-trivial interac-
about which kinds of dynamical mechanisms would be re- tions with them. In addition, SOC systems do not require the
quired to create such patterns in nature is, thus, unavoidabletuning of an external control parameter, such as temperature
One would hope, in addition, this mechanisms to be fairly t0 exhibit critical behavior. They tune themselves to a point
simple: very little would be gained in our understanding if & vyh|ch crlt_lcal—type behavior occurs. This critical behav-
they were as complex as the patterns they generate. ior is the bridge between fractal structures and th'ermody—
The breakthrough in this field can undoubtedly be at- hamics. Fractal structures appear the same at all size scale:
tributed to a seminal paper by Back, Tang, and Wiesenfeldhence they have no g:haractensﬂc sc_alle, just as 'ghe fluc_;tua-
(BTW) in 1987 [20], that opened the path to a variety of tions near an equilibrium phase transition at a.cntlcal point.
computational models that show SOC behavior. These mod-'t i then logically compelling to seek a dynamical explana-
els are also successful in demonstrating the possibility offuon of fractal structures in terms of thermo_dynamlc Crltlca_ll-
generating complex and coherent structures from very sim-ity- A proper understanding of SOC requires an extension
ple dynamical rules. A key feature of these models is that of the notion of critical behavior to non—eqwlllbrlum ther-
they are capable of generating spatially distributed patternsmodynamical systems and hence an extension of the tools
of a fractal nature without requiring long-range interactions réquired to describe such systems.
in their dynamics: the long-range correlations “emerge” The absence of a characteristic scale is closely related
from short-range interaction rules. Another key feature of to the idea of scale invariance, as can be exemplified by the
these models is the fact that they converge to “absorbing” way they are connected in the study of geometric fractals.
configurations exhibiting long-range coherence even havingThere, the absence of a scale stems from self-similarity, in
not started at one. This convergence does not require thehe sense that any subset of the curve magnified by an appro
tuning of any external parameter, and thus these models arg@riate amount cannot be distinguished from the full curve.
said to be “self-organized”. Building on this same example, self-similarity in a fractal
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generated from an initial element by an iterated map implies resembling that of percolation clusters. If the activated re-
that the number of elemenf$(s) has a power-law depen- gion consists of fractals of different sizes, the energy release
dence on their size. This is precisely what we mean by and the time duration of the induced relaxation events that
scale invariance, sinci(z) = 2 — f(kx)/f(x) = kKA. travel through this network can vary enormously.

The main hypothesis contained in the work of BTW is
;hat a dynamical system with many interacting elements, un-4 5 characterization of the SOC state

er very general conditions, may self-organize, or self-tune,

into a statistically stationary state with a complex structure. The nature of the state is best described by the system’s
In this state there are no characteristic scales of time andfesponse to an external perturbation. Non-critical systems
space controlling the time evolution, and the dynamical re- present a simple behavior: The response time and the de-
sponses are complex, with statistical properties describeccay length have characteristic sizes, their distribution is nar-
by power-laws. Systems with very different microscopic row and well described by their first moment (average re-
dynamics can present power-law responses with the sameponse). In critical systems, on the other hand, the same
exponents, in a non-equilibrium version of Wilson’s idea perturbation can generate wildly varying responses, depend-
of universality: These self-organized states have propertiesing on where and when it is applied. The statistical distri-
similar to those exhibited by equilibrium systems at their putions that describe the responses have the typical func-
critical point. tional form P(s) ~ s~™ and Q(t) ~ t~*. These dis-

This mechanism is a candidate to be the long sought dy-tributions have a lower cutof§; andt¢;, defined by the
namical explanation for the ubiquity in nature of complex scale of the microscopic constituents of the system. For
space-time structures. A list of phenomena that could ex-finite systems of linear sizé, the distributions present a
hibit SOC behavior include the avalanche-response of sandcrossover, from a certain scale up, to a functional form such
piles, earthquakes, landslides, forest fires, the motion ofasP(s) ~ exp(—s/sz2), s > s2. For a genuine critical state,
magnetic field lines in superconductors and stellar atmo-one must have, ~ L*, w > 0. If the exponent of the
spheres, the dynamics of magnetic domains, of interfacedistribution isw < 2, it has no mean in the thermodynamic
growth, and punctuated equilibrium in biological evolution. limit; if itis < 3, its second moment and width diverge.

What are the ingredients that lead a driven dynamical ~ The temporal fluctuations are characterized by/#
system to a SOC state? From the analysis of the computahoise. This is a rather imprecise label used to describe
tional models mentioned at the beginning of this section, athe nature of certain types of temporal correlations. If the
key feature is a large separation between the time scales ofésponse of a physical system is a time-dependent signal
the driving and the relaxation processes. This can be ensuredV (7), the temporal correlation functia(r), defined by
by the existence of a threshold that separates them. As an ex-
ample, let us consider the physics of driven rough interfaces, )
which is believed to be one of the main earthquake source G(7) =< N(70)N (79 + 7) >7, — < N(70) >, (1)
processes. This connection will be analyzed in more detail ) . ) )
in the next section, but for our present purposes it is enoughdescribes how the value of the signal at some instant in
to mention that the separation of time scales is in this casetime V(7o) has a statistical significance in its value at some
provided by static friction, which has to be overcome by the later ime N (7o + 7). If there is no statistical correlation,
increasing stress between the two sides of a geological fault G(7) = 0. The rate of decrease 6f(r), from G(0) to 0,

A SOC state is thus a statistically stationary state, said measures the d_uratlon.of the correlation, and is related to
to be “marginally stable”, sharing with thermodynamical memory effects in the signal. . . .
critical states the property of space-time scale invariance, T_he power spectrum of the signal(r) is related to its
with algebraically decaying correlation functions. It is per- Fourier transform
haps best seen as a collection of metastable states, in the
thermodynamical sense. The system is driven across phase 1 T 5
space, spending some time at the neighborhood of each of S(f) = lim — ‘ / N(7)exp(2im fr)dr 2
its metastable states, and moving between these states after T—oe 2T 1/ p
some large avalanche of relaxation events.

The original goal of BTW was to provide an explanation
for the frequent occurrence in nature of fractal space and 0o
time patterns. The latter are usually referred to as one-over- S(f) = 2/ G(7)cos(2m fr)dr 3)

f (1/f) noise, indicating the scale invariance of the power 0

spectrum. The SOC dynamical answer to this quest goes asind temporal correlations may be discussed in terms of the
follows: In driven extended threshold systems, the responsepower spectrum.

(signal) evolves along a connected path of regions above the  The special nature of/f fluctuations can be seen by
threshold. Noise, generated either by the initial configura- a simple example. Suppose that, for some temporal sig-
tion or built in the dynamics, creates random connected net-nal, we haveS(f) ~ 1/f% andG(r) ~ 1/7¢; then,—
works, which are modified and correlated by the intrinsic 1/f°% ~ 1/f1=*:if 3 ~ 1,a ~ 0. If 3 = 1, G(7) has a
dynamics of relaxation. The result is a complex patchwork logarithmic decay, showing that temporal correlations have
of dynamically connected regions, with a sparse geometrya very long range ify ~ 1.

For a stationary process,
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It is interesting to note that the sandpile model proposed nite size cutoff [21]. This scale invariance is consistent with
as an archetypical SOC system by BTW, even though show-SOC behavior.

ing long range time correlations, doastpresent / f noise, Another strong candidate for SOC behavior in the real
despite the claims to the contrary originally made by its pro- world is the avalanche response of geological plate tecton-
ponents. ics, the earthquakes. Earthquakes result from the tectonic

Let us now discuss the spatial correlation function. For motion of the plates on the lithosfere of our planet. This mo-
a system described by a dynamical variable which is a field tion, driven by convection currents in the deep mantle, gen-
n(r, t), such as the local density (or the local magnetization) erates increasing stresses along plate interfaces, since slid
for fluid (or magnetic) systems this function is ing is avoided by static friction. Plate speeds being typically
in the range of a few cm/year, which amounts to a slow drive,
and the threshold dynamics implicit in friction, are the two
G(r) = < n(ro +r1)n(re) >r, — < n(re) >r02 (4) ingredients that can generate SOC for this planetary system.
In fact, the distribution of earthquake occurrence has been
where the brackets indicate thermal and positional averagesshown to obey Gutenberg-Richter’s law: it is a broad dis-
If T # T, G(r) ~ exp(—r/¢), where¢ is the corre- tribution, with P(E) ~ E"2, B ~ 1.8 -22, and some
lation length. T — T,, & ~| T — T, |™*. AAT = T,, geographlca_l dependence on th_e exponent. There is som
G(r) ~ r~—. The divergence of indicates the absence of ~CONtroversy in the geophysical literature about the validity

a characteristic length scale and leads to spatial scale invariof this statistical description, and some claim that a charac-
ance. teristic, periodic regime can be observed for some faults, for

events at the far end (large size) of the distribution.
The cascades of species extinctions that result from bi-
4.3 Systems that exhibit SOC ological evolution are other phenomena for which claims of
] SOC behavior have been stated. Paleontological evidence
Model systems have been shown to fulfill the SOC char- though sparse and debatable, seems to point towards a de
acterization. But this is not enough for the SOC program: Scription of a System in “punctuated equi”brium", a term
one should examine real physical systems and identify eX-that invokes long periods of relative quiescence (“equilib-
perimentally SOC behavior, if this concept is to be at all rjym") interrupted (“punctuated”) by short, in the time scale
significant to our understanding of nature. In the experi- of evolution, periods of frenetic activity, in which large num-
mentS, one Usua”y CO”eCtS data about the StatiStical Size diS'bers Of Species disappear_ In contrast to a gradua| process fo
tribution of the dynamical responses, arising from the relax- species extinction and creation, such a view is underlined by
ation avalanches. But what should we look for in this data? an ynderstanding of extinction as a result of fluctuation in
One possibility, raised by our previous comments, would be enyironment pressure, rather than to species obsolescence
to measure time-dependent dynamical quantities and com-as a species disappear because of its poor fitness to the
pute their power spectrum. Unfortunately, it turns out that changing environment, the effects will propagate through a
a power spectrum of the form 1/f7, 3 ~ 1, is aneces-  variable-length network of neighboring species in the food
Sa.ry, but not sufficient condition for critical behaVior, thus Chain, in an avalanche of extinctions. The distribution of
for SOC. One has also to identify the presence of spatial ayalanche sizes appear, from the known evidence, to exhibit
fractals in order to be able to characterize a real-life SOC scale ir‘]v&u’i{:lnce7 thus the a|ready mentioned claim for SOC

system. . _ behavior.
Experiments measuring the avalanche signals of

sandpile-like systems, which mimic the original BTW

model, failed in all but one case to show evidence of SOC5 ~ Computational Models

behavior. Typically, in these systems, sand is slowly added

to a pile. In one experiment, for example, this pile had a Computational models of dynamical systems have been the
circular base, and was set on top of a scale, which couldmain tool used for the inquiries about the existence and char-
monitor fluctuations of the total mass. Small piles did show acterization of the SOC state. In a very general setting, these
scale invariance. As the diameter of the base increasesmodels have some common features. Their dynamics are
a crossover to an oscillatory behavior is observed: Small described by the rules for the time evolution of one or more
avalanches in real sandpiles do show a behavior consisdynamical variables, or fields, defined on an extended re-
tent with SOC, which disappears when the mean avalanchegion of space. These variables may be associated with the
size increases. In order to investigate inertial effects thatlocal slope or height, for sandpiles, strain and/or stress for
could be responsible for the destruction of the incipient SOC earthquake models, and fitness of a species, in evolutionary
state, experiments were performed with one-dimensionalmodels. This field is updated at each location and each dis-
rice piles, with grains differing by their aspect ratio. In this crete time step following some rule or algorithm. The choice
case, the signal observed was the potential energy releasef the updating algorithm is the key to the success of the
For small and nearly spherical grains (aspect rativ), the model, requiring ingenuity, physical intuition and possibly
distribution of event sizes is a stretched exponential of the some luck - or thorough testing! - to come up with an in-
form P(E) ~ exp[(—E/Ey)”]. For elongated grains, with  teresting idea. Successful models have usually very simple
a larger aspect ratio, this distribution, obtained through arules, but complex behavior, deriving from the large number
finite-size-scaling of the data, B(F) ~ E~, with no fi- of individual degrees of freedom of the system, rather than
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from complicated dynamics. The emergence of complex- tractor, or absorbing state, of the dynamics. Itis a minimally
ity out of simple dynamics is the outcome of these models. stable configuration: the addition of a single grain leads to
They play a role much similar to the Ising model in the the- relaxation. It is also a critical state, in the sense that a small
ory of magnetism and critical phenomena: they are “toys” perturbation will cause an avalanche with any size, limited
that illuminate the main features required for the appearanceonly by the size of the system. The probability distribution

of complex patterns and behavior.

The updating algorithm is a rul& by which the value
of the dynamical variable (7, t) at some locatioff changes
as discrete time flows:

o(F,t+1) = F(o(7,1)) 5)

It is a function of the value of the variable at that par-
ticular locationo (7, t) at timet and of its value in a neigh-
borhood. In this sense, we may call it a cellular automaton,
except that now the value of the dynamical variable may be
either an integer or a real number - we will use the adjective
“continuous” for the latter case.

5.1 Sandpiles: a conservative model
The prototypic SOC model is the sandpile model (BTW). It

is a conservative model, in the sense that the dynamical vari-

able added over all sites does not change during relaxation

except possibly when sites at the border also relax. Itis a

metaphor for the behavior of a real sandpile, where stabil-
ity is controlled by a local gradient (slope): #{r) is the
slope at siter and z,. is a critical value of this slope, than

if z(r) > z. the sandpile becomes unstable. The model is
slowly driven by the addition of grain and relaxation takes

over when the sandpile becomes unstable as a consequence.

There are, thus two dynamical rules, one for the driving and
another one for the relaxation.

For a one-dimensional sandpile, this gradient model may
be cast as follows: Lét; be the (integer) height of & + 1-
long pile at sitei. The local slope ig; = h;11 — h;. The
addition of a single grain at site¢ resulting from a ran-
dom choice, increases the local heightlbgnd changes the
slope accordingtotherule_; — 2,1 + 1, 2; — 2z; — 1.
Threshold dynamics of relaxation is triggered by the condi-
tion z; > z., wherez, is a pre-assigned critical slope. Site
1 becomes overcritical and relaxes via— z; — 2, which
causes an update of the neighboring slopes — z;_1 +1
andz;11 — z;+1 + 1. These may in turn exceed the critical

of avalanche sizes is trivial: P(s) (P(t)) is the probability
that s sites ¢ time steps) are involved in the relaxation pro-
cess, thaP(s) = P(t) = 1/(N+1)if 1 < s(t) < (N+1),

0 otherwise.

A much more interesting version is the multi-

dimensional sandpile. The higher dimensionality avoids the
unigue absorbing state, and the probability distributions are
no longer trivial. The dimensional extension of the model is
straightforward: Let(r) be an integer-valued field defined
on ad-dimensional hyper-cubic lattice, arg the lattice
vectors. We may distinguish between a conservative pertur-
bation, in which the system is driven byr) — z(r) + d,
z(r — e;) — z(r — e;) — 1, and a non-conservative one,
for which z(r) — z(r) + 1. In both cases, relaxation of
an over-critical site, for which(r) > z., proceeds through
z(r) — z(r) — 2d, z(r £ ;) — z(r £ ;) + 1.

This version of the sandpile model is usually studied for
closed boundaries, for which(r) = 0 if any component
r; = 0, and for open boundaries, in which case one has the
rule that if a toppling site has any component L, relax-
ation proceeds through
- z(r) — z(r)—2d+n, n = ( components which are L)
(r+e)—z(r+e)+1ifr; AL
(r—e) —2(r—e)+1
(r) = 0 if r; = 0 for some;.

The update algorithm processes all sites in parallel, and
one time step is counted after every site in the lattice is ex-
amined. After an initial transient, the statistical properties
of the model become time independent and do not depend
on the initial configuration (e.g< 2z > (t) —»< z >=
limr oo (1/T) [y < 2> (£)dt).

The attractor of the model is a non-trivial set of config-
urations, which contain some that are not marginally sta-
ble. For the characterization of the critical response of the
model, letA be a connected region stricken by an avalanche,
fA =| A |, and
eRoy=(1/[A) D enr
ol =(1/|A[)> ,calr —Reu | (linear size);

I

cZ
=

value, and relaxation proceeds until all sites become under-e s = total number of toppled sites, which is a proxy for the

critical. The sequence of relaxations that follows after a site

total energy dissipated in the relaxation process;

becomes overcritical is the avalanche response of the syse ¢ = total number of time steps, or the duration of an

tem. The border at= 0 is closed, andy = 0. At: = N the
border is open, and when; > z.,thenzy_1 — zy_1+1,
zy — zy — 1. The relaxation dynamics do not change the

avalanche.
Then, the model has a critical behavior when lying on the
attractor, in the sense that the distributions of sizes and dura-

total value ofz, and the model is called conservative because tions of the avalanches are power-lail) ~ =7, P(s) ~

of this feature.

A simpler and more popular, though less intuitive, ver-
sion of the sandpile model is the so-called height model.
Now, the dynamical variable i5 and the addition of a grain
at sites implies simply that; — z; + 1. The threshold con-

s77,P(t) ~ t~*. These three exponents are not indepen-
dent, and a scaling law may be established among them.
The upper critical dimension of the model 4 and the
mean-field (/ F") Fisher exponent is;;r = 3/2. These
results were firmly established by an exact solution for the

dition and relaxation dynamics are still the same as for the Abelian sandpile in two dimensions [22]. Computer simu-

previous version.
The one-dimensional sandpile has a rather trivial behav-
ior. The configuratiorz; = z. Vi is the unique global at-

lations have shown that in three dimensions this same expo-
nentistsp ~ 1.3 [23].
Since most studies of this and similar models are per-
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formed through computer simulations, let us discuss onee if z; > 2z, — avalanche

such algorithm. Reference [24] has a simple example, whiche if time > transient, collects statistical data
works well at an introductory level, but is not particularly until time is up.

efficient. Some text books on computer simulations, such
as Ref. [25], present similar algorithms, with pedagogi-

cal emphasis. We will present here a generic version, that
uses a circular stack to store indexes of sites that will topple
and relax in this and the next time step of the simulation.

The structure of the algorithm, in a self-explanatory meta-

- avalanche:
e | — stack
e while stack is not emptyjo:
- unstacks next toppling site
- redistributes sand to neighbors){if z, > z. for a neigh-
born, stacks ith — stack

language, is:

- initialization (e.g.z; = 0 Vi)

- main loop:do We present below a code that implements this algorithm,
o selection of the sité to which a grain will be added written in plain C.

/ladds grain to site (m,n)
void stack(m,n) {
z[m][n] = z[m][n] + 1; ztot = ztot + 1,
if (z[m][n]==(zcrit+1)) {
Xx[next] = m; y[next] = n;
next = next + 1;
if (next==first) {
file=fopen(“err.dat","w");
fprintf(file,\n ~ STACK OVERFLOW!!!I");
fclose(file);
}
/I circular stack
if (next==stacksize) next = 0;
}
}

/I avalanche algorithm
void avalanche() {
size = 0;
do {
/I stack is FIFO
i = xf[first]; j = y[first];
/* unstacks site to be examined */
first = first + 1,
/* points to next site to be unstuck */
if (first==stacksize) first = 0;
/* circular stack */
z[ilf] = z[{ilO] - 4;
ztot = ztot - 4;
size = size + 1;
/I open boundary conditions
if (i<(L-1)) stack(i+1,));
if (j<(L-1)) stack(i,j+1);
if (i>0) stack(i-1,j);
if (7>0) stack(i,j-1);
} while (I(next==first));
/Il resets stack pointers
first = 0; next = 0;

}

main() {
initialization();
/I main loop
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for (time=1; time<=TOTIME; time++) {

/I chooses random site
i = random(L); j = random(L)

/I adds grain of sand
stack(i,j);
if (!(next==first)) avalanche();

if (time>transient) collects_statistics();

}
files_results();
}
5.2 Earthquakes: a dissipative model an indirect measure of this time scale. Relaxation, which

o happens when a sitebecomes criticaF’; > FE. and top-
The frequency distribution of earthquakes appears to be theples, follows the rulelZ, — 0 for this event initiator site

moTt well documenteﬁ ewdzn;e o;crlgcal bghaw;r |rr1]a n?t— and B, — E,, + aF; for its ¢; neighbors. These sites
ura ts_‘ystedm,bas syr_;_th esf!zet ydtI?h tuten ergd- oIIC' ter anay, in turn, become critical, and the process proceeds until
mentioned above. The Tirst model that succeeded InTepre-p. - p v - This cascade, or avalanche, of topplings is

senting the basic_physics involveo_l in_tec’Fonic processes anqy, proxy for an earthquake in the model, and data can than
was able to obtain a frequency distribution con5|st§nt _W'th be collected on the statistical distribution of such events.
that .Iaw was due to Burridge ar_1d Kngpoff [26]', In its f|rs¥ The parametety has an important role, since it measures

version, the model was a one-dimensional chain of MasSVee intrinsic dissipation ratio of these dynamics: the amount

blocks, representing the asperities in the boundary betweerbf stress that is lost by the system after siteopples is
two moving tectonic plates, connected to each other by elas-

Fqs = (o0 — 1)E;, and the system would be called con-
tic forces (springs). The driving mechanism was modeled i (a:0 ) y

¢ additional X ) h block servative ifa = maxg;—!. One is usually interested in the
as a set of additional springs, connecting each block to azero-velocitylimitz/ — 0, since there is an intrinsically very

moving rod, and the threshold dynamics was ensured byIarge time scale separation between the driving and relax-
friction bemee’.‘ bIOCk.S and the_ ground. The .SEI Of couplgd ation mechanism in the real earthquake process. This is eas-
second-order differential equations representing this physws”y implemented in the model by driving it to relaxation in
was then _solved n_umerically, with a friction force that de- a single step of the simulation: since the driving is homo-
creases with yelocny. . geneous, the site with the largest stress at the completion of
Computational models are able to increase greatly, bOthan avalanche will be the event initiator of the next. So, the

in number of elements and dimensionality, the ability to in- new driving rule for the zero-velocity limit is to compute
vestigate the above physics. The trade-off is to eliminate theE* — maxE; and then perforn; — E; + (E. — E*)
- K3 3 3 C il

massive terms of the equations, by considering that these; ~,re must be taken when working with the model, for

are rel?tid to selsm|c|waveds,_ that carr;;] typlﬁally less th;m its approach to a statistically stationary state proceeds rather
10% of the energy released in an earthquake. By SO dO-g v and transients are very long. One has to wait typi-

ing, the differential equations can be easily discretized, andcally for ~ 10° avalanches in aD. I, ~ 102 model before
the resulting model is a real-valued - or continuous - cel- collecting meaningful data '

lular automaton (CCA). Several models with these charac- . )
teristics appeared in the literature in recent years - Refs. 1he OFC model with nearest neighbors has been exten-

[[27, 28, 29]] are a few of those - and the most successful of sively studied lately, and a plethora of information gathered

those, at least in the physics community, was that of Olami- about the nature of its (quasi-)critical attractor state. The
Federsen-Christensen (OFC) [30], which were the first to signatures of this state become first visible near the borders,
have claimed the observation of SOC in a non-conservative@nd it spreads through the lattice from there on. The model

model. Using the language of this latter model, the physics has @ strong tendency to synchronization, which generates
is contained in the dynamics of a single field, a real-valued SPatial correlations and is partially responsible for critical
dynamical variablé;, a metaphor for the stress, defined on Pehavior. This behavior is lost when periodical boundary
the N = L sites of a d-dimensional cubic lattice. The dy- condlt_lon_s are used_, _and synchronlzatlo_n forces the_sy_stem
namics of this field is completely deterministic, except for {0 Periodical non-critical behavior. The inhomogeneity in-
the initial configuration, which sets the initial value of the duced by an open boundary is enough to destroy the periodic
field at a sitei by a random choicé; € [0, E.), where the state v_vhlle leaving intact cgrre!a}tlons, thus allowing for the
critical value E, is usually set to one. The driving is uni- €Stablishment of the (quasi-)critical attractor.

form and homogeneous, and at each step of the driving time  The reader should have noticed the awkwardness, or care
scale the field evolves witly;, — E; + v, Vi, wherev is if the reader wants to be nice to the authors, with which we
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refer to the nature of the attractor. In fact, the issue of crit- the lattice are controlled by a single integer variable. An-
icality in the OFC maodel is still a matter of intense debate other extremely useful strategy is to have moving failure and
among experts. There is general agreement on the fact thatesidual stresses: instead of sweeping the whole lattice eact
the model is indeed critical iaD if « > «., but thereis  time the driving mechanism brings the site closest to fail-
no such agreement on the critical value itself. Estimates forure - the initiator of the next avalanche - to its critical stress,
a. vary widely in the literature, ranging all the way from the value of the latter is updated to the value of the stress of
a. = 0[31], to a. ~ 0.18 [32, 33], while the Brazilian ex-  this initiator, and the residual stress is also moved to keep
pert C. Prado and collaborators developed strong argumentshe difference between these two constant. The usage of las
in favor ofa, = 0.25, which corresponds to the conservative in-first out (LIFO) stacks is also good advice, in particular
limit mentioned above, and propose the notion of a quasi- when running long-range models, for it allows a simple way
critical state to describe the nature of the attractor whien of keeping track of only a few sites to examine for failure
is close toa,. [34], to which we adhere. The reader is in- at each step of the relaxation avalanche. In the same meta
vited to participate in this discussion by trying to determine language used previously for the sandpile, here is a short de-
a. through her or his own simulations of the model. On the scription of an algorithm using these ideas for a 2-D model:
other hand, there is no question about the fact that the OFC - site address structuréi, j) — index =i+ L + j
shares with a few other statistical models, such as the eight~ initialization: (e.g.E; = randon{0, E..) V)
vertices model, the unusual dependence of the Fisher critical main loop:do
exponentr on the value of the conservation parameter e selects sité with maximume;

Another version of the OFC model that has been studiede moves failure and residual stressds;, — E, + E, —
recently is the one with random annealed neighbors. Here,F;, E. — E;
the extra noise induced by a random choice of neighbors ate avalanche
every relaxation, made anew each time a site topples, de-s if time > transient, collects statistical data
stroys the spatial correlations and avoids synchronization ofuntil time is up.
the model. The borders are open, and each time a site re-

laxes, the dynamics choosgs= 2d random neighbors with The key routine is the relaxation algorithm, the
probability py,ix = (L —1)?/L%, or ¢; = 2d — 1 with prob- avalanche procedure. In this example, we use two separate
ability psup = 1 — pruik. After afirst claim for an analytical ~ stacks { and2), where stackl stores the sites that will topple
solution of this mean-field-like model with, = 2/9 [35], in the present relaxation step, while stack2 keeps the sites
further investigation showed that it is only critical at the con- that will topple in the next step.

servative limit [34]. - avalanche:

Other flavors of CCA models have been studied that e set duration to ong,— stackl (this is the initiator)
involve long-range interactions, in particular by the geo- e while stackl NOT emptgo:
physics community [29, 36]. These versions are supposedly- unstacks from stackl;
more “realistic”, since viscoelastic interactions in the earth’s - dumps stress on neighborg(if E, > E., v — stack2;
crust are known to be long-range, presumably decaying as if stackl is empty, but stack2 is not, exchanges stackl and
the third power of distance. Although some of the excite- stack2, increments duration.
ment involved in the emergence of long-range order from
short-range interactions is lost in these models, they still  Codes written in plain C for several versions of earth-
present interesting features and deserve the attention of theuake CCA's can be obtained on request through the e-mail
physics community. The infinite-range interaction model, jssm@if.uff.br.
where each site interacts with all other sites in the lattice,
is one of those, and its mean-field character has served well
the purpose of establishing a test ground for the exploration6 ~ Bak-Sneppen-like Models
of new ideas [37].

As mentioned above, CCA models have usually very Slightly modifying an earlier model for surface growth [38],
long transients, forcing the researcher in the field to be very Per Bak and Kim Sneppen [39, 40] introduced their now-
demanding on the efficiency of the computer code used infamous model for biological evolution, based on an extreme
the simulations. Useful comments on this subject for the value dynamics. A population is linearly displayed around
beginner can be found in Refs. [32] and [28]. As a rule a circle, two neighbours per individual. The characteristic
of thumb, one has to try to deal only with one-dimensional of each individual is measured by a single numerical value,
data structures, and draw the code aiming at its efficient useinterpreted here as its survival fithess. At beginning, all fit-
As an example, the address of a site in a 2-D lattice, usuallynesses are uniformly tossed at random between 0 and 1. The
taken as an ordered pdif, j), should be transformed into  population evolves according to the following dynamic rule:
a single integer as imdex = i« L + j. The integer op- 1) The individual with the smallest fitness is found; 2) The
erations of division and remainder are then used to get thefitness values of this individual and its two neighbours are
2-D address from the 1-D version, when needed. The dy-replaced by three new, freshly tossed random values, uni-
namical field is then a 1-D real vector, and loops sweeping formly distributed between 0 and 1. The total numbepf
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individuals is supposed to be very large. Contrary to this, in non-regular systems, the long-term
One time step consists in iteratively applying this risle memory (time power-law decay) is normally associated with
successive times (aM-cycle), whereV is the same number  long-range spatial correlations (length power-law decays).
which measures the population size. Thus, the time0, Those complex systems lack both time and length typical
1, 2, 3... is a discrete variablel /N-fractions of the time scales. The lifetime is limited only by the finite size of the
unit can also be measured, by considering incomplte  system. The larger the system, the longer it lives. This
cycles. Thus, for larger and larger valuesdf one obtains is the precise meaning of the sentence “For large enough
the continuoudime limit. times, all fitnesses fall above a non-trivial critical value
The band of distributed fitnesses starts in between 0 andF, = 0.6670 ...” written three paragraphs above. The
1, but shrinks as time goes by, Fig. 15. For large enough transient timel” one needs to wait before this situation is of
times, all fithesses fall above a non-trivial critical value the same order of magnitude as the system sizeT'i. V.
F. =~ 0.6670 [41, 40], except for a null-measure set of re- In the limit of larger and larger sizey — oo, the system
cently replaced values, which fluctuates in avalanches. would evolve in eternal transient, a very profitable feature
for evolutionary systems [42].

The second important feature is tthieersity, preserved

Bak-Sneppen model by the non-vanishing band-width, which also remains for-

N = 100.000 ever. This is the main difference between an evolutionary

‘ ‘ system and a simple optimisation process. In the latter, one
searches for the single best situation among many possibili-
o8 | ] ties, discarding all other options. Evolution, on the contrary,
preserves many alternative options, not only a single “best”,
in order to keep the system able to adapt itself to future en-

0.6 - 1 .
vironment changes.
oal | Another two-paragraphs comment follows, along the

lines of [42]. Science is a modest enterprise, a theory of
: everything does not exist. The subject of any scientific work
02y ] is necessarily bounded. For the evolution of species, nobody
tries to describe the behaviour of all living beings in the Uni-
00 . 55 = - o 0 verse. On the contrary, the researcher considers a certain
t(N-cycles) number of species, living on a limited geographic region,
Figure 15. Bak-Sneppen model: lower bound for the band of ~ during a limited time. Thus the “system” under study is
fitnesses. bounded, although not closed. Through its boundaries, this
system interacts with the rest of the Universe, generically
called “the environment”, exchanging mass, energy, food,
The first important feature of this model is ilsng-  gepyris, information, etc. An otherwise closed system, ac-
term memory. Instead of the fast exponential decay char- ¢ording to the second law of thermodynamics, exponentially
acteristic of a regular system, with a finite lifetime (short- ¢35t would reach the situation of maximum entropy, render-
term memory), here the evolution is very slow, following ing impossible any kind of organisation such life: evolution

a power-law without any characteristic lifetime (long-term \yoyid stop. In short, evolutionary systems are necessarily
memory). This feature gives rise to many by-products which poynded but open.

preserves forever the critical, complex behaviour of this sys- . . o
tem. For instance, the distribution of avalanche sizes is also. The dynamic evolution of such a system is dissipative

dictated by a power-law, thus one lacks also a characteristic" what concerns its entropy: organised forms are selected,

avalanche size (or lifetime). Iea(;i_lng to thebext[{?]ctmn of ot?er for_rkr;_?i_ In %theli wozjff,
This subject deserves a two-paragraphs comment. Reg-as’t ime g(:efh y: te space (t) ?IOSEI Htes St fn S.d . ter
ular exponential decays impose the appearance of a typi-a ransient, the system eventually becomes frapped inio a

cal time scale for the system under study. The radioactiv- !I(_)t\]N —dlmleni!on g_ny S?tt O.ft ﬁ)OSS'b |I|tt;]es, :‘he fmalf attrelmtpr.
ity lifetime characteristic of each element can be found in ere, facking diversity, It looses the chance ot exploring

100-years-old tables. FggRb®2, for instance, one reads 2 "W forms outside this tiny set. Hence, the arrival to that

minutes, without mention to the mass of the sample: afterﬂnal situation must be avoided, or postponed forever. This

this time, radioactivity almost vanishes, independent of the goal IS gpcomphshe_d i the dynam|c_ e_volut|on IS Very Sl.OW’
.e. a critical dynamics without any finite characteristic life-

sample size. For these regular systems, there is no relatiorﬁim n eternal transient in which th tem roaches th
at all between its size and its lifetime. The decay of a partic- €, an eternal fransie chine system approaches the

ular nucleus at a given moment has no influence at all on theattraqtor_ but never b.ecomes completely trapped there. Not
later moment when another far nucleus will also decay. The by coincidence, this is the case of Bak-Sneppen model.
absence of long-range spatial correlations (length) implies

the corresponding absence of long-term memory (time).

1.0

band border
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two other sites, on the left and on the right. Below each nev
site, another pair, on the left and on the right, and so on. Se
Fig. 16. The sequence of fithesses is stored on this tree as

oz follows. The first entry is located at the root. If the second

\ \ entry is larger than the first, it is stored on the right side be:
0a) og7] low the root; otherwise, on its left. For each new entry along
‘ &] &] the sequence, one compares its value with the root, decidir
(039 - . to go downwards to left or right. Then, one repeats the com

Figure 16. Binary tree where the sequef6e52, 0.27, 0.41, 0.75, parison a_t this new place, dPTCiding agai.” t(.) go downward
0.13, 0.63, 0.39, 0.18, 0.87, O.Y® stored in this order. to left or right, and so on, until a vacant site is reached.
This construction turns trivial the job of getting the min-

In order to implement this model on computers, the cru- imum value stored on the tree: one simply goes downward
cial point is to find the minimum fitness among all individu- always to left, until the last occupied site. The advantage
als. The né&ve approach is to scan all of them, sequentially, over the néve procedure of scanning a\l entries is to fol-
registering at each step the minimum value so far. This re-low only a single branch along the tree. On a binary tree
quires N comparisons, and forbids the simulation of large the average branch length is of the ordeiwf,(N), much
systems. A good alternative is to construdbinary tree smaller thanV, moreover for large systems. The following
with the NV fitnesses. This tree has a root, below it there are C-language routine does the job.

unsigned minimum() {

[* finds the minimum on the binary tree */
unsigned i;

j = root;

do i = j; while(j=left[i]);

return(i);

}

Another routine puts a new entry on the tree.

void put(new) unsigned new; {
/* includes a new entry into the binary tree */

unsigned L, I
j = root; f = F[new];
do {i = j;
if(f<F[]) {i = left[i; If = 1;}
else {j = right[i]; If = 0;}
} while(j);
top[new] =
if(If) left[i] = new; else right[i] = new;
}
Instead of using the pointer facilities of C-language, we scientific problems. In order to deal with bitwise parallel
explicitly define vectorgop[] , left[] andright]] . operations, useful for Ising-like models, see [45].
This implies a coast in further computer memory, but makes
clear what is done. Moreover, nowadays the memory avail- A third routine designed to remove an entry from the
able on most computers is far enough for our needs. tree deserves an explanation. In order to remove entry |

Other more efficient ways to implement the tree cer- from the tree, one considers entries L and R below it (lefi
tainly exist, in particular by using recursivity and pointers. and right, respectively), as well as entry A below L (right).
However, we prefer this old-fashioned way of programming, If L is empty, K is replaced by R, otherwise by L. Further-
because the resulting code is much easier to understand. Thmore, if L, R and A are all three occupied (generating 2 right
interested reader can learn much more in [43], where effi- branches below L, instead of only 1), then A is transferrec
cient programming techniques are presented. Also in [44],to the first empty position along the leftmost branch below
the reader can find specific numerical approaches for manyR.
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void remove(K) unsigned K; {
/* removes an entry from the binary tree */
unsigned t,L,R,ALj;
t = top[K]; L = leftK]; R = right[K];
top[K] = left[K] = right[K] = O;
A = right[L];
if(t) {
if(L) {
if(K==left[t]) left[t] = L; else right[t] = L;
top[L] = t;
if(R) {top[R] = L; right[lL] = R;
if(A) { /* re-position of A */
=R
do i = j; while(j=left[i]);
top[A] = i; left[i] = A
}
}
}

else {

top[R] = ¢

if(K==left[t]) left[t] = R; else right[t] = R;
}
}

else { [* remove root */
if(L) {root = L; top[root] = O;
if(R) {top[R] = root; right[root] = R;

if(A) {
=R
do i = j; while(j=left[i]);
top[A] = i; left[i] = A;
}
}
}
else {root = R; top[root] = 0;}
}
}

Finally, the main program to simulate the Bak-Sneppen model follows.

/* population size */

#define N 100000

/* initial random integer seed */
#define seed 4785671

/* time limit */
#define T 10000000

#include <stdio.h>

#include <math.h>

unsigned r.t,i,root,imin,neiglL,neigR,f1,f2,f3,
mt,ft,tprint = T/1000,
F[N+1],top[N+1],left[N+1],right[N+1];

double sum,invN = 1.0/N,i2,invMAX = 1/4294967296.0;
void put(),remove();

unsigned minimum();

main() {

r = seed|l; i2 = 2*invMAXIN;
for(i=0; i<=N; i++) {r *= 16807; top[i] = left[i] = right[i] = 0;}
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imin = 1; F[imin] = 0;
root = 2; r *= 16807; F[root] = r; sum = r*i2;
for(i=3; i<=N; i++) {r *= 16807; F[i] = r; put(i); sum += r*2;}
printf("\n\n time band");
for(t=0; t<=T,; t++) {
if((t%tprint)==0) printf("\n  %210.6lf  %10.6If",t*invN,sum-1.0);
sum -= F[imin]*i2; r *= 16807; f1 = F[imin] = r; sum += r*2;
neigL = (imin==1) ? N : imin-1; remove(neigL);
sum -= F[neigL]*i2; r *= 16807; f2 = F[neigL] = r; sum += r*i2;
neigR = (imin==N) ? 1 : imin+1; remove(neigR);
sum -= F[neigR]*i2; r *= 16807; f3 = F[neigR] = r; sum += r*i2;
ft = F[mt=minimum()];
if(f1<f2) put(neiglL); else {put(imin); imin = neigL; f1 = f2;}
if(f1<f3) put(neigR); else {put(imin); imin = neigR; f1 = 3;}
if(f1>ft) {remove(mt); put(imin); imin = mt;}
}
printf("\n\n");
}

Two comments concerning this program follow. F, = 1 is very slow, following a power-law. Criticality is
First, the random number generator we adopt is the sim-NOt lost. Itis very easy to determine the analytical form of
ple multiplication with 16807, applied t&2-bit-integer odd the function displayed on Fig. 17. The original solution is
numbers, starting from a given seed. Any alternative randomPresented is [47].
number generator can be used. Instead of reducing these
random odd integers to the interval between 0 and 1, we
prefer to use directly the integer version, saving computer

time. If one needs more than, sdy)° random numbers, Yee model

then this simple generator does not work: repetitions of the N = 100.000

same sequence start to appear again and again. Lo ‘ : .
Second, after the transient time, when almost all fit-

nesses are already above the final band-bdrget 0.6670, o8 1

one can introduce a further smart trick, in order to save com-
puter memory and (more important) time. It is very simple:
to store only fitnesses below a certain limit a little bit larger
thanF,, say, only values of' < 0.668 remain stored on the
tree. Of course, in this case, one needs also to introduce a o
further array to keep the information concerning which in-
dividuals are currently on the tree. All others can be forgot.

In the present case, however, we are interested just on the

o
o

and border

0.2

transient, thus this trick was not used. Nevertheless, its im- o0 = ” - o 0
plementation is simple. t(N-cycles)
So far, nobody was able to present an analytical solution Figure 17. Yee model.

for this model, i.e. a closed mathematical form for the func-

tion displayed on Fig. 15. Even the threshéld~ 0.6670 is

not exactly known. On the other hand, there are atleasttwo  Here, we prefer a simpler reasoning based on the con-
simplified versions with known analytical solutions. The cept of a “virgin individual” at step-: its fitness was never
Yee model [46, 47, 48] simply forgets the neighbours, re- replaced, since = 0. We use the symbot = 0, 1, 2,
placing only the current smallest fitness. Fig. 17 shows 3 ... to count the number of replacements performed so
the result, to be compared with Fig. 15. Diversity is lost, far. This counting variable is related with the timhrough
one does not remain with a finite band-width at the end, on - — Nt Let z(7) be the minimum virgin fitness at step
the contrary all fithesses are pushed towards the maximum-_ Above (), the distribution of fithesses is uniform,
possible valuef. = 1. According to our previous inter-  pecause the minimum fitnesses replaced so far were neve
pretation, this is no longer an evolutionary system, only an there, and all new fithesses which appeared abévewere
optimisation process. However, the first important feature randomly tossed. The functiar(r) evolves monotonically,

of Bak-Sneppen model remains: the approach to the limit gjways upwards, by successive plateaux. Let's galthe
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step when thet” virgin fitness becomes the global mini- Another simplification is the so-called random neigh-
mum, and then will be the next replaced value: at this mo- Pours Bak-Sneppen model [49, 40]. Now, one always re-
ment,z(7) will suffer a jump. The next smallest virgin value places the smallest fitness and also another fitness randomly
2(y + 1) = 2(7041), the next plateau, is a little bit above tossed. The result is shown in Fig. 18. Diversity is re-

the previous one. The average jump is stored: at the end, almost all fitnesses remain above the limit
F, = 0.5, defining a band-width. However, the long-term
Az =1/N | memory is lost: the decay . = 0.5 follows now a fast ex-

ponential rate, no longer a power-law. Surprisingly, the life-
time distribution of avalanches is still described by a power-
law, although following a classical, mean-field critical ex-
ponent of—3/2, different from the original Bak-Sneppen
model [49, 40]. Somehow, criticality is not completely lost,
in spite of the fast convergence to the final band-width. A
, . . related issue is the so-callédf noise claimed to be present
z(7n) and 1, the number of fitnesses still belote, + 1)is i i model [50]. Thif would mean a lack of typical

Nlz(rn+1)—x(7)]/[1—x(7)], i.e.1/(1—x) on average. o )
How many attempts one needs to transfer all these values tofrequency scale within the power spectrum, equivalent to the

soves 4 117 For esch i, the probabity of su. 20 (17 O 0 seeschamcteiateof conple oy
cess isl — z, then, in average, one needq 1 — z) attempts : ' brop

2 i i _
o ranster each one of th (1 — ) values. Therotaltime i Y0 ot e o o
interval to complete this task, in average, is y ' '

being a good problem for future investigation, a challenge
Ar=1/(1-2) . for the reader.

It is also possible to obtain an analytical expression for
the function displayed on Fig. 18, originally presented in

Az 1/N (1—xz)? [49].

Ar 1/1-2)?2 N ‘ Once more, here we prefer our simpler reasoning based

Now, taking the continuous time limit and expressingsa N Virgin individuals. Let's divide each stepin two sub-
function of timet = /N, this relation becomes the differ- steps: first, the global minimum fitness is replaced, then
ential equation another randomly tossed fitness is also replaced. The dis-

tribution of fitnesses above(r), the smallest virgin fit-
dj —(- x)Q ness so far, is also uniform as in the case of Yee model.
dt ' At 7, z(7) is also the global minimum. How many val-
Taking the initial conditionz(0) = 0, the solution is ues remain virgin? For the simple Yee model, the answer
would be N[l — z(7,)], in average. However, how some

the mean separation between ffi@riginal values at = 0.
However, in general;:(7,, + 1) is not the global minimum
fithness to be replaced at, + 1, because some other non-
virgin values could remain below it.

How many? As the distribution above(r,) is still
uniform at,,, with all V fithesses distributed in between

Thus one can write the relation

x(t) = _t 7 formerly virgin values were also replaced during the above
) _ t+1_ guoted second sub-steps performed up to now. Thus, the
which perfectly fits the plot on Fig. 17. Now, the power-law - average number of still virgin values at stegs V() =
dependence becomes evident, asymptotically: z(t) ~  N[1 — z(r)]f(r), wheref(r) is less than unity. The aver-
t=1 for t — oo, with the critical exponent-1. agez-jump is then
Random neighbour BS model Apoi=®_ 1
N = 100.000 14 Nf
1.0 T T T
Again due to uniformity, inside this intervalz, the av-
08 | ] erage number of fitnessesri¢r,,) = NAx/[1 — z(1,)] =
_ 1/{f(m)[1 — z(7,)]} at stepr,,. This number will decay
Bosl ] until vanishing atr,, 1. Let's determine how it decays, by
S e oo e —~— analysing a single step fromto 7 + 1. On average, one has
-c% 0.4 E[
o F
02 b ] n(1+1) = [n(1)=1](1—2)*+n(7)2x(1—2)+[n(7)+1]z* .
00 25 ™ o o o0 The first term corresponds to get new values ahoieboth
t(N-cycles) the first and the second sub-steps. The second term counts

Figure 18. Bak-Sneppen random model. the cases where only one new value is abowvend the third
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corresponds to none. Developing the above equation, one
hasdn/dr = 2z — 1, a constant rate decay. Thus, the total P-bag model
time one needs to wait until the complete exhaustion of the N =100.000

1/[f(1 — x)] fitnesses at,, . ; is 1o ‘ ‘ ‘

0.8

AT = L for z <1/2 .

(1—xz)(1—22)f
Forz > 1/2, the intervalAz will remain populated forever.
Thus, as a first conclusion, different from the Yee model
where the band of populated values always shrinks, all val-
ues accumulating near 1, now one remains forever with a
uniformly populated band in betweédn = 1/2 and 1.
Finally, the evolution of:(7), while belowF, = 1/2, is
given by 003 20 40 60 8 100
t(N-cycles)
Az (1—2)(1-2x) Figure 19. P-bag model.

o
IS
3

band border

AT N ’
or, taking the continuous time limit, ) o o )
One possible definition follows. Individuals are classi-
dz _ (1— 2)(1 - 22) fied as active or quiet. At each step, the listfof- 1 ac-
de tive individuals have their fithesses replaced by new, ran-
The solution for that differential equation, with initial con- dom values. This list (the bag) includes always the current
dition 2(t) = 0 is minimum-fitness individual. At beginning? = 0 with only
the minimum-fitness individual being active. After replace-
» ments, if the same individual carries again the smallest fit-
_l-e for o < F,=1/2 ness, then a new, random quiet individual is included into
2—et ) ’ the list (P — P +1). Otherwise, a random active individual

which fits perfectly the plot of Fig. 18. The asymptotic limit, IS €xcluded from the list, becoming quiet. In this case, the
t — oo, IS NOWF, — (t) ~ e~ /4, a fast exponential decay, !|st_c_ould shrink ¢ — P — _1) if the new minimum-fitness
no longer a slow power-law. individual was already active beforeP fluctuates_ alway_s

A good exercise to the reader is to solve the same modelmuch smaller thanV.  The result for this dynamic rule is
when, at each step, one replaces the minimum fitnesgand shown in Fig. 19, for a single run. The saturatgd final value
other randomly chosen values. as well as the time to reach it quctugFe fpr different runs.

Comparing these two simplified models, one can formu- Ong can observg that d|verS|ty_ and crlltlcallty are present. In
late the following interpretation. The extreme value dynam- Particular, the tail of the curve is well fitted by a power-law.
ics, i.e. to replace the smallest fitness among all individuals, Without geometrical constraints, perhaps somebody could
is the key ingredient to get criticality. However, this ingre- Provide an analytical formula for the function displayed in
dient alone is not able to preserve diversity, other fitnesses™9- 19: so far, the not-so-smart authors were not able to
besides the smallest one must be also continuously replaced?€rform this job, thus it is a challenge to the smart reader.
If these further replaced fithesses are completely uncorre-
lated with the smallest one, then criticality is lost. In short,
in order to get both criticality and diversity, one needs: 1)
to replace the smallest fithess; 2) to replace also other fit-
nessesomewhat correlatedto it. Within the original Bak-
Sneppen recipe, this correlation is provided by the neigh-
bourhood along the linear chain of individuals. The usual
nave interpretation in favour of this particular choice is a
food chain, considering each individual as a whole species:

it gets food from its left neighbour, and provides food for It is not possible to treat such systems by classical ap-

Its right neighbour. As soon as one species becomes extInCtproaches as perturbation theory and alike. Analytical results

its two neighbours also follow the same destiny, all three : . . .
. . . __are rarely available, thus special attention to computational
being replaced by new species. Because of the geometrlcazl1

character of this rule, the analytical solution for the prob- aspects were taken.
lem becomes hard. However, one can imagine many other
non-geometrical origins for this kind of correlation we need.

x(t)

7 Conclusions

The above sections treat different situations where time anc
length scales were lost. They are examples of statistical
models at criticality, as well as complex dynamic systems.
' The overall behaviour is the same in all cases, driven by the
universality imposed by the quoted absense of characteristic
scales.
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