
Brazilian Journal of Physics, vol. 34, no. 3B, September, 2004 1077

Computer Simulations of Statistical Models
and Dynamic Complex Systems
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These notes concern the material covered by the authors during 4 classes on the Escola Brasileira de Mecânica
Estat́ıstica, University of S̃ao Paulo at S̃ao Carlos, February 2004. They are divided in almost independent
sections, each one with a small introduction to the subject and emphasis on the computational strategy adopted.

1 Introduction

This article is an expanded version of the notes used by the
authors in the course taught in the 2004 edition of the Brazil-
ian School of Statistical Mechanics (EBME), held in Febru-
ary of 2004 at the S̃ao Carlos campus of the State University
of São Paulo (USP). The various sections are mostly inde-
pendent of each other, and can be read in any order. Dif-
ferent styles and notations, independently adopted by each
author while writing their first versions, were kept.

The subject of all sections can be interpreted as the same,
in a broad sense, namely the consequences of lacking multi-
ple characteristic scales (time, size, etc) in both equilibrium
statistical models (two next sections), and complex dynamic
systems (remainder sections).

2 Percolation

Mathematicians prefer to define percolation starting from an
infinite lattice. For simplicity, let’s consider a square lattice.
Each site is randomly tossed to be present or absent, accord-
ing to a fixed concentrationp. By considering links between
nearest neighbour present sites, one studies the structure of
clusters (or islands) which appears. Fig. 1 shows a piece of
such a lattice, as an example.

This system presents a phase transition, when one varies
the concentrationp. For small enough values ofp, all islands
are finite, including the largest one (highlighted by black cir-
cles in Fig. 1). Starting from any present site, it is impossible
to go too far away from this point by walking only through
nearest neighbouring present sites: eventually one returns
back to the starting point. On the other hand, by increas-
ing p, suddenly the largest cluster becomes infinite, at a very
precise critical valuepc, and then one can cover infinite dis-
tances starting the walk from any present site belonging to
this cluster. The parameter of order for this transition can be
defined as follows. One takes a site at random, and measures
the probabilityP (p) that this site belongs to the largest clus-
ter. Forp < pc, this largest cluster being finite on an infinite
lattice, this probability vanishes. Forp > pc, however, this

probability monotonically increases. Fig. 2 shows the qual-
itative behaviour of this parameter. Nearpc (above), this
order parameter is given by

P (p) ∼ (p− pc)β for 0 < p− pc <<< 1 ,

whereβ is a universal critical exponent, which depends only
on the lattice dimension, not on the local lattice geometry
(its valueβ = 5/36, for instance, is the same for square,
triangular or any other two-dimensional lattice). The thresh-
old pc = 0.59274621(13) [1] is valid for the square lattice.
However, this is not a universal quantity: the triangular lat-
tice, for instance, haspc = 1/2. See [2] for this and other
interesting issues.

Figure 1. Finite piece of an infinite square lattice. Small black cir-
cles define the largest cluster. All other smaller clusters are denoted
by open circles.
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Figure 2. Probability for a random site to belong to the largest
cluster.

Many further different quantities can be considered. One
of then is the correlation functionG(x), defined as follows.
For a given configuration like that on Fig. 1, one takes two
sites distantx from each other, and countsg = 1 if they
belong to the same clusterexcluded the largest one, other-
wise one countsg = 0. Then, one takes many other pairs
of sites distant the same valuex, and perform the average of
g. Finally, one considers many other configurations tossed
under the same concentrationp, and perform the configura-
tion average. For fixedp and large values ofx, this function
exponentially decays as a function ofx,

G(x) ∼ e−x/ξ(p) for large x and p 6= pc ,

where the so-called correlation lengthξ(p) measures the
range of correlations, or, alternatively, the typical diameter
of an island. Even the lattice being infinite, one does not
need to consider distances larger thanξ(p): a finite piece of
the lattice, larger than this size, presents the same behaviour
as the whole infinite lattice.
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Figure 3. Correlation length (typical diameter of an island).

The exponential form above is only the asymptotic lead-
ing factor ofG(x). Exactly atp = pc, however, long-range
correlations appear, i.e.ξ(p) diverges, Fig. 3, and another
leading factor emerges, namely the power-law

G(x) ∼ x−η for large x and p = pc .

For lattice dimensions other thand = 2, the critical expo-
nent isd − 2 + η, instead. Again, the critical exponentη
is universal (in two dimensions,η = 5/24). Contrary to
the exponential decay which defines the typical lengthξ,
this power-law lacks any characteristic length scale. Atpc,
any finite piece of the infinite lattice is not enough to de-
scribe its complete critical behaviour: correlations overflow
the boundaries of this piece, whatever is its finite size. For
this and any other critical system, the classical perturbation
approach of determining first the behaviour of a small piece
of the system, including later the influences of all the rest
(the “perturbation”), does not work at all: the “rest” is never
negligible.

Near butnot exactlyat the thresholdpc, the correlation
length itself incorporates this criticality as

ξ(p) ∼ |p− pc|−ν for |p− pc| <<< 1 ,

whereν is another universal critical exponent (in two di-
mensions,ν = 4/3). Note the importance of excluding the
largest cluster from the above definition of correlation func-
tion: the correlation length remains finite below as well as
above the thresholdpc. By further increasingp abovepc,
some finite islands glue on the already existent infinite clus-
ter, and the average diameter of the remainder islands de-
creases. Fig. 3 shows the qualitative aspect ofξ(p). The
exponentν is the same on both sides ofpc. The multiplica-
tive factors of|p − pc|−ν omitted from the last equation,
however, are two different constants.

Another interesting quantity is the mean cluster size
χ(p), the average number of sites belonging to each island,
again excluding the largest cluster. Assigning a unit “mass”
to each present site, this quantity can be interpreted as the
typical mass of an island. It reads

χ(p) ∼ |p− pc|−γ for |p− pc| <<< 1 ,

whereγ is the corresponding critical exponent, also univer-
sal (in two dimensions,γ = 43/18). The qualitative plot for
χ(p) is shown in Fig. 4. Again, the universal exponent is the
same below and abovepc, but the amplitudes multiplying
|p− pc|−γ are different.
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Figure 4. Mean cluster size (typical mass of an island).

All these quantities are related to the average number
ns(p) of s-clusters per site, wheres denotes the cluster size,
or mass. The order parameter, the correlation length, the
mean cluster size and others can be obtained fromns(p),
which is then called thepotential or generating function.
(The term “per site” means to consider an enormous lattice
piece, and divide the counting by the number of sites inside
it, i.e. ns(p) is indeed the density ofs-clusters.) In particu-
lar, atpc this size distribution follows a power-law,

ns(pc) ∼ s−τ ,

whereτ is another universal exponent (in two dimensions,
τ = 187/91). Again, the system lacks any characteristic
size scale: atpc, one cannot neglect clusters larger than any
predefined cut off.

Near but not exactly atpc and for large sizess, ns(p) is
a generalised homogeneous function [3] ofp − pc and1/s,
i.e. it obeys the property

n[Λσ(p− pc), Λ s−1] = Λτ n(p− pc, s
−1) ,

whereΛ is an arbitrary number, andσ is a further critical,
also universal exponent (in two dimensions,σ = 36/91).
The critical point corresponds to both variablesp − pc and
1/s vanishing. By choosingΛ = s, one obtains

ns(p) = s−τ f [(p− pc)sσ] ,

which allows an interesting interpretation. By measuring
ns(p) in units ofns(pc), i.e. by takingns(p)/ns(pc), one
does not need to consider it as a function of two vari-
ablesp and s: it depends only on the single combination
z = (p− pc)sσ.

The order parameterP (p), Fig. 2, for instance, is related
to ns(p) through

p = P (p) +
∑

s

s ns(p) .

The reasoning behind this formula is simple. For a fixed
sizes, one can determine the probabilitys ns(p) of picking
a random site belonging to somes-island. (Why? First, one

counts the total number ofs-islands and multiply withs,
getting the total number of sites belonging to alls-islands.
Then, one divides the result by the total number of lattice
sites, getting the quoted probability. Remember thatns(p)
is the number ofs-islandsper site.) Thus, the sum over
s which appears in the above equation corresponds to the
probability of picking a random site belonging to anyfi-
nite island (of course, only finite values ofs are scanned
by this sum.) Finally, the concentrationp of present sites
is the probability for a random site to belong either to the
infinite cluster (if any) or to any other island, obtained by
summing up the probabilitiesP (p) and

∑
s s ns(p) of each

case, respectively. In Fig. 2, the region above the curve for
P (p) and below the straight45o-diagonal corresponds just
to all sites belonging tofinite islands.

The mean cluster sizeχ(p) is also related tons(p)
through

χ(p) =
∑

s

s2ns(p) ,

which rid off further explanations.
Both P (p) andχ(p) are one-site averages, obtained by

scanning the lattice site by site. Thus, for each site, the prob-
ability s ns(p) to belong to somes-island is considered in
the two last equations. The correlation lengthξ(p) is dif-
ferent, it is a two-site average. In this case, one needs to
scan all pairs of lattice sites which belong to the same is-
land. The class ofs-islands contribute, then, with a weight
proportional tos2 ns(p). (Why? The probabilitys ns(p)
to pick the first site inside this class is multiplied with the
numbers − 1 of remainder sites of the same island: any
of them could be the second site, in order to form a pair.
For large islands,s ands − 1 can be confounded.) Instead
of determiningξ(p) directly from the correlation function
G(x) ∼ e−x/ξ(p), one can compute a related quantity de-
noted here with the same symbolξ(p) by

ξ2(p) =
∑

s Rs
2 s2 ns(p)∑

s s2 ns(p)
,

whereRs measures the average radius: for eachs-island,
one first computes its gyration radius defined byR2 =∑

i ri
2/s, whereri is the distance between sitei and the

center of mass, and then averages over alls-islands.
At a first glance, one is tempted to relate the average

mass to the average radius through the Euclidean relation
mass ∼ radiusd. However, percolation clusters are not
compact objects. Instead, they arefractals with dimension
D a little bit smaller then the Euclidean dimensiond. Thus,
the correct relation ismass ∼ radiusD. Nearpc, a typ-
ical fractal island with radiusξ has massξD smaller than
the volumeξd, due to the holes which characterise the frac-
tal. The volume fractionξD/ξd actually occupied by this is-
land equals the probabilityP (p). From this equality, namely
P = ξD/ξd, one finds the scaling relation

D = d− β/ν .

The fractal dimensionD is also a universal critical expo-
nent (in two dimensions,D = 91/48). By transforming
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the s-sums into integrals, a procedure valid near the criti-
cal point, and by profitting from the generalised homoge-
neous form ofns(p) in order to change the variable froms
to z = (p − pc)sσ, one can find various other scaling rela-
tions between critical exponents, for instance

α = 2− τ − 1
σ

,

β =
τ − 2

σ
,

γ =
3− τ

σ
,

δ = 1 +
γ

β
,

D =
d

τ − 1
,

Dσ =
1
ν

,

ν d =
τ − 1

σ
,

γ = (2− η) ν ,

etc. Exponentsα andδ concern respectively the tempera-
ture dependence of the specific heath, and the magnetic field
dependence of the magnetisation. They were not directly
treated in the present text. The corresponding equations
were included above for completeness. Indeed, these var-
ious critical exponents are not independent from each other:
knowing two of them, for instanceτ andσ, one automat-
ically knows all others. Equivalently, the many power-law
dependences which characterise the critical behaviour are
related to each other.

Contrary to mathematicians, physicists prefer finite lat-
tices, for instance aL × L square, a lattice piece like that
shown in Fig. 1. It is treated by choosing some artificial rule
to define the neighbourhood along its boundary. A particu-
larly convenient rule is to take the bottom-row spins to re-
place the missing up-neighbours of the top-row. Symmetri-
cally, one chooses the top-row spins as down-neighbours of
the bottom-row. This rule is usually called periodic bound-
ary condition, the lattice becoming a cylinder. One ad-
vantage is the preserved translation symmetry, all rows are
rigorously equivalent. Considering also periodic boundary
condition along the vertical direction, all columns equiva-
lent, the cylinder turns into a torus.

The infinite lattice limit is considered by including the
lattice size as a further parameter1/L into the generalised
homogeneous relation, the so-called finite-size-scaling hy-
pothesis

n[λ1/ν(p−pc), λDs−1, λL−1] = λd+D n(p−pc, s
−1, L−1) ,

whereλ is an arbitrary number related to the previous one
by Λ = λD. From this, one can express the densityns,L(p)
of s-clusters as

ns,L(p) = s−τf [(p− pc)sσ, s/LD] ,

a function of only two variablesz = (p − pc)sσ and
w = s/LD, instead ofp, s andL. In particular, exactly
at pc, one can perform integrals inw instead ofs, getting a
series of useful finite-size-scaling relations

χL(pc) ∼ Lφχ = Lγ/ν ,

PL(pc) ∼ LφP = L−β/ν ,

ξL(pc) ∼ Lφξ = L ,

etc. The exponentφχ = γ/ν is called theanomalous di-
mensionof the corresponding quantityχ(p), φP = −β/ν is
the same for the order parameterP (p), etc. Not surprisingly,
the correlation length shares the same dimensionφξ = 1 of
the length finite sizeL, last relation. It has an interesting in-
terpretation, normally used as an argument in favour of the
finite-size-scaling hypothesis: instead of diverging atpc, the
plot of ξ(p) for a finite lattice presents a peak nearpc, the
height of which is proportional to the lattice lengthL.

Figure 5 gives the qualitative behaviour of some generic
quantityQ(p) which diverges atpc, for an infinite lattice, ac-
cording to its characteristic critical exponentq, i.e. Q(p) ∼
|p− pc|−q. The plot, however, corresponds to a finite lattice
of lengthL. The divergence is replaced by a cut off peak,
with QL(p) ≈ Lq/ν for values ofp inside an interval of
width L−1/ν aroundpc. If the thresholdpc is known, one
can profit from this finite-size behaviour in order to deter-
mine the anomalous dimensionφQ = q/ν, by measuring
QL(pc) for different lattice sizes. An estimate forpc itself
can be also obtained, by tuning the precise concentration for
which the log-log plot ofQ againstL is a straight line.

0 0.5 1
p

0

Q

L
q/ν

|p−p |
−q

c

L
/−1 ν

Figure 5. Finite size cut off of a divergence.
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The finite-size-scaling form

Q[λ1/ν(p− pc), λL−1] = λ−φQ Q(p− pc, L
−1)

exhibits the anomalous dimensionφQ for this quantityQ.
By choosingλ = L, one reveals an interesting property: the
plots ofQL(p)/QL(pc) against(p − pc)L1/ν will collapse
on the same curve for different lattice sizesL. This equation
is obtained by performing the propers−integration on the
finite-size-scaling relation.

Particularly useful are quantities with vanishing anoma-
lous dimension,φQ = 0. Plotted againstL, they are asymp-
totically constant for large values ofL, when the correct
concentrationp = pc is chosen. The so-called Binder cu-
mulant [4] and the correlation between opposite surfaces [5]
are general examples of these quantities. For percolation,
one has the spanning probabilitySL(p) around, say, the hor-
izontal direction. For a fixedL × L finite lattice, it varies
with the concentrationp as a sigmoid curve schematically
shown in Fig. 6.
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Figure 6. Spanning probability for two lattice sizesL and L′

(L′ > L). Due to its anomalous dimensionφS = 0, for larger
and larger lattices this function approaches the stepS(p < pc) =
0; S(pc) = r∗; S(p > pc) = 1 , also highlighted by two heavy
straight lines plus the open dot. By fixing an arbitrary valuer at the
vertical axis, one finds the sequencep, p′ . . . for increasing lattice
sizes, which converges topc.

In the limit of infinite lattice size, this curve approaches a
step function, suddenly jumping from 0 (valid for allp < pc)
to an isolated universal valuer∗ exactly atp = pc. Then, it
immediately jumps again fromr∗ to 1 (which remains for all
p > pc). It is a kind of order parameter, vanishing along all
the disordered phase. However, instead of gradually increas-
ing according to the smooth curve(p−pc)β when the thresh-
old is surpassed, it becomes immediately constant along all
the ordered phase, i.e. it behaves as(p−pc)0, with a zero ex-
ponent instead ofβ. Thus the anomalous dimension ofS(p)
is φS = 0, whereasφP = −β/ν for the order parameter
P (p).

A simple an efficient way to get the value ofpc is to ex-
trapolateSL(p) for larger and larger lattices. By fixing some

valuer on the vertical axis of Fig. 6, one measures the cor-
responding valuespL1 , pL2 , pL3 . . . for increasing lattice
sizesL1, L2, L3 . . . In [6], the formula

pL(r) = pc +
1

L1/ν

[
A0(r) +

A1(r)
L

+
A2(r)
L2

+ . . .
]

,

is proposed for theL-dependence of this series. The fitting
of this form to real Monte Carlo data is excellent, giving
numerical estimates for the thresholdpc within an accuracy
of one part in106, for an acceptable computational effort
[6]. One can fix any value ofr at the vertical axis, Fig. 6.
The rate of convergence is dictated by1/L1/ν , for increas-
ing values ofL.

A faster rate of convergence, and hence a better accu-
racy, can be obtained by choosingr = r∗, the critical univer-
sal value which in some cases is exactly known through con-
formal invariance arguments. Within this convenient choice,
one hasA0(r∗) = 0 in the above equation, accelerating
the convergence rate to1/L1+1/ν [6]. Better yet is to con-
sider the probability of wrapping along the torus, instead
of spanning. In this case, the convergence rate is dictated
by 1/L2+1/ν , and the already quoted best known estimate
pc = 0.59274621(13) was reported [1].

In [6], the spanning between two parallel lines distant
L/2 from each other is verified: one countss = 1 if there is
some island linking these two lines,s = 0 otherwise. Then,
SL(p) is the configuration average ofs. This definition mul-
tiplies the statistics by a factor ofL: for the same configura-
tion, one considers rows 1 and1 + L/2, also 2 and2 + L/2,
etc, and repeats the same for columns. Larger lattices can be
monitored in this way, allowing for instance a much better
definition of the threshold distribution tails [7].

The canonical way to simulate the percolation problem
on computers corresponds to a fixed concentrationp. Ac-
cording to this value, one tosses a random distribution, then
measures the quantityQ of interest for this particular con-
figuration, and finally tosses many other configurations and
repeats the whole process. At the end, one has a single av-
erage valueQ(p) for the fixed concentrationp. In order to
get the whole functionQ(p), one needs to repeat the pro-
cess for many other values ofp. Even so, the result is not a
continuous function ofp.

Here, we will show a way to get the continuous depen-
dence betweenQ andp [1]. One starts with an empty lat-
tice. Then, the lattice is filled-up, one random site at each
step. After each new site, one determines the valueQn of
the quantity of interest, wheren is the number of present
sites so far, and accumulates it on an-histogram. When the
lattice is completely filled with all itsN sites present, one
starts the same process again, from the empty lattice. After
a sufficient large numberM of repetitions, one divides all
N + 1 entries of the histogram byM : now it stores the “mi-
crocanonical” averagesQn, i.e. the averages ofQ for fixed
numbersn = 0, 1, 2. . . N of present sites.

Once the histogramQn is complete, the simulation step
is over, we miss now simply to treat the data already stored
on it. The “canonical” average can be obtained from
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Q(p) =
N∑

n=1

C n
N pn(1− p)N−n Qn ,

F

D G L

K

F D G L

K

Figure 7. Tree structure of cluster labels. The root for this par-
ticular cluster is siteK . In order to find the ultimate label for site
F, one needs a two-step search, because it does not point directly
to the root (up). Once this process is performed for the first time,
however, the pointer becomes direct (down), saving computer time
from now on.

whereC n
N is the combinatorial factor. Note thatp was intro-

duced as a continuous parameter, only after the simulation

step is over.Q(p) is simply a polynomial inp, the coeffi-
cients of which are stored inQn. The continuous character
of Q(p) may be of fundamental importance. To find the
rootsp, p′ . . . shown in Fig. 6, for instance, one needs to
solve the equationsSL(p) = r, SL′(p′) = r, etc, which
would be a hard work without knowingSL as a continuous
function ofp.

During the simulation process, the determination ofQn

for the current configuration is not necessarily an easy task,
if the quantityQ does not depend only on the local situa-
tion where the last site was occupied. However, the filling-
up process makes the structure of clusters easy to study:
only three situations should be analysed for each new site
included. First, if this new site is isolated from all others,
it forms a new one-site cluster and receives a new cluster-
label, namely its own numbern according to the chronolog-
ical order it appeared. Second, this new siten could sim-
ply aggregate itself to an already existent cluster, being the
next-neighbour of another previous siten′ belonging to this
cluster: in this case, the new site receivesn′ as its cluster
label. The third possibility, for which non-locality should
be considered, corresponds to join two or more old clusters
into a single larger one. The structure of cluster labels is ex-
emplified in Fig. 7. Each site points to another previous site
belonging to the same cluster. Only the root of each cluster
points to itself.

In order to join a cluster into another, one needs to find
its root, and change its status: now it points to some site of
the other cluster. To find the root of some cluster could be
a multi-step search procedure, going from site to site along
a tree branch, until finding the only one which points to it-
self, the root. In doing so, one can return back through the
same path, updating all pointers to the real root. This saves
computer time for future searches. The following recursive
C-language routine performs this task.

int root(S) int S; {
/* finds the cluster root of site S; the array Cluster[S]

points to some site belonging to the same cluster as S */
int s;
if((s=Cluster[S])==S) return(S);
return(Cluster[S]=root(s));

}

3 Broad Histogram Method

The main purpose of equilibrium statistical physics is to ob-
tain the canonical average

< Q >T =
∑

s Qse−Es/T

∑
s e−Es/T

of some quantityQ of interest, when the system under study
is kept at fixed temperatureT . The sums run over all pos-
sible statess. For each of them,Qs andEs represent the
values of the quantityQ and the energy, respectively. For

simplicity, the Boltzmann constant is taken to be unitary.
For macroscopic systems, the number of statess is enor-
mous. Consider a system withN binary units, for instance
a set ofN Ising spins which can point eitherup or down.
One states of the whole system is a fixed distribution of
spinsup anddown. The total number of such states is2N ,
which is unimaginably huge for a macroscopicN . Thus, for
most cases the sums appearing in the above equation cannot
be analytically performed.

The so-called Monte Carlo method performs these sums
for a restricted sub-set of states, instead of scanning all of
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them. In doing so, one can control the degree of approxima-
tion by choosing the sampling set of statess1, s2 . . . sM to
be representative enough, according to the desired accuracy.

For instance, in order to construct a completely random
state, one chooses each Ising spin to pointup or down ac-
cording to50% chance. The random sampling approach
corresponds to perform the sums withinM states tossed
in this way. However, it would work properly only in the
limit T → ∞, where differences in energy are irrelevant.
Normally, the numberg(E) of states sharing the same en-
ergy E is a fast increasing function ofE. (For finite sys-
tems, besides a lower bound, there is also an energy upper
bound. Thus,g(E) normally presents a peak in between
these bounds. However, only the energy region whereg(E)
increases, from low to high energies, is important. One
can forget the ultra-hight-energy region of the spectrum,
whereg(E) decreases back, because equilibrium is impos-
sible there: for that, one would need a negative tempera-
ture.) Within this random sampling approach, high-energy
states near the peak ofg(E) are more likely to belong to the
sampling sub-set. In the averaging process, on the contrary,
the Boltzmann factore−Es/T prescribes large weights just
for low-energy states, which are seldom sampled under a
completely random choice. In short, a sub-set of completely
random states would be a good sample for high energies,
which are not so important for the averages, but presents a
poor sampling performance within the more important low
energies.

In order to solve this drawback, the importance sampling
Monte Carlo method incorporates the Boltzmann factor into
the choice ofM random states. In order to construct the
sampling set, one chooses states according to a probabil-
ity proportional toe−Es/T . The pioneering recipe to per-
form this task is the half-century old Metropolis algorithm
[8]. One starts to construct the sample set from a single
random states1. Then, some variant ofs1 leads to a new
states, for instance a random spin is flipped ins1, leading
to s which is then a candidate to bes2. If the energy dif-
ference∆E = Es − Es1 is negative, thens is accepted,
ands2 = s is included into the sampling set. Otherwise,
one acceptss only within a probabilitye−∆E/T . In order
to implement this conditional acceptance, one tosses a ran-
dom numberr between 0 and 1, and compares it with the
quoted probability: ifr ≤ e−∆E/T , states is accepted,
i.e. s2 = s is included into the sampling set. However,
if r > e−∆E/T , s is discarded ands2 = s1 is repeated in
the sampling set. Following the same rule, the third element
s3 is constructed froms2, s4 from s3, and so on, up tosM .
This sequence where each state is constructed from the pre-
vious one is called a Markov chain. At the end, one simply
determines the unweighted average

< Q >T ≈
M∑

i=1

Qsi

among theseM states. Note that the Boltzmann weights
e−Esi

/T are already taken into account during the construc-

tion of the sampling set. That is why they are absent from
the above equation.

The important feature of this Metropolis recipe is to pro-
vide a Markov chain of states obeying the Gibbs canonical
distribution, i.e. each state appears along the chain accord-
ing to a probability proportional toe−E/T . Alternatively,
each energyE appears along the Markov chain according
to a probability proportional tog(E) e−E/T . In reality, the
argument works in the reverse sense: given this canonical
distribution, one can construct a recipe to toss random states
obeying it. Normally, this construction is based on some
arguments like detailed balance, and others. The above de-
scribed Metropolis algorithm is one of these recipes.

If the protocol of allowed movements is ergodic, i.e. if
any states is reachable starting from any other, the degree
of approximation depends only onM . Namely, the error is
proportional to1/

√
M . The protocol defined by performing

only single spin flips is obviously ergodic. Thus, in princi-
ple, one can surpass any predefined error tolerance, simply
by improving the statistics with larger and larger values of
M (also more and more computer time, of course). Other
issues are indeed important, as the quality of the random
number generator one adopts. This canonical importance
sampling Monte Carlo method is by far the most popular
in computer simulations of statistical models. However, it
presents a strong limitation: one needs to fix the tempera-
ture T in order to construct the Markov chain of sampling
states. At the end, for each complete computer run (which
can represent days, months or even years), one has the aver-
age< Q >T only for that particular value ofT . One needs
to repeat the whole process again for each other value ofT
one wants to record.

The same canonical average can be re-written as

< Q >T =
∑

E < Q(E) > g(E) e−E/T

∑
E g(E) e−E/T

where

< Q(E) > =
1

g(E)

∑

s(E)

Qs

is the microcanonical, fixedE average. The sum runs over
all g(E) statess(E) sharing the same energyE. Bothg(E)
and< Q(E) > do not depend on the temperatureT , they
are quantities dependent only on the energy spectrum of the
system, nothing to do with thermodynamics which describes
its interactions with the environment. The temperatureT ap-
pears only in the Boltzmann factorse−E/T , which presents
a known mathematical form independent of the particular
system under study. For a fixed temperature, each energy
contributes to the average according to the probability

PT (E) =
g(E)e−E/T

∑
E′ g(E′) e−E′/T

which can be related to the probabilityPT ′(E) correspond-
ing to another temperatureT ′, by
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PT ′(E) =
eE( 1

T − 1
T ′ )PT (E)∑

E′ e
E′( 1

T − 1
T ′ )PT (E′)

.

Thus, in principle, one can re-use data obtained from simu-
lations performed at the fixed valueT , in order to obtain the
averages corresponding to the other temperatureT ′, instead
of simulating the same system again. This is the so-called
reweightingmethod [9], which became famous after rein-
vented 3 decades later [10].

As an example, consider the Ising model on aL × L
square lattice, with periodic boundary conditions. Only
nearest neighbouring spins interact with each other through
a coupling constantJ . Normally, one counts energy−J
for each pair of parallel spins (up-up or down-down), and
+J otherwise. Here, we prefer an alternative counting:
only pairs of anti-parallel spins (up-down ordown-up) con-
tribute with an energy+2J , while pairs of parallel spins
do not contribute. ForL = 32, the probabilityPT (E) is
displayed in Fig. 8 for two slightly different temperatures
T = 2.247 andT ′ = 2.315, one below and the other above
the critical temperatureTc = 2.269 (all values measured in
units ofJ). This narrow temperature range corresponds to
3% of Tc. Energy density meansE/2L2, the average en-
ergy per nearest neighbouring pair of spins (lattice bonds).
Instead of using reweighting through the last equation, both
curves were independently constructed.

0.04 0.08 0.12 0.16 0.20 0.24
energy density

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

[P
 (

E
)/

P
m

ax
]

T
2

Figure 8. Squared energy probability distribution for the Ising
model on a32×32 lattice, forT = 2.246 (1% belowTc = 2.269)
andT ′ = 2.315 (2% aboveTc). For the sake of comparisons, both
peaks were normalised to unit.

Note the vertical axis of Fig. 8, displaying the squared
probability. On the other hand, the error is inversely propor-
tional to the square root of the statitics, i.e.

√
M . Hence,

this plot can be interpreted as the statistics one needs inside
each energy level, in order to fulfill a previously given error
tolerance. In order to obtain the right curve (T ′) from the
left one (T ), by using the reweighting equation, one would
pay a price in what concerns accuracy. Near the maximum
corresponding toT ′, the statistics forT is 10 times poorer.
For this tiny32 × 32 system size, the price to pay is not so
bad. Consider now Fig. 9, showing the same probabilities

with the same temperatures, for a larger90 × 90 lattice, a
still small but 8-fold larger size. Instead of only10, the loss
in statistics corresponds now to a factor of10 millions! The
situation would be even worse for larger lattices, because
the canonical distributionsPT (E) are narrower. Reweight-
ing does not help very much in these cases.
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Figure 9. The same as Fig. 8, with the same temperatures, now for
a 8-fold larger90× 90 lattice.

Reweighting methods based on the last equation do not
solve the problem they are supposed to solve. One can-
not extract the thermal averages for a temperatureT ′ from
Monte Carlo data obtained with another fixed temperature
T , unlessT andT ′ are very near to each other. One still
needs to run the whole computer simulation again and again
for a series of temperatures within the range of interest.
However, as a solace, it solves another important problem:
it allows one to get the thermal average< Q >T as a
continuous function of T . After determining< Q >T1 ,
< Q >T2 , < Q >T3 . . . by repeating the simulation for
a discrete series of fixed temperaturesT1, T2, T3 . . . , the
above reweighting equation allows the interpolation in be-
tween these values [11].

The first successful attempt to obtain thermal averages
over a broad temperature range from a single simulation was
the multicanonical sampling [12]. In order to reach this goal,
first one needs to abandon the Gibbs distributionPT (E), be-
cause it covers a very narrow energy range, hence a very
narrow temperature range. Instead of the canonical depen-
dencePT (E) ∝ g(E) e−E/T which produces the undesired
very narrow curves in Fig. 9, the simplest choice is a com-
pletely flat probability distribution, i.e. a constantPM (E)
within the whole energy range of interest, where the label
M stands for multicanonical. How to get such a flat distri-
bution? The idea is to gradually tune the acceptance of can-
didates to belong to the Markov chain, in real time during
the computer run: one rejects more often states correspond-
ing to already over-populated energies, while less populated
energies are accepted. In order to get a completely flat dis-
tribution, the acceptance rate corresponding to each energy
E would be proportional to1/g(E). However,g(E) as well
as< Q(E) > are not known, otherwise the thermal aver-
age< Q >T could be directly obtained. Thus, one needs
to measureg(E) from the computer simulations. This can
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be done during the run, by booking the numberA(E) of
attempts to populate each energyE. If the final distribu-
tion is really flat, these numbers are proportional tog(E),
because only a fraction proportional to1/g(E) of these at-
tempts were really implemented, i.e.A(E) = Kg(E). In
this way, one determinesg(E) apart from an irrelevant mul-
tiplicative factorK which cancels out in the previous for-
mula for< Q >T . During the same run, the microcanonical
average< Q(E) > can also be measured, by determining
the value ofQ for each visited state, and accumulating these
values onE-histograms. Again, different recipes could be
invented in order to gradually tune the acceptance rate lead-
ing to a final flat histogram. Perhaps the most effective of
them is proposed in [13], where a multiplicative tolerance
factorf controls the distribution flatness. One starts with a
large tolerance, and gradually decreases the value off to-
wards unity.

The broad histogram method [14] follows a different
reasoning. Instead of defining a dynamic recipe, or rule,
like Metropolis or multicanonical approaches, the focus is
the direct determination ofg(E) by relating this function
to two othermacroscopic quantities< Nup(E) > and
< Ndn(E) > defined as follows. First, one defines a
protocol of allowed movements which potentially could be
performed on the current states. For instance, the single
spin flips already mentioned. They are virtual movements,
which are not implemented: they are not necessarily the
same movements actually performed in order to define the
Markov chain of states, from which one measures the de-
sired quantities. They have nothing to do with acceptance
rates or probabilities, each virtual movement can be only al-
lowed or not. In order to avoid confusion, let’s calldynamic
rule the sequence of movements actually implemented in
order to construct the Markov chain, with its characteristic
acceptance probabilities, rejections, detailed balance argu-
ments and so on. This rule is not part of the broad histogram
method, any such a rule able to determine microcanonical
averages is good.

The only restriction to the protocol of allowed virtual
movements is the reversibility, i.e. if some movement
s → s′ is allowed, thens′ → s is also allowed. Furthermore,
one chooses a fixed energy jump∆E: any choice is valid,
thus the user can choose the more convenient value. For
each states corresponding to energyE, one counts the total
numberNup

s of allowed movements one could potentially
implement, increasing the energy toE+∆E: < Nup(E) >
is the microcanonical average of this counting, over allg(E)
states, i.e.

< Nup(E) > =
1

g(E)

∑

s(E)

Nup
s ,

the sum running over all statess(E) with energyE. Analo-
gously, for each such state, one counts the total numberNdn

s

of allowed potential movements which result in an energy
decrement of∆E, i.e. the new energy would beE − ∆E,
and computes the microcanonical average

< Ndn(E) > =
1

g(E)

∑

s(E)

Ndn
s .

These two microcanonical averages are related tog(E)
through the broad histogram equation [14]

g(E) < Nup(E) > = g(E +∆E) < Ndn(E +∆E) > .

This equation is exact, completely general, valid for any
model [15]. It follows from the required reversibility of
the virtual movements one chooses as the protocol: the total
number

∑
s(E) Nup

s of allowed movements which transform
E intoE+∆E, considering allg(E) possible starting states,
is the same number

∑
s(E+∆E) Ndn

s of reverse movements
which transform backE + ∆E into E, now considering all
g(E + ∆E) possible starting states.

The microcanonical averages< Nup(E) > and
< Ndn(E) > can be determined by any means. If one
knows how to get their exact values, the exactg(E) can be
obtained from the above equation. Otherwise, some approx-
imate method should be adopted, for instance some Monte
Carlo recipe. In this case, the only requirement the dynamic
rule needs to fulfill is the uniform visitation among the states
sharing the same energy, separately. The relative visitation
rates to different energy levels is unimportant, one does not
need to care about detailed balance and other complicated
issues. Thus, the choice of the particular dynamic rule can
be made within much more freedom than would be neces-
sary for canonical averages. In particular, any dynamic rule
which is good to determine canonical averages (Metropolis,
multicanonical, etc) is equally good for microcanonical, but
the reverse is not true.

Once the microcanonical averages< Nup(E) > and
< Ndn(E) > are known as functions ofE, one uses the
above equation in order to determineg(E). For instance,
starting from the lowest energyE0 of interest, and pre-
scribing some arbitrary value forg(E0), this equation gives
g(E1) whereE1 = E0 + ∆E. Now, fromg(E1), one deter-
minesg(E2) whereE2 = E1 + ∆E, and so on. In this way,
g(E) is obtained along the whole energy range of interest,
apart from an irrelevant multiplicative factor which cancels
out when< Q >T is calculated. For that, the microcanon-
ical average< Q(E) > was previously determined in the
same way as< Nup(E) > and< Ndn(E) >, during the
same computer run.

In order to implement this broad histogram method,
when treating some generic problem, the only tool the user
needs is a good calculator for microcanonical averages
< Nup(E) >, < Ndn(E) > and< Q(E) >. The accu-
racy obtained at the end depends only on the quality of this
tool, because the broad histogram relation itself is exact, and
does not introduce any bias.

The advantages of this approach over importance sam-
pling, reweighting or multicanonical are three, at least. First,
the already commented freedom to choose the microcanoni-
cal simulator, for which only a uniform visitation inside each
energy level is required, independent of other levels. No
need of a precise relation between visits to different levels
(detailed balance, etc).

Second, and more important advantage, each visited
states of the Markov chain contributes for the averages with
macroscopicquantitiesNup

s andNdn
s , instead of the mere

counting of one more state accumulated onE-histograms.
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This behaviour improves very much the accuracy. More-
over for larger and larger lattices, these macroscopic quanti-
ties provide a deeper probe to explore the internal details
of each state: the computer coast to construct each new
Markov state increases with system size, then it is not a
profitable approach to extract only the information concern-
ing how many states were visited, or how many attempts
were booked, as importance sampling or multicanonical ap-
proaches do. Within broad histogram, on the other hand, the
numberV (E) of visits to each energy level plays no role at
all: it needs only to be large enough to provide a good statis-
tics, nothing more. The real information extracted from each
Markov states resides on the values ofNup

s andNdn
s .

Third advantage, following the previous one, the pro-
file of visits to the various energy levels are not restricted
to some particular form, canonical or flat. The user can
choose it according to the desired accuracy. For instance,
if one is interested in getting canonical averages over the
temperature range betweenT = 2.246 and T ′ = 2.315,
for the Ising model exemplified in Fig. 8, the ideal profile is
shown in Fig. 10, where the number of visitsV (E) is nor-
malised by its maximum value. This profile was obtained
by superimposing the canonical distributions correspond-
ing to the extreme temperatures within the desired interval,
Fig. 8, forming an umbrella. Only inside a narrow energy
range, between densities0.124 and0.170, one needs a large
numberVmax of visits. Outside this range, one can sample
a smaller number of Markov states, saving computer time
without compromising the overall accuracy. These advan-
tages and others are exhibited with details in [16].

A simple dynamic rule [17] seems to be a good micro-
canonical calculator. Combined with the broad histogram,
it gives good results. It was inspired by an earlier work re-
lated to a distinct subject [18]. Although one can use it for
general situations, an easy generalisation, let’s consider, for
simplicity, the nearest neighbour Ising model on a square
lattice, within the single spin flip dynamic rule. The energy
spectrum consists of equally spaced levels, separated by a
gap of4J , considered here as the energy unit. By flipping
just one spin, the energyE can jump toE +2 or E +1, stay
at E, or decrease toE − 1 or E − 2, depending on its four
neighbours. In order to measure canonical averages at fixed
E, the quoted dynamic rule is: 1) start from some random
state with energy in betweenE − 2 andE + 2, an inter-
val covering 5 adjacent levels; 2) accept any tossed move-
ment which keeps the energy inside this interval, rejecting
all others; 3) accumulate statistics only for the central level
E, whenever the current state falls there, by chance, along
its five-level-bounded Markov walk. One predicate in favour
of this rule is the complete absence of rejections within the
single averaged levelE: any movementto it or out it is
accepted. Although this property alone is not a guarantee
of uniform visitation withinE (because rejections occur for
visit attempts to other neighbouring levels, ancestors of each
visit to E along the Markov chain), we believe the sampling
performance of this dynamic rule is good. Let’s see the re-
sults.
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Figure 10. Optimum profile of visits along the energy axis, for the
Ising model on a32×32 lattice, in order to obtain equally accurate
canonical averages betweenT = 2.246 andT ′ = 2.315. Compare
with Fig. 8.

This dynamic rule was applied according to a previously
planned visit profile, equivalent to Fig. 10, coveringcontin-
uously an entire interval of temperatures within a uniform
accuracy. For a32×32 lattice, the exact partition function is
available [19], and we can compute the deviations obtained
for the specific heat, for instance. At the peak, in particular,
these deviations are the largest, shown in Fig. 11 as a func-
tion of the statistics. Different symbols correspond to the
possible values∆E = 1 or 2, fixed for the energy jump in
the broad histogram equation.
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Figure 11. Deviations relative to exact values of the specific heat
peak,32 × 32 Ising model. The line shows1/

√
Vmax, in order

to compare the slopes. Diamonds correspond to∆E = 1, and
squares to∆E = 2.

This plot shows in practice that broad histogram method
does not introduce any further bias, besides the normal sta-
tistical fluctuations. Another interesting quantity is the cor-
relation between opposite surfaces of the finite lattice [5].
For the L × L square lattice Ising model, with periodic
boundary conditions and evenL, it is defined as follows.
For a given state, one verifies the spins along a fixed hor-
izontal row i, and booksSi = +1 or −1 if their majority
pointsup or down, respectively. On ties, one booksSi = 0.
Then, one repeats the same for another parallel rowj, dis-
tantL/2 from i, and booksSj = +1, −1 or 0. Finally, one
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determines the productr = SiSj , and perform the average
of this quantity over allL possible pairs of parallel lines dis-
tantL/2 from each other (rows and columns). The quoted
surface correlation is the canonical average< r >T of this
quantity.
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Figure 12. Surface correlation function for theL×L square lattice
Ising model,L = 32, 46, 62, 90 and 126. For larger and larger
lattices, these plots approach the step function defined by the bold
straight lines plus the circle.

In the thermodynamic limitL → ∞, this quantity is a
kind of order parameter, Fig. 12, vanishing above the critical
temperatureTc. For increasing lattice sizes, it approaches a
step function:< r >T = 1 below Tc; < r >T = r∗ at
Tc, wherer∗ is a universal value; and< r >T = 0 above
Tc. The distinguishing feature of< r >T , compared with
the usual order parameter (the magnetisation< m >T ) is
its constant behaviourbelow the critical temperature. On
one hand,< m >T ∼ (Tc − T )β near and belowTc. On
the other hand, also belowTc one has< r >T = 1, hence,
instead ofβ, the corresponding exponentvanishes[5]. For
finite systems, considering the finite size scaling hypothesis,
this comparison can be better appreciated within the gener-
alised homogeneous forms

m[λ1/ν(T − Tc), λL−1] = λ−φm m(T − Tc, L
−1) ,

where the alternative notation< m >T = m(T −Tc, L
−1)

is adopted, and

r[λ1/ν(T − Tc), λL−1] = λ−φr r(T − Tc, L
−1) ,

where< r >T = r(T − Tc, L
−1).
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Figure 13. A zoom performed on the previous plot.

These forms are asymptotically valid for largeL and
near Tc, where λ is an arbitrary length. By choosing
λ = |T − Tc|−ν and taking the limitL → ∞, one finds
φm = −β/ν andφr = 0. On the other hand, by choos-
ing λ = L and tuning the system exactly atTc, one finds
< m >T ∼ Lφm = L−β/ν and< r >T ∼ Lφr = L0. At
Tc and for largeL, < r >T becomes size independent, i.e.
< r >T = r∗. A possible approach to find the critical tem-
peratureTc is by plotting< r >T againstT for two different
lattice sizes, and finding the crossing of both curves. Fig. 12
shows< r >T for 5 different lattice sizes, obtained by the
broad histogram method. The maximum numberVmax of
sampled states per energy level was8× 109 for L = 32 and
46, and8× 108 for L = 62, 90 and 126.
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Figure 14. The Binder cumulant within the same zoom.

The so-called Binder cumulant< u >T [4] also presents
zero anomalous dimension. It was very often used in or-
der to find critical temperatures of many systems, following
the same idea of finding the crossing between two curves
< u >T againstT , obtained for different lattice sizes. This
23-years-old method is generally considered one of the most
accurate ways to study critical systems. Fig. 13 shows a
zoom of the last Fig. 12, while Fig. 14 shows the Binder
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cumulant obtained from the same computer runs, thus with
the same accuracy. The surface correlation function seems
to work better than the Binder cumulant. The reason for that
may be traced from the scaling behaviour on three distinct
points, namelyT = 0, T → ∞ and, of course, the critical
point T = Tc. The system is invariant under scaling trans-
formations not only at the critical point, but also forT = 0
andT → ∞. Thus, besides the thermal exponentν and the
magnetic exponentδ, both describing the critical behaviour
nearTc, there are other (non-critical) exponents related to
the lattice dimensionality which describes the behaviour of
the system under scaling transformation nearT = 0 and
nearT → ∞. By construction, both the Binder cumulant
< u >T and the surface correlation function< r >T re-
spect the correct critical behaviour nearTc. However, only
< r >T , not < u >T , does the same nearT = 0 and
T → ∞ [5]. Thus, being forced to obey the correct be-
haviours in three different points along theT axis,< r >T

has less freedom to deviate from the correctL → ∞ be-
haviour, even for small system sizes.

4 Self-Organized Criticality

4.1 Introduction

Self-organized criticality (abbreviated as SOC from here
on) describes a large and varied body of phenomenological
data and theoretical work. Because its current meaning has
evolved far from any initial precise meaning the term may
have had, we will in these notes adhere to a broad character-
ization, if only for pedagogical purposes.

The original motivation for SOC came from recursive
mathematics. Iterated maps have been show to generate
fascinating images -fractals - which are now in common
usage, both in the sciences and in popular culture. Some
of these patterns looked very similar to naturally occurring
ones, such as river erosion patterns, plant and leaf structure,
and geological landscapes, to name but a few. The question
about which kinds of dynamical mechanisms would be re-
quired to create such patterns in nature is, thus, unavoidable.
One would hope, in addition, this mechanisms to be fairly
simple: very little would be gained in our understanding if
they were as complex as the patterns they generate.

The breakthrough in this field can undoubtedly be at-
tributed to a seminal paper by Back, Tang, and Wiesenfeld
(BTW) in 1987 [20], that opened the path to a variety of
computational models that show SOC behavior. These mod-
els are also successful in demonstrating the possibility of
generating complex and coherent structures from very sim-
ple dynamical rules. A key feature of these models is that
they are capable of generating spatially distributed patterns
of a fractal nature without requiring long-range interactions
in their dynamics: the long-range correlations “emerge”
from short-range interaction rules. Another key feature of
these models is the fact that they converge to “absorbing”
configurations exhibiting long-range coherence even having
not started at one. This convergence does not require the
tuning of any external parameter, and thus these models are
said to be “self-organized”.

Criticality is a notion that comes from thermodynamics.
In general, thermodynamic systems become more ordered
and decrease their symmetry as the temperature is lowered.
Cohesion overcomes entropy and thermal motion, and struc-
tured patterns begin to emerge. Thermodynamic systems
can exist in a number of phases, corresponding to differ-
ent orderings and symmetries. Phase transitions that take
place under the condition of thermal equilibrium, for which
temperature is a well-defined quantity and the free energy
is minimized, are well understood. These equilibrium sys-
tems are ergodic and have had time to settle into their most
probable configuration, allowing simplifying statistical as-
sumptions to be made. Although most phase transitions in
nature are discontinuous, in the sense that at least one re-
sponse function - a first-order derivative of the free energy
- suffers a discontinuous jump at the transition point, some
systems may show a critical point at which this disconti-
nuity does not happens. As a system approaches a critical
point from high temperatures, it begins to organize itself
at a microscopic level. Near but not exactly at the critical
point, correlations have an exponential decay - as an exam-
ple for the Ising model, whereS(~r) is the spin, the spin-
spin correlation has the typical behavior< S(~r)S(0) >τ

− < S(0) >τ
2 ∼ exp(−r/ξ) r−A, whereξ is called the

correlation length. Close to the critical point, large struc-
tural fluctuations appear, yet they come from local interac-
tions. These fluctuations result in the disappearance of a
characteristic scale in the system at the critical point - in
the example above, the same spin-spin correlation function
is now < S(~r)S(0) >τ − < S(0) >τ

2 ∼ r−A, which
amounts to havingξ → ∞ in the former equation. It is fair
to say that the lack of a characteristic scale is the hallmark of
a critical process. This behavior is remarkably general and
independent of the system’s dynamics.

The kind of structures that SOC aspires to explain look
like equilibrium thermodynamic systems near their critical
point. Typical SOC systems, however, are not in equilibrium
with their surroundings, but have instead non-trivial interac-
tions with them. In addition, SOC systems do not require the
tuning of an external control parameter, such as temperature,
to exhibit critical behavior. They tune themselves to a point
at which critical-type behavior occurs. This critical behav-
ior is the bridge between fractal structures and thermody-
namics. Fractal structures appear the same at all size scales,
hence they have no characteristic scale, just as the fluctua-
tions near an equilibrium phase transition at a critical point.
It is then logically compelling to seek a dynamical explana-
tion of fractal structures in terms of thermodynamic critical-
ity. A proper understanding of SOC requires an extension
of the notion of critical behavior to non-equilibrium ther-
modynamical systems and hence an extension of the tools
required to describe such systems.

The absence of a characteristic scale is closely related
to the idea of scale invariance, as can be exemplified by the
way they are connected in the study of geometric fractals.
There, the absence of a scale stems from self-similarity, in
the sense that any subset of the curve magnified by an appro-
priate amount cannot be distinguished from the full curve.
Building on this same example, self-similarity in a fractal
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generated from an initial element by an iterated map implies
that the number of elementsN(s) has a power-law depen-
dence on their sizes. This is precisely what we mean by
scale invariance, sincef(x) = xA → f(kx)/f(x) = kA.

The main hypothesis contained in the work of BTW is
that a dynamical system with many interacting elements, un-
der very general conditions, may self-organize, or self-tune,
into a statistically stationary state with a complex structure.
In this state there are no characteristic scales of time and
space controlling the time evolution, and the dynamical re-
sponses are complex, with statistical properties described
by power-laws. Systems with very different microscopic
dynamics can present power-law responses with the same
exponents, in a non-equilibrium version of Wilson’s idea
of universality: These self-organized states have properties
similar to those exhibited by equilibrium systems at their
critical point.

This mechanism is a candidate to be the long sought dy-
namical explanation for the ubiquity in nature of complex
space-time structures. A list of phenomena that could ex-
hibit SOC behavior include the avalanche-response of sand
piles, earthquakes, landslides, forest fires, the motion of
magnetic field lines in superconductors and stellar atmo-
spheres, the dynamics of magnetic domains, of interface
growth, and punctuated equilibrium in biological evolution.

What are the ingredients that lead a driven dynamical
system to a SOC state? From the analysis of the computa-
tional models mentioned at the beginning of this section, a
key feature is a large separation between the time scales of
the driving and the relaxation processes. This can be ensured
by the existence of a threshold that separates them. As an ex-
ample, let us consider the physics of driven rough interfaces,
which is believed to be one of the main earthquake source
processes. This connection will be analyzed in more detail
in the next section, but for our present purposes it is enough
to mention that the separation of time scales is in this case
provided by static friction, which has to be overcome by the
increasing stress between the two sides of a geological fault.

A SOC state is thus a statistically stationary state, said
to be “marginally stable”, sharing with thermodynamical
critical states the property of space-time scale invariance,
with algebraically decaying correlation functions. It is per-
haps best seen as a collection of metastable states, in the
thermodynamical sense. The system is driven across phase
space, spending some time at the neighborhood of each of
its metastable states, and moving between these states after
some large avalanche of relaxation events.

The original goal of BTW was to provide an explanation
for the frequent occurrence in nature of fractal space and
time patterns. The latter are usually referred to as one-over-
f (1/f ) noise, indicating the scale invariance of the power
spectrum. The SOC dynamical answer to this quest goes as
follows: In driven extended threshold systems, the response
(signal) evolves along a connected path of regions above the
threshold. Noise, generated either by the initial configura-
tion or built in the dynamics, creates random connected net-
works, which are modified and correlated by the intrinsic
dynamics of relaxation. The result is a complex patchwork
of dynamically connected regions, with a sparse geometry

resembling that of percolation clusters. If the activated re-
gion consists of fractals of different sizes, the energy release
and the time duration of the induced relaxation events that
travel through this network can vary enormously.

4.2 Characterization of the SOC state

The nature of the state is best described by the system’s
response to an external perturbation. Non-critical systems
present a simple behavior: The response time and the de-
cay length have characteristic sizes, their distribution is nar-
row and well described by their first moment (average re-
sponse). In critical systems, on the other hand, the same
perturbation can generate wildly varying responses, depend-
ing on where and when it is applied. The statistical distri-
butions that describe the responses have the typical func-
tional form P (s) ∼ s−τ and Q(t) ∼ t−α. These dis-
tributions have a lower cutoffs1 and t1, defined by the
scale of the microscopic constituents of the system. For
finite systems of linear sizeL, the distributions present a
crossover, from a certain scale up, to a functional form such
asP (s) ∼ exp(−s/s2), s > s2. For a genuine critical state,
one must haves2 ∼ Lw, w > 0. If the exponent of the
distribution isω < 2, it has no mean in the thermodynamic
limit; if it is < 3, its second moment and width diverge.

The temporal fluctuations are characterized by a1/f
noise. This is a rather imprecise label used to describe
the nature of certain types of temporal correlations. If the
response of a physical system is a time-dependent signal
N(τ), the temporal correlation functionG(τ), defined by

G(τ) =< N(τ0)N(τ0 + τ) >τ0 − < N(τ0) >τ0
2
, (1)

describes how the value of the signal at some instant in
timeN(τ0) has a statistical significance in its value at some
later timeN(τ0 + τ). If there is no statistical correlation,
G(τ) = 0. The rate of decrease ofG(τ), from G(0) to 0,
measures the duration of the correlation, and is related to
memory effects in the signal.

The power spectrum of the signalN(τ) is related to its
Fourier transform

S(f) = lim
T→∞

1
2T

∣∣∣
∫ T

−T

N(τ)exp(2iπfτ)dτ
∣∣∣
2

(2)

For a stationary process,

S(f) = 2
∫ ∞

0

G(τ)cos(2πfτ)dτ (3)

and temporal correlations may be discussed in terms of the
power spectrum.

The special nature of1/f fluctuations can be seen by
a simple example. Suppose that, for some temporal sig-
nal, we haveS(f) ∼ 1/fβ andG(τ) ∼ 1/τα; then,→
1/fβ ∼ 1/f1−α: if β ∼ 1, α ∼ 0. If β = 1, G(τ) has a
logarithmic decay, showing that temporal correlations have
a very long range ifβ ' 1.
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It is interesting to note that the sandpile model proposed
as an archetypical SOC system by BTW, even though show-
ing long range time correlations, doesnotpresent1/f noise,
despite the claims to the contrary originally made by its pro-
ponents.

Let us now discuss the spatial correlation function. For
a system described by a dynamical variable which is a field
n(r, t), such as the local density (or the local magnetization)
for fluid (or magnetic) systems this function is

G(r) = < n(r0 + r)n(r0) >r0 − < n(r0) >r0
2 (4)

where the brackets indicate thermal and positional averages.
If T 6= Tc, G(r) ∼ exp(−r/ξ), whereξ is the corre-

lation length. IfT → Tc, ξ ∼| T − Tc |−ν . At T = Tc,
G(r) ∼ r−η. The divergence ofξ indicates the absence of
a characteristic length scale and leads to spatial scale invari-
ance.

4.3 Systems that exhibit SOC

Model systems have been shown to fulfill the SOC char-
acterization. But this is not enough for the SOC program:
one should examine real physical systems and identify ex-
perimentally SOC behavior, if this concept is to be at all
significant to our understanding of nature. In the experi-
ments, one usually collects data about the statistical size dis-
tribution of the dynamical responses, arising from the relax-
ation avalanches. But what should we look for in this data?
One possibility, raised by our previous comments, would be
to measure time-dependent dynamical quantities and com-
pute their power spectrum. Unfortunately, it turns out that
a power spectrum of the form∼ 1/fβ , β ' 1, is a neces-
sary, but not sufficient condition for critical behavior, thus
for SOC. One has also to identify the presence of spatial
fractals in order to be able to characterize a real-life SOC
system.

Experiments measuring the avalanche signals of
sandpile-like systems, which mimic the original BTW
model, failed in all but one case to show evidence of SOC
behavior. Typically, in these systems, sand is slowly added
to a pile. In one experiment, for example, this pile had a
circular base, and was set on top of a scale, which could
monitor fluctuations of the total mass. Small piles did show
scale invariance. As the diameter of the base increases,
a crossover to an oscillatory behavior is observed: Small
avalanches in real sandpiles do show a behavior consis-
tent with SOC, which disappears when the mean avalanche
size increases. In order to investigate inertial effects that
could be responsible for the destruction of the incipient SOC
state, experiments were performed with one-dimensional
rice piles, with grains differing by their aspect ratio. In this
case, the signal observed was the potential energy release.
For small and nearly spherical grains (aspect ratio∼ 1), the
distribution of event sizes is a stretched exponential of the
form P (E) ∼ exp[(−E/E0)γ ]. For elongated grains, with
a larger aspect ratio, this distribution, obtained through a
finite-size-scaling of the data, isP (E) ∼ E−α, with no fi-

nite size cutoff [21]. This scale invariance is consistent with
SOC behavior.

Another strong candidate for SOC behavior in the real
world is the avalanche response of geological plate tecton-
ics, the earthquakes. Earthquakes result from the tectonic
motion of the plates on the lithosfere of our planet. This mo-
tion, driven by convection currents in the deep mantle, gen-
erates increasing stresses along plate interfaces, since slid-
ing is avoided by static friction. Plate speeds being typically
in the range of a few cm/year, which amounts to a slow drive,
and the threshold dynamics implicit in friction, are the two
ingredients that can generate SOC for this planetary system.
In fact, the distribution of earthquake occurrence has been
shown to obey Gutenberg-Richter’s law: it is a broad dis-
tribution, with P (E) ∼ E−B , B ∼ 1.8 − 2.2, and some
geographical dependence on the exponent. There is some
controversy in the geophysical literature about the validity
of this statistical description, and some claim that a charac-
teristic, periodic regime can be observed for some faults, for
events at the far end (large size) of the distribution.

The cascades of species extinctions that result from bi-
ological evolution are other phenomena for which claims of
SOC behavior have been stated. Paleontological evidence,
though sparse and debatable, seems to point towards a de-
scription of a system in “punctuated equilibrium”, a term
that invokes long periods of relative quiescence (“equilib-
rium”) interrupted (“punctuated”) by short, in the time scale
of evolution, periods of frenetic activity, in which large num-
bers of species disappear. In contrast to a gradual process of
species extinction and creation, such a view is underlined by
an understanding of extinction as a result of fluctuation in
environment pressure, rather than to species obsolescence.
As a species disappear because of its poor fitness to the
changing environment, the effects will propagate through a
variable-length network of neighboring species in the food
chain, in an avalanche of extinctions. The distribution of
avalanche sizes appear, from the known evidence, to exhibit
scale invariance, thus the already mentioned claim for SOC
behavior.

5 Computational Models

Computational models of dynamical systems have been the
main tool used for the inquiries about the existence and char-
acterization of the SOC state. In a very general setting, these
models have some common features. Their dynamics are
described by the rules for the time evolution of one or more
dynamical variables, or fields, defined on an extended re-
gion of space. These variables may be associated with the
local slope or height, for sandpiles, strain and/or stress for
earthquake models, and fitness of a species, in evolutionary
models. This field is updated at each location and each dis-
crete time step following some rule or algorithm. The choice
of the updating algorithm is the key to the success of the
model, requiring ingenuity, physical intuition and possibly
some luck - or thorough testing! - to come up with an in-
teresting idea. Successful models have usually very simple
rules, but complex behavior, deriving from the large number
of individual degrees of freedom of the system, rather than
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from complicated dynamics. The emergence of complex-
ity out of simple dynamics is the outcome of these models.
They play a role much similar to the Ising model in the the-
ory of magnetism and critical phenomena: they are “toys”
that illuminate the main features required for the appearance
of complex patterns and behavior.

The updating algorithm is a ruleF by which the value
of the dynamical variableσ(~r, t) at some location~r changes
as discrete timet flows:

σ(~r, t + 1) = F (σ(~ri, t)) (5)

It is a function of the value of the variable at that par-
ticular locationσ(~r, t) at timet and of its value in a neigh-
borhood. In this sense, we may call it a cellular automaton,
except that now the value of the dynamical variable may be
either an integer or a real number - we will use the adjective
“continuous” for the latter case.

5.1 Sandpiles: a conservative model

The prototypic SOC model is the sandpile model (BTW). It
is a conservative model, in the sense that the dynamical vari-
able added over all sites does not change during relaxation,
except possibly when sites at the border also relax. It is a
metaphor for the behavior of a real sandpile, where stabil-
ity is controlled by a local gradient (slope): Ifz(r) is the
slope at siter andzc is a critical value of this slope, than
if z(r) > zc the sandpile becomes unstable. The model is
slowly driven by the addition of grain and relaxation takes
over when the sandpile becomes unstable as a consequence.
There are, thus two dynamical rules, one for the driving and
another one for the relaxation.

For a one-dimensional sandpile, this gradient model may
be cast as follows: Lethi be the (integer) height of aN +1-
long pile at sitei. The local slope iszi = hi+1 − hi. The
addition of a single grain at sitei, resulting from a ran-
dom choice, increases the local height by1 and changes the
slope according to the rulezi−1 → zi−1 + 1, zi → zi − 1.
Threshold dynamics of relaxation is triggered by the condi-
tion zi > zc, wherezc is a pre-assigned critical slope. Site
i becomes overcritical and relaxes viazi → zi − 2, which
causes an update of the neighboring slopeszi−1 → zi−1 +1
andzi+1 → zi+1 + 1. These may in turn exceed the critical
value, and relaxation proceeds until all sites become under-
critical. The sequence of relaxations that follows after a site
becomes overcritical is the avalanche response of the sys-
tem. The border ati = 0 is closed, andz0 = 0. At i = N the
border is open, and whenzN > zc, thenzN−1 → zN−1 +1,
zN → zN − 1. The relaxation dynamics do not change the
total value ofz, and the model is called conservative because
of this feature.

A simpler and more popular, though less intuitive, ver-
sion of the sandpile model is the so-called height model.
Now, the dynamical variable iszi and the addition of a grain
at sitei implies simply thatzi → zi + 1. The threshold con-
dition and relaxation dynamics are still the same as for the
previous version.

The one-dimensional sandpile has a rather trivial behav-
ior. The configurationzi = zc ∀i is the unique global at-

tractor, or absorbing state, of the dynamics. It is a minimally
stable configuration: the addition of a single grain leads to
relaxation. It is also a critical state, in the sense that a small
perturbation will cause an avalanche with any size, limited
only by the size of the system. The probability distribution
of avalanche sizes is trivial: ifP (s) (P (t)) is the probability
thats sites (t time steps) are involved in the relaxation pro-
cess, thanP (s) = P (t) = 1/(N +1) if 1 ≤ s(t) ≤ (N +1),
0 otherwise.

A much more interesting version is the multi-
dimensional sandpile. The higher dimensionality avoids the
unique absorbing state, and the probability distributions are
no longer trivial. The dimensional extension of the model is
straightforward: Letz(r) be an integer-valued field defined
on a d-dimensional hyper-cubic lattice, andei the lattice
vectors. We may distinguish between a conservative pertur-
bation, in which the system is driven byz(r) → z(r) + d,
z(r − ei) → z(r − ei) − 1, and a non-conservative one,
for which z(r) → z(r) + 1. In both cases, relaxation of
an over-critical site, for whichz(r) > zc, proceeds through
z(r)→ z(r)− 2d, z(r± ei)→ z(r± ei) + 1.

This version of the sandpile model is usually studied for
closed boundaries, for whichz(r) = 0 if any component
ri = 0, and for open boundaries, in which case one has the
rule that if a toppling site has any componentri = L, relax-
ation proceeds through
· z(r)→ z(r)−2d+n, n = (] components which are= L)
· z(r + ei)→ z(r + ei) + 1 if ri 6= L
· z(r− ei)→ z(r− ei) + 1
· z(r) = 0 if ri = 0 for somei.

The update algorithm processes all sites in parallel, and
one time step is counted after every site in the lattice is ex-
amined. After an initial transient, the statistical properties
of the model become time independent and do not depend
on the initial configuration (e.g.< z > (t) →< z >=
limT→∞(1/T )

∫ T

0
< z > (t)dt).

The attractor of the model is a non-trivial set of config-
urations, which contain some that are not marginally sta-
ble. For the characterization of the critical response of the
model, letA be a connected region stricken by an avalanche,
]A =| A |, and
•RCM = (1/ | A |)∑

r∈A r
• l = (1/ | A |)∑

r∈A | r−RCM | (linear size);
• s = total number of toppled sites, which is a proxy for the
total energy dissipated in the relaxation process;
• t = total number of time steps, or the duration of an
avalanche.
Then, the model has a critical behavior when lying on the
attractor, in the sense that the distributions of sizes and dura-
tions of the avalanches are power-laws:P (l) ∼ l−γ , P (s) ∼
s−τ , P (t) ∼ t−α. These three exponents are not indepen-
dent, and a scaling law may be established among them.
The upper critical dimension of the model is4, and the
mean-field (MF ) Fisher exponent isτMF = 3/2. These
results were firmly established by an exact solution for the
Abelian sandpile in two dimensions [22]. Computer simu-
lations have shown that in three dimensions this same expo-
nent isτ3D ' 1.3 [23].

Since most studies of this and similar models are per-
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formed through computer simulations, let us discuss one
such algorithm. Reference [24] has a simple example, which
works well at an introductory level, but is not particularly
efficient. Some text books on computer simulations, such
as Ref. [25], present similar algorithms, with pedagogi-
cal emphasis. We will present here a generic version, that
uses a circular stack to store indexes of sites that will topple
and relax in this and the next time step of the simulation.
The structure of the algorithm, in a self-explanatory meta-
language, is:
- initialization (e.g.zi = 0 ∀i)
- main loop:do
• selection of the sitei to which a grain will be added

• if zi > zc → avalanche
• if time > transient, collects statistical data
until time is up.

- avalanche:
• i → stack
• while stack is not empty,do:
· unstacks next toppling site
· redistributes sand to neighbors (n); if zn > zc for a neigh-
born, stacks itn → stack

We present below a code that implements this algorithm,
written in plain C.

//adds grain to site (m,n)
void stack(m,n) {

z[m][n] = z[m][n] + 1; ztot = ztot + 1;
if (z[m][n]==(zcrit+1)) {

x[next] = m; y[next] = n;
next = next + 1;
if (next==first) {

file=fopen("err.dat","w");
fprintf(file,"\n STACK OVERFLOW!!!!");
fclose(file);

}
// circular stack

if (next==stacksize) next = 0;
}

}

// avalanche algorithm
void avalanche() {

size = 0;
do {

// stack is FIFO
i = x[first]; j = y[first];

/* unstacks site to be examined */
first = first + 1;

/* points to next site to be unstuck */
if (first==stacksize) first = 0;

/* circular stack */
z[i][j] = z[i][j] - 4;
ztot = ztot - 4;
size = size + 1;

// open boundary conditions
if (i<(L-1)) stack(i+1,j);
if (j<(L-1)) stack(i,j+1);
if (i>0) stack(i-1,j);
if (j>0) stack(i,j-1);

} while (!(next==first));
// resets stack pointers

first = 0; next = 0;
}

main() {
initialization();

// main loop



Brazilian Journal of Physics, vol. 34, no. 3B, September, 2004 1093

for (time=1; time<=TOTIME; time++) {

// chooses random site
i = random(L); j = random(L)

// adds grain of sand
stack(i,j);
if (!(next==first)) avalanche();

if (time>transient) collects_statistics();
}
files_results();

}

5.2 Earthquakes: a dissipative model

The frequency distribution of earthquakes appears to be the
most well documented evidence of critical behavior in a nat-
ural system, as synthesized by the Gutenberg-Richter law
mentioned above. The first model that succeeded in repre-
senting the basic physics involved in tectonic processes and
was able to obtain a frequency distribution consistent with
that law was due to Burridge and Knopoff [26]. In its first
version, the model was a one-dimensional chain of massive
blocks, representing the asperities in the boundary between
two moving tectonic plates, connected to each other by elas-
tic forces (springs). The driving mechanism was modeled
as a set of additional springs, connecting each block to a
moving rod, and the threshold dynamics was ensured by
friction between blocks and the ground. The set of coupled
second-order differential equations representing this physics
was then solved numerically, with a friction force that de-
creases with velocity.

Computational models are able to increase greatly, both
in number of elements and dimensionality, the ability to in-
vestigate the above physics. The trade-off is to eliminate the
massive terms of the equations, by considering that these
are related to seismic waves, that carry typically less than
10% of the energy released in an earthquake. By so do-
ing, the differential equations can be easily discretized, and
the resulting model is a real-valued - or continuous - cel-
lular automaton (CCA). Several models with these charac-
teristics appeared in the literature in recent years - Refs.
[[27, 28, 29]] are a few of those - and the most successful of
those, at least in the physics community, was that of Olami-
Federsen-Christensen (OFC) [30], which were the first to
have claimed the observation of SOC in a non-conservative
model. Using the language of this latter model, the physics
is contained in the dynamics of a single field, a real-valued
dynamical variableEi, a metaphor for the stress, defined on
theN = Ld sites of a d-dimensional cubic lattice. The dy-
namics of this field is completely deterministic, except for
the initial configuration, which sets the initial value of the
field at a sitei by a random choiceEi ∈ [0, Ec), where the
critical valueEc is usually set to one. The driving is uni-
form and homogeneous, and at each step of the driving time
scale the field evolves withEi → Ei + ν, ∀i, whereν is

an indirect measure of this time scale. Relaxation, which
happens when a sitei becomes criticalEi ≥ Ec and top-
ples, follows the ruleEi → 0 for this event initiator site
andEnn → Enn + αEi for its qi neighbors. These sites
may, in turn, become critical, and the process proceeds until
Ei < Ec, ∀i. This cascade, or avalanche, of topplings is
the proxy for an earthquake in the model, and data can than
be collected on the statistical distribution of such events.
The parameterα has an important role, since it measures
the intrinsic dissipation ratio of these dynamics: the amount
of stress that is lost by the system after sitei topples is
Edis = (qiα − 1)Ei, and the system would be called con-
servative ifα = maxqi

−1. One is usually interested in the
zero-velocity limitν → 0, since there is an intrinsically very
large time scale separation between the driving and relax-
ation mechanism in the real earthquake process. This is eas-
ily implemented in the model by driving it to relaxation in
a single step of the simulation: since the driving is homo-
geneous, the site with the largest stress at the completion of
an avalanche will be the event initiator of the next. So, the
new driving rule for the zero-velocity limit is to compute
E∗ = maxEi and then performEi → Ei + (Ec − E∗),
∀i. Care must be taken when working with the model, for
its approach to a statistically stationary state proceeds rather
slowly, and transients are very long. One has to wait typi-
cally for∼ 109 avalanches in a2D, L ∼ 102 model before
collecting meaningful data.

The OFC model with nearest neighbors has been exten-
sively studied lately, and a plethora of information gathered
about the nature of its (quasi-)critical attractor state. The
signatures of this state become first visible near the borders,
and it spreads through the lattice from there on. The model
has a strong tendency to synchronization, which generates
spatial correlations and is partially responsible for critical
behavior. This behavior is lost when periodical boundary
conditions are used, and synchronization forces the system
to periodical non-critical behavior. The inhomogeneity in-
duced by an open boundary is enough to destroy the periodic
state while leaving intact correlations, thus allowing for the
establishment of the (quasi-)critical attractor.

The reader should have noticed the awkwardness, or care
if the reader wants to be nice to the authors, with which we



1094 J.S. Śa Martins and P.M.C. de Oliveira

refer to the nature of the attractor. In fact, the issue of crit-
icality in the OFC model is still a matter of intense debate
among experts. There is general agreement on the fact that
the model is indeed critical in2D if α > αc, but there is
no such agreement on the critical value itself. Estimates for
αc vary widely in the literature, ranging all the way from
αc = 0 [31], to αc ' 0.18 [32, 33], while the Brazilian ex-
pert C. Prado and collaborators developed strong arguments
in favor ofαc = 0.25, which corresponds to the conservative
limit mentioned above, and propose the notion of a quasi-
critical state to describe the nature of the attractor whenα
is close toαc [34], to which we adhere. The reader is in-
vited to participate in this discussion by trying to determine
αc through her or his own simulations of the model. On the
other hand, there is no question about the fact that the OFC
shares with a few other statistical models, such as the eight-
vertices model, the unusual dependence of the Fisher critical
exponentτ on the value of the conservation parameterα.

Another version of the OFC model that has been studied
recently is the one with random annealed neighbors. Here,
the extra noise induced by a random choice of neighbors at
every relaxation, made anew each time a site topples, de-
stroys the spatial correlations and avoids synchronization of
the model. The borders are open, and each time a site re-
laxes, the dynamics choosesqi = 2d random neighbors with
probabilitypbulk = (L− 1)d/Ld, or qi = 2d− 1 with prob-
ability psup = 1− pbulk. After a first claim for an analytical
solution of this mean-field-like model withαc = 2/9 [35],
further investigation showed that it is only critical at the con-
servative limit [34].

Other flavors of CCA models have been studied that
involve long-range interactions, in particular by the geo-
physics community [29, 36]. These versions are supposedly
more “realistic”, since viscoelastic interactions in the earth’s
crust are known to be long-range, presumably decaying as
the third power of distance. Although some of the excite-
ment involved in the emergence of long-range order from
short-range interactions is lost in these models, they still
present interesting features and deserve the attention of the
physics community. The infinite-range interaction model,
where each site interacts with all other sites in the lattice,
is one of those, and its mean-field character has served well
the purpose of establishing a test ground for the exploration
of new ideas [37].

As mentioned above, CCA models have usually very
long transients, forcing the researcher in the field to be very
demanding on the efficiency of the computer code used in
the simulations. Useful comments on this subject for the
beginner can be found in Refs. [32] and [28]. As a rule
of thumb, one has to try to deal only with one-dimensional
data structures, and draw the code aiming at its efficient use.
As an example, the address of a site in a 2-D lattice, usually
taken as an ordered pair(i, j), should be transformed into
a single integer as inindex = i ∗ L + j. The integer op-
erations of division and remainder are then used to get the
2-D address from the 1-D version, when needed. The dy-
namical field is then a 1-D real vector, and loops sweeping

the lattice are controlled by a single integer variable. An-
other extremely useful strategy is to have moving failure and
residual stresses: instead of sweeping the whole lattice each
time the driving mechanism brings the site closest to fail-
ure - the initiator of the next avalanche - to its critical stress,
the value of the latter is updated to the value of the stress of
this initiator, and the residual stress is also moved to keep
the difference between these two constant. The usage of last
in-first out (LIFO) stacks is also good advice, in particular
when running long-range models, for it allows a simple way
of keeping track of only a few sites to examine for failure
at each step of the relaxation avalanche. In the same meta-
language used previously for the sandpile, here is a short de-
scription of an algorithm using these ideas for a 2-D model:

- site address structure:(i, j) → index = i ∗ L + j
- initialization: (e.g.Ei = random(0, Ec) ∀i)
- main loop:do
• selects sitei with maximumEi

• moves failure and residual stresses:Er → Er + Ec −
Ei, Ec → Ei

• avalanche
• if time > transient, collects statistical data
until time is up.

The key routine is the relaxation algorithm, the
avalanche procedure. In this example, we use two separate
stacks (1 and2), where stack1 stores the sites that will topple
in the present relaxation step, while stack2 keeps the sites
that will topple in the next step.

- avalanche:
• set duration to one,i → stack1 (this is the initiator)
• while stack1 NOT emptydo:
· unstacks from stack1;
· dumps stress on neighbors (v): if Ev > Ec, v → stack2;
· if stack1 is empty, but stack2 is not, exchanges stack1 and
stack2, increments duration.

Codes written in plain C for several versions of earth-
quake CCA’s can be obtained on request through the e-mail
jssm@if.uff.br.

6 Bak-Sneppen-like Models

Slightly modifying an earlier model for surface growth [38],
Per Bak and Kim Sneppen [39, 40] introduced their now-
famous model for biological evolution, based on an extreme
value dynamics. A population is linearly displayed around
a circle, two neighbours per individual. The characteristic
of each individual is measured by a single numerical value,
interpreted here as its survival fitness. At beginning, all fit-
nesses are uniformly tossed at random between 0 and 1. The
population evolves according to the following dynamic rule:
1) The individual with the smallest fitness is found; 2) The
fitness values of this individual and its two neighbours are
replaced by three new, freshly tossed random values, uni-
formly distributed between 0 and 1. The total numberN of
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individuals is supposed to be very large.
One time step consists in iteratively applying this ruleN

successive times (anN -cycle), whereN is the same number
which measures the population size. Thus, the timet = 0,
1, 2, 3. . . is a discrete variable.1/N -fractions of the time
unit can also be measured, by considering incompleteN -
cycles. Thus, for larger and larger values ofN , one obtains
thecontinuoustime limit.

The band of distributed fitnesses starts in between 0 and
1, but shrinks as time goes by, Fig. 15. For large enough
times, all fitnesses fall above a non-trivial critical value
Fc ≈ 0.6670 [41, 40], except for a null-measure set of re-
cently replaced values, which fluctuates in avalanches.
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Figure 15. Bak-Sneppen model: lower bound for the band of
fitnesses.

The first important feature of this model is itslong-
term memory. Instead of the fast exponential decay char-
acteristic of a regular system, with a finite lifetime (short-
term memory), here the evolution is very slow, following
a power-law without any characteristic lifetime (long-term
memory). This feature gives rise to many by-products which
preserves forever the critical, complex behaviour of this sys-
tem. For instance, the distribution of avalanche sizes is also
dictated by a power-law, thus one lacks also a characteristic
avalanche size (or lifetime).

This subject deserves a two-paragraphs comment. Reg-
ular exponential decays impose the appearance of a typi-
cal time scale for the system under study. The radioactiv-
ity lifetime characteristic of each element can be found in
100-years-old tables. For37Rb82, for instance, one reads 2
minutes, without mention to the mass of the sample: after
this time, radioactivity almost vanishes, independent of the
sample size. For these regular systems, there is no relation
at all between its size and its lifetime. The decay of a partic-
ular nucleus at a given moment has no influence at all on the
later moment when another far nucleus will also decay. The
absence of long-range spatial correlations (length) implies
the corresponding absence of long-term memory (time).

Contrary to this, in non-regular systems, the long-term
memory (time power-law decay) is normally associated with
long-range spatial correlations (length power-law decays).
Those complex systems lack both time and length typical
scales. The lifetime is limited only by the finite size of the
system. The larger the system, the longer it lives. This
is the precise meaning of the sentence “For large enough
times, all fitnesses fall above a non-trivial critical value
Fc = 0.6670 . . . ” written three paragraphs above. The
transient timeT one needs to wait before this situation is of
the same order of magnitude as the system size, i.e.T ∼ N .
In the limit of larger and larger sizes,N → ∞, the system
would evolve in eternal transient, a very profitable feature
for evolutionary systems [42].

The second important feature is thediversity, preserved
by the non-vanishing band-width, which also remains for-
ever. This is the main difference between an evolutionary
system and a simple optimisation process. In the latter, one
searches for the single best situation among many possibili-
ties, discarding all other options. Evolution, on the contrary,
preserves many alternative options, not only a single “best”,
in order to keep the system able to adapt itself to future en-
vironment changes.

Another two-paragraphs comment follows, along the
lines of [42]. Science is a modest enterprise, a theory of
everything does not exist. The subject of any scientific work
is necessarily bounded. For the evolution of species, nobody
tries to describe the behaviour of all living beings in the Uni-
verse. On the contrary, the researcher considers a certain
number of species, living on a limited geographic region,
during a limited time. Thus the “system” under study is
bounded, although not closed. Through its boundaries, this
system interacts with the rest of the Universe, generically
called “the environment”, exchanging mass, energy, food,
debris, information, etc. An otherwise closed system, ac-
cording to the second law of thermodynamics, exponentially
fast would reach the situation of maximum entropy, render-
ing impossible any kind of organisation such life: evolution
would stop. In short, evolutionary systems are necessarily
bounded but open.

The dynamic evolution of such a system is dissipative
in what concerns its entropy: organised forms are selected,
leading to the extinction of other forms. In other words,
as time goes by, the space of possibilities shrinks. After
a transient, the system eventually becomes trapped into a
low-dimension tiny set of possibilities, the final attractor.
There, lacking diversity, it looses the chance of exploring
new forms outside this tiny set. Hence, the arrival to that
final situation must be avoided, or postponed forever. This
goal is accomplished if the dynamic evolution is very slow,
i.e. a critical dynamics without any finite characteristic life-
time, an eternal transient in which the system approaches the
attractor but never becomes completely trapped there. Not
by coincidence, this is the case of Bak-Sneppen model.
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 0.52

 0.27  0.75

 0.13  0.41  0.63  0.87

 0.18  0.39  0.79

Figure 16. Binary tree where the sequence{0.52, 0.27, 0.41, 0.75,
0.13, 0.63, 0.39, 0.18, 0.87, 0.79} is stored in this order.

In order to implement this model on computers, the cru-
cial point is to find the minimum fitness among all individu-
als. The näıve approach is to scan all of them, sequentially,
registering at each step the minimum value so far. This re-
quiresN comparisons, and forbids the simulation of large
systems. A good alternative is to construct abinary tree
with theN fitnesses. This tree has a root, below it there are

two other sites, on the left and on the right. Below each new
site, another pair, on the left and on the right, and so on. See
Fig. 16. The sequence ofN fitnesses is stored on this tree as
follows. The first entry is located at the root. If the second
entry is larger than the first, it is stored on the right side be-
low the root; otherwise, on its left. For each new entry along
the sequence, one compares its value with the root, deciding
to go downwards to left or right. Then, one repeats the com-
parison at this new place, deciding again to go downwards
to left or right, and so on, until a vacant site is reached.

This construction turns trivial the job of getting the min-
imum value stored on the tree: one simply goes downwards
always to left, until the last occupied site. The advantage
over the näıve procedure of scanning allN entries is to fol-
low only a single branch along the tree. On a binary tree,
the average branch length is of the order oflog2(N), much
smaller thanN , moreover for large systems. The following
C-language routine does the job.

unsigned minimum() {
/* finds the minimum on the binary tree */

unsigned i,j;
j = root;
do i = j; while(j=left[i]);
return(i);

}

Another routine puts a new entry on the tree.

void put(new) unsigned new; {
/* includes a new entry into the binary tree */

unsigned i,j,lf,f;
j = root; f = F[new];
do {i = j;

if(f<F[i]) {j = left[i]; lf = 1;}
else {j = right[i]; lf = 0;}

} while(j);
top[new] = i;
if(lf) left[i] = new; else right[i] = new;

}

Instead of using the pointer facilities of C-language, we
explicitly define vectorstop[] , left[] and right[] .
This implies a coast in further computer memory, but makes
clear what is done. Moreover, nowadays the memory avail-
able on most computers is far enough for our needs.

Other more efficient ways to implement the tree cer-
tainly exist, in particular by using recursivity and pointers.
However, we prefer this old-fashioned way of programming,
because the resulting code is much easier to understand. The
interested reader can learn much more in [43], where effi-
cient programming techniques are presented. Also in [44],
the reader can find specific numerical approaches for many

scientific problems. In order to deal with bitwise parallel
operations, useful for Ising-like models, see [45].

A third routine designed to remove an entry from the
tree deserves an explanation. In order to remove entry K
from the tree, one considers entries L and R below it (left
and right, respectively), as well as entry A below L (right).
If L is empty, K is replaced by R, otherwise by L. Further-
more, if L, R and A are all three occupied (generating 2 right
branches below L, instead of only 1), then A is transferred
to the first empty position along the leftmost branch below
R.
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void remove(K) unsigned K; {
/* removes an entry from the binary tree */

unsigned t,L,R,A,i,j;
t = top[K]; L = left[K]; R = right[K];
top[K] = left[K] = right[K] = 0;
A = right[L];
if(t) {

if(L) {
if(K==left[t]) left[t] = L; else right[t] = L;
top[L] = t;
if(R) {top[R] = L; right[L] = R;

if(A) { /* re-position of A */
j = R;
do i = j; while(j=left[i]);
top[A] = i; left[i] = A;

}
}

}
else {

top[R] = t;
if(K==left[t]) left[t] = R; else right[t] = R;

}
}
else { /* remove root */

if(L) {root = L; top[root] = 0;
if(R) {top[R] = root; right[root] = R;

if(A) {
j = R;
do i = j; while(j=left[i]);
top[A] = i; left[i] = A;

}
}

}
else {root = R; top[root] = 0;}

}
}

Finally, the main program to simulate the Bak-Sneppen model follows.

/* population size */
#define N 100000

/* initial random integer seed */
#define seed 4785671

/* time limit */
#define T 10000000
#include <stdio.h>
#include <math.h>

unsigned r,t,i,root,imin,neigL,neigR,f1,f2,f3,
mt,ft,tprint = T/1000,
F[N+1],top[N+1],left[N+1],right[N+1];

double sum,invN = 1.0/N,i2,invMAX = 1/4294967296.0;
void put(),remove();
unsigned minimum();

main() {
r = seed|1; i2 = 2*invMAX/N;
for(i=0; i<=N; i++) {r *= 16807; top[i] = left[i] = right[i] = 0;}
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imin = 1; F[imin] = 0;
root = 2; r *= 16807; F[root] = r; sum = r*i2;
for(i=3; i<=N; i++) {r *= 16807; F[i] = r; put(i); sum += r*i2;}
printf("\n\n time band");
for(t=0; t<=T; t++) {

if((t%tprint)==0) printf("\n %10.6lf %10.6lf",t*invN,sum-1.0);
sum -= F[imin]*i2; r *= 16807; f1 = F[imin] = r; sum += r*i2;
neigL = (imin==1) ? N : imin-1; remove(neigL);
sum -= F[neigL]*i2; r *= 16807; f2 = F[neigL] = r; sum += r*i2;
neigR = (imin==N) ? 1 : imin+1; remove(neigR);
sum -= F[neigR]*i2; r *= 16807; f3 = F[neigR] = r; sum += r*i2;
ft = F[mt=minimum()];
if(f1<f2) put(neigL); else {put(imin); imin = neigL; f1 = f2;}
if(f1<f3) put(neigR); else {put(imin); imin = neigR; f1 = f3;}
if(f1>ft) {remove(mt); put(imin); imin = mt;}

}
printf("\n\n");

}

Two comments concerning this program follow.

First, the random number generator we adopt is the sim-
ple multiplication with 16807, applied to32-bit-integer odd
numbers, starting from a given seed. Any alternative random
number generator can be used. Instead of reducing these
random odd integers to the interval between 0 and 1, we
prefer to use directly the integer version, saving computer
time. If one needs more than, say,109 random numbers,
then this simple generator does not work: repetitions of the
same sequence start to appear again and again.

Second, after the transient time, when almost all fit-
nesses are already above the final band-borderFc ≈ 0.6670,
one can introduce a further smart trick, in order to save com-
puter memory and (more important) time. It is very simple:
to store only fitnesses below a certain limit a little bit larger
thanFc, say, only values ofF < 0.668 remain stored on the
tree. Of course, in this case, one needs also to introduce a
further array to keep the information concerning which in-
dividuals are currently on the tree. All others can be forgot.
In the present case, however, we are interested just on the
transient, thus this trick was not used. Nevertheless, its im-
plementation is simple.

So far, nobody was able to present an analytical solution
for this model, i.e. a closed mathematical form for the func-
tion displayed on Fig. 15. Even the thresholdFc ≈ 0.6670 is
not exactly known. On the other hand, there are at least two
simplified versions with known analytical solutions. The
Yee model [46, 47, 48] simply forgets the neighbours, re-
placing only the current smallest fitness. Fig. 17 shows
the result, to be compared with Fig. 15. Diversity is lost,
one does not remain with a finite band-width at the end, on
the contrary all fitnesses are pushed towards the maximum
possible value,Fc = 1. According to our previous inter-
pretation, this is no longer an evolutionary system, only an
optimisation process. However, the first important feature
of Bak-Sneppen model remains: the approach to the limit

Fc = 1 is very slow, following a power-law. Criticality is
not lost. It is very easy to determine the analytical form of
the function displayed on Fig. 17. The original solution is
presented is [47].
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Figure 17. Yee model.

Here, we prefer a simpler reasoning based on the con-
cept of a “virgin individual” at stepτ : its fitness was never
replaced, sinceτ = 0. We use the symbolτ = 0, 1, 2,
3 . . . to count the number of replacements performed so
far. This counting variable is related with the timet through
τ = Nt. Let x(τ) be the minimum virgin fitness at step
τ . Above x(τ), the distribution of fitnesses is uniform,
because the minimum fitnesses replaced so far were never
there, and all new fitnesses which appeared abovex(τ) were
randomly tossed. The functionx(τ) evolves monotonically,
always upwards, by successive plateaux. Let’s callτn the
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step when thenth virgin fitness becomes the global mini-
mum, and then will be the next replaced value: at this mo-
ment,x(τ) will suffer a jump. The next smallest virgin value
x(τn + 1) = x(τn+1), the next plateau, is a little bit above
the previous one. The average jump is

∆x = 1/N ,

the mean separation between theN original values atτ = 0.
However, in general,x(τn + 1) is not the global minimum
fitness to be replaced atτn + 1, because some other non-
virgin values could remain below it.

How many? As the distribution abovex(τn) is still
uniform at τn, with all N fitnesses distributed in between
x(τn) and 1, the number of fitnesses still belowx(τn +1) is
N [x(τn+1)−x(τn)]/[1−x(τn)], i.e. 1/(1−x) on average.
How many attempts one needs to transfer all these values to
abovex(τn + 1)? For each attempt, the probability of suc-
cess is1−x, then, in average, one needs1/(1−x) attempts
to transfer each one of the1/(1 − x) values. The total time
interval to complete this task, in average, is

∆τ = 1/(1− x)2 .

Thus one can write the relation

∆x

∆τ
=

1/N

1/(1− x)2
=

(1− x)2

N
.

Now, taking the continuous time limit and expressingx as a
function of timet = τ/N , this relation becomes the differ-
ential equation

dx

dt
= (1− x)2 .

Taking the initial conditionx(0) = 0, the solution is

x(t) =
t

t + 1
,

which perfectly fits the plot on Fig. 17. Now, the power-law
dependence becomes evident, asymptotically:1 − x(t) ∼
t−1 for t →∞, with the critical exponent−1.
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Figure 18. Bak-Sneppen random model.

Another simplification is the so-called random neigh-
bours Bak-Sneppen model [49, 40]. Now, one always re-
places the smallest fitness and also another fitness randomly
tossed. The result is shown in Fig. 18. Diversity is re-
stored: at the end, almost all fitnesses remain above the limit
Fc = 0.5, defining a band-width. However, the long-term
memory is lost: the decay toFc = 0.5 follows now a fast ex-
ponential rate, no longer a power-law. Surprisingly, the life-
time distribution of avalanches is still described by a power-
law, although following a classical, mean-field critical ex-
ponent of−3/2, different from the original Bak-Sneppen
model [49, 40]. Somehow, criticality is not completely lost,
in spite of the fast convergence to the final band-width. A
related issue is the so-called1/f noise claimed to be present
within this model [50]. This would mean a lack of typical
frequency scale within the power spectrum, equivalent to the
lack of time or length scales characteristic of complex sys-
tems. However, this noise was later proposed to be in fact
1/f2 [51], which corresponds to the regular exponential de-
cay for the correlations. This matter is not settled so far,
being a good problem for future investigation, a challenge
for the reader.

It is also possible to obtain an analytical expression for
the function displayed on Fig. 18, originally presented in
[49].

Once more, here we prefer our simpler reasoning based
on virgin individuals. Let’s divide each stepτ in two sub-
steps: first, the global minimum fitness is replaced, then
another randomly tossed fitness is also replaced. The dis-
tribution of fitnesses abovex(τ), the smallest virgin fit-
ness so far, is also uniform as in the case of Yee model.
At τn, x(τ) is also the global minimum. How many val-
ues remain virgin? For the simple Yee model, the answer
would beN [1 − x(τn)], in average. However, now some
formerly virgin values were also replaced during the above
quoted second sub-steps performed up to now. Thus, the
average number of still virgin values at stepτ is V (τ) =
N [1 − x(τ)]f(τ), wheref(τ) is less than unity. The aver-
agex-jump is then

∆x =
1− x

V
=

1
Nf

.

Again due to uniformity, inside this interval∆x, the av-
erage number of fitnesses isn(τn) = N∆x/[1 − x(τn)] =
1/{f(τn)[1 − x(τn)]} at stepτn. This number will decay
until vanishing atτn+1. Let’s determine how it decays, by
analysing a single step fromτ to τ +1. On average, one has

n(τ+1) = [n(τ)−1](1−x)2+n(τ)2x(1−x)+[n(τ)+1]x2 .

The first term corresponds to get new values abovex in both
the first and the second sub-steps. The second term counts
the cases where only one new value is abovex, and the third
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corresponds to none. Developing the above equation, one
hasdn/dτ = 2x − 1, a constant rate decay. Thus, the total
time one needs to wait until the complete exhaustion of the
1/[f(1− x)] fitnesses atτn+1 is

∆τ =
1

(1− x)(1− 2x)f
for x < 1/2 .

Forx > 1/2, the interval∆x will remain populated forever.
Thus, as a first conclusion, different from the Yee model
where the band of populated values always shrinks, all val-
ues accumulating near 1, now one remains forever with a
uniformly populated band in betweenFc = 1/2 and 1.

Finally, the evolution ofx(τ), while belowFc = 1/2, is
given by

∆x

∆τ
=

(1− x)(1− 2x)
N

,

or, taking the continuous time limit,

dx

dt
= (1− x)(1− 2x) .

The solution for that differential equation, with initial con-
dition x(t) = 0 is

x(t) =
1− e−t

2− e−t
for x < Fc = 1/2 ,

which fits perfectly the plot of Fig. 18. The asymptotic limit,
t →∞, is nowFc−x(t) ∼ e−t/4, a fast exponential decay,
no longer a slow power-law.

A good exercise to the reader is to solve the same model
when, at each step, one replaces the minimum fitness andK
other randomly chosen values.

Comparing these two simplified models, one can formu-
late the following interpretation. The extreme value dynam-
ics, i.e. to replace the smallest fitness among all individuals,
is the key ingredient to get criticality. However, this ingre-
dient alone is not able to preserve diversity, other fitnesses
besides the smallest one must be also continuously replaced.
If these further replaced fitnesses are completely uncorre-
lated with the smallest one, then criticality is lost. In short,
in order to get both criticality and diversity, one needs: 1)
to replace the smallest fitness; 2) to replace also other fit-
nessessomewhat correlatedto it. Within the original Bak-
Sneppen recipe, this correlation is provided by the neigh-
bourhood along the linear chain of individuals. The usual,
näıve interpretation in favour of this particular choice is a
food chain, considering each individual as a whole species:
it gets food from its left neighbour, and provides food for
its right neighbour. As soon as one species becomes extinct,
its two neighbours also follow the same destiny, all three
being replaced by new species. Because of the geometrical
character of this rule, the analytical solution for the prob-
lem becomes hard. However, one can imagine many other
non-geometrical origins for this kind of correlation we need.
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Figure 19. P-bag model.

One possible definition follows. Individuals are classi-
fied as active or quiet. At each step, the list ofP + 1 ac-
tive individuals have their fitnesses replaced by new, ran-
dom values. This list (the bag) includes always the current
minimum-fitness individual. At beginning,P = 0 with only
the minimum-fitness individual being active. After replace-
ments, if the same individual carries again the smallest fit-
ness, then a new, random quiet individual is included into
the list (P → P +1). Otherwise, a random active individual
is excluded from the list, becoming quiet. In this case, the
list could shrink (P → P − 1) if the new minimum-fitness
individual was already active before.P fluctuates always
much smaller thanN . The result for this dynamic rule is
shown in Fig. 19, for a single run. The saturated final value
as well as the time to reach it fluctuate for different runs.
One can observe that diversity and criticality are present. In
particular, the tail of the curve is well fitted by a power-law.
Without geometrical constraints, perhaps somebody could
provide an analytical formula for the function displayed in
Fig. 19: so far, the not-so-smart authors were not able to
perform this job, thus it is a challenge to the smart reader.

7 Conclusions

The above sections treat different situations where time and
length scales were lost. They are examples of statistical
models at criticality, as well as complex dynamic systems.
The overall behaviour is the same in all cases, driven by the
universality imposed by the quoted absense of characteristic
scales.

It is not possible to treat such systems by classical ap-
proaches as perturbation theory and alike. Analytical results
are rarely available, thus special attention to computational
aspects were taken.
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