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The Shape of Space after WMAP data
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What is the shape of space is a long-standing question in cosmology. I review recent advances in cosmic
topology since it has entered a new era of experimental tests. High redshift surveys of astronomical sources
and accurate maps of the Cosmic Microwave Background radiation (CMB) are beginning to hint at the shape of
the universe, or at least to limit the wide range of possibilities. Among those possibilites are surprising “wrap
around” universe models in which space, whatever its curvature, may be smaller than the observable universe
and generate topological lensing effects on a detectable cosmic scale. In particular, the recent analysis of CMB
data provided by the WMAP satellite suggest a finite universe with the topology of the Poincaré dodecahedral
spherical space. Such a model of a “small universe”, the volume of which would represent only about 80 %
the volume of the observable universe, offers an observational signature in the form of a predictable topological
lens effect on one hand, and rises new issues on the early universe physics on the other hand.
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I. THE SHAPE OF THE UNIVERSE

The problem of the global shape of the universe can be de-
composed into three intertwined questions.

First, what is the space curvature? In homogeneous
isotropic models of relativistic cosmology, there are only three
possible answers. Three-dimensional space sections of space-
time may have zero curvature on the average – in such a case,
two parallel lines keep a constant space separation and never
meet, as in usual Euclidean space, sometimes called “flat
space”. Or space sections can be negatively curved, such as
two any parallels diverge and never meet (such a space is the
three-dimensional analogue of the Lobachevsky hyperbolic
plane). Eventually, they can be positively curved, in which
case all parallels reconverge and cross again (like on the two–
dimensional surface of a sphere).

The property for physical space to correspond to one of
these three possibilities depends on the way the total energy
density of the Universe may counterbalance the kinetic en-
ergy of the expanding space. The normalized density parame-
ter Ω0, defined as the ratio of the actual density to the critical
value that an Euclidean space would require, characterizes the
present-day contents (matter and all forms of energy) of the
Universe. IfΩ0 is greater than 1, then space curvature is pos-
itive and geometry is spherical; ifΩ0 is smaller than 1 the
curvature is negative and geometry is hyperbolic; eventually
Ω0 is strictly equal to 1 and space is Euclidean.

The second question about the shape of the Universe is
to know whether space is finite or infinite – equivalent to
know whether space contains a finite or an infinite amount
of matter–energy, since the usual assumption of homogeneity
implies a uniform distribution of matter and energy through
space. From a purely geometrical point of view, all positively
curved spaces (called spherical spaces whatever their topol-
ogy) are finite, but the converse is not true : flat (Euclidean)
or negatively curved (hyperbolic) spaces can have finite or in-
finite volumes, depending on their degree of connectedness
(Ellis, 1971 ; Lachìeze-Rey & Luminet, 1995). For instance,
in a flat space with cubic torus topology, as soon as a particle

or a light ray “exits” a given face of the fundamental cube,
it “re-enters” from the opposite face, so that space is finite,
although without a boundary.

From an observable point of view, it is necessary to dis-
tinguish between the “observable universe”, which is the in-
terior of a sphere centered on the observer and whose radius
is that of the cosmological horizon (roughly the radius of the
last scattering surface), and the physical space. Again there
are only three logical possiblities. First, the physical space
is infinite – like for instance the simply-connected Euclidean
space. In this case, the observable universe is an infinitesimal
patch of the full universe and, although it has long been the
preferred model of many cosmologists, this is not a testable
hypothesis. Second, physical space is finite (e.g. an hyper-
sphere or a closed multiconnected space), but greater than the
observable space. In that case, one easily figures out that if
physical space is much greater that the observable one, no
signature of its finitude will show in the observable data. But
if space is not too large, or if space is not globally homoge-
neous (as is permitted in many space models with multicon-
nected topology) and if the observer occupies a special posi-
tion, some imprints of the space finitude could be observable.
Third, physical space is smaller than the observable universe.
Such an apparently odd possibility is due to the fact that space
can be multiconnected and have a small volume. There a lot
of geometrical possibilites, whatever the curvature of space.
As it is well-known, such “small universe” models may gen-
erate multiple images of light sources, in such a way that the
hypothesis can be tested by astronomical observations.

The third question about the shape of the Universe deals
with its global topological properties (see Luminet, 2001 for
a non-technical book about all the aspects of topology and
its applications to cosmology). It is interesting to point out
that none of these global properties is given by Einstein’s field
equations, since they are partial differential equations describ-
ing only the local, metric structure of spacetime (Friedmann,
1924). The present-day topology and curvature of space take
likely their origin in the early quantum conditions of the Uni-
verse, which also governed its time evolution. The topologi-
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cal classification of homogeneous Riemannian 3-D spaces has
made considerable progress during the last century. There are
18 Euclidean spaceforms (for a full description, see Riazuelo
et al., 2004), a countable infinity of spherical spaceforms (see
Gausmann et al, 2001) and a non-countable infinity of hyper-
bolic spaceforms (see Weeks, 1999.)

II. COSMIC CRYSTALLOGRAPHY

The topology and the curvature of space can be studied by
using specific astronomical observations. For instance, from
Einstein’s field equations, the space curvature can be deduced
from the experimental values of the total energy density and
of the expansion rate. If the Universe was finite and small
enough, we should be able to see “all around” it, because
the photons might have crossed it once or more times. In
such a case, any observer might identify multiple images of a
same light source, although distributed in different directions
of the sky and at various redshifts, or to detect specific statis-
tical properties in the apparent distribution of faraway sources
such as galaxy clusters. To do this, methods of “cosmic crys-
tallography” have been devised (Lehoucq et al., 1996, 1999,
2000), and extensively studied by the Brazilian school of cos-
mic topology (Gomero et al., 2000, 2001a, 2002a,b, 2003; Fa-
gundes & Gausmann, 1999) ; see also Marecki et al. (2005).

Basically, cosmic crystallography looks at the 3-
dimensional apparent distribution of high redshift sources
(e.g. galaxy clusters, quasars) in order to discover repeating
patterns in the universal covering space, much like the
repeating patterns of atoms observed in a crystal. “Pair
Separation Histograms” (PSH) are in most cases able to
detect a multiconnected topology of space, in the form of
sharp spikes standing out above the noise distribution that is
expected in the simply-connected case. Figures 1-3 visualize
the “topological lens effect” generated by a multiconnected
shape of space, and the way the topology can be determined
by the PSH method.

However it was shown (Lehoucq et al., 2000; Gomero et
al., 2002b ) that PSH may provide a topological signal only
when the holonomy group of space has Clifford translations,
a property which excludes all hyperbolic spaces.

III. SPHERICAL LENSING

In the first investigations of cosmic topology, the search for
the shape of space had focused on big bang models with flat
or negatively curved spatial sections. Since 1999 however, a
combination of astronomical (type I supernovae) and cosmo-
logical (temperature anisotropies of the CMB) observations
suggest that the expansion of the universe is accelerating, and
constrain the value of space curvature in a range which mar-
ginally favors a positively curved (i.e. spherical) model. As
a consequence, spherical spaceforms have come back to the
forefront of cosmology.

Gausmann et al. (2001) have investigated the full properties
of spherical universes. The simplest case is the celebrated hy-

FIG. 1: In a multi-connected Universe, the physical space is iden-
tified to a fundamental polyhedron, the duplicate images of which
form the observable universe. Representing the structure of apparent
space is equivalent to representing its “crystalline” structure, each
cell of which is a duplicate of the fundamental polyhedron. Here is
depicted the closed hyperbolic Weeks space (only one celestial object
is depicted, namely the Earth). As viewed from inside, it gives the
illusion of a cellular space, tiled par polyhedra distorted with optical
illusions (courtesy Jeffrey Weeks).

persphere, which is finite yet with no boundary. Actually there
are an infinite number of spherical spaceforms, including lens
spaces, prism spaces and polyhedral spaces. Gausmann et al.
(2001) gave the construction and complete classification of
such spaces, and discussed which topologies were likely to
be detectable by crystallographic methods. They predicted
the shapes of the pair separation histograms and they checked
their predictions by computer simulations.

In addition, Weeks et al. (2003) and Gomero et al. (2001b)
proved that the spherical topologies would be more easily
detectable observationally than hyperbolic or flat ones. The
reason is that, no matter how close space is to perfect flat-
ness, only a finite number of spherical shapes are excluded
by observational constraints. Due to the special structure of
spherical spaces, topological imprints would be potentially
detectable within the observable universe. Thus cosmologists
are taking a renewed interest in spherical spaces as possible
models for the physical universe.

IV. THE UNIVERSE AS A DRUMHEAD

The main limitation of cosmic crystallography is that the
presently available catalogs of observed sources at high red-
shift are not complete enough to perform convincing tests (Lu-
minet and Roukema, 1998).

Fortunately, the topology of a small Universe may also be
detected through its effects on such a “Rosetta stone” of cos-
mology as is the CMB fossil radiation (Levin, 2002 ; Riazuelo
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FIG. 2: Sky map simulation in hypertorus flat space (left). The fun-
damental polyhedron is a cube with length = 60 % the horizon size
and contains 100 “original” sources (dark dots). One observes 1939
topological images (light dots).

FIG. 3: The Pair Separation Histogram corresponding to Figure 2
exhibits spikes which stand out at values and with amplitudes de-
pending on the topological properties of space.

et al., 2004a).
If you sprinkle fine sand uniformly over a drumhead and

then make it vibrate, the grains of sand will collect in charac-
teristic spots and figures, called Chladni patterns. These pat-
terns reveal much information about the size and the shape of
the drum and the elasticity of its membrane. In particular, the
distribution of spots depends not only on the way the drum
vibrated initially but also on the global shape of the drum,
because the waves will be reflected differently according to
whether the edge of the drumhead is a circle, an ellipse, a
square, or some other shape.

In cosmology, the early Universe was crossed by real

acoustic waves generated soon after the big bang. Such vi-
brations left their imprints 380 000 years later as tiny den-
sity fluctuations in the primordial plasma. Hot and cold spots
in the present-day 2.7 K CMB radiation reveal those den-
sity fluctuations. Thus the CMB temperature fluctuations
look like Chladni patterns resulting from a complicated three-
dimensional drumhead that vibrated for 380 000 years. They
yield a wealth of information about the physical conditions
that prevailed in the early Universe, as well as present geo-
metrical properties like space curvature and topology. More
precisely, density fluctuations may be expressed as combina-
tions of the vibrational modes of space, just as the vibration of
a drumhead may be expressed as a combination of the drum-
head’s harmonics. The shape of space can be heard in a unique
way. Lehoucq et al. (2002) calculated the harmonics (the so-
called “eigenmodes of the Laplace operator”) for most of the
spherical topologies, and Riazuelo et al. (2004b) did the same
for all 18 Euclidean spaces. Then, starting from a set of ini-
tial conditions fixing how the universe originally vibrated (the
so-called Harrison-Zeldovich spectrum), they evolved the har-
monics forward in time to simulate realistic CMB maps for a
number of flat and spherical topologies (Uzan et al., 2003a).

FIG. 4: A multiconnected topology translates into the fact that any
object in space may possess several copies of itself in the observable
Universe. For an extended object like the region of emission of the
CMB radiation we observe (the so-called last scattering surface) it
can happen that it intersects with itself along pairs of circles. In this
case, this is equivalent to say that an observer (located at the center
of the last scattering surface) will see the same region of the Uni-
verse from different directions. As a consequence, the temperature
fluctuations will match along the intersection of the last scattering
surface with itself, as illustrated in the above figure. This CMB map
is simulated for a multiconnected flat space – namely a cubic hyper-
torus whose length is 3.17 times smaller than the diameter of the last
scattering surface. Only two duplicates are depicted.

Primordial fluctuations

The “concordance model” of cosmology describes the Uni-
verse as a flat infinite space in eternal expansion, accelerated
under the effect of a repulsive “dark energy”. The data col-
lected by the NASA satellite WMAP (Bennett et al, 2003 ;
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FIG. 5: Map of temperature anisotropies of CMB as observed by
WMAP telescope. WMAP Homepage : http://map.gsfc.nasa.gov

Spergel et al., 2003) has recently produced a high resolution
map of the CMB which showed the seeds of galaxies and
galaxy clusters (Fig. 5) and allowed to check the validity of
the dynamic part of the expansion model. However, combined
with other astronomical data (Tonry et al., 2003), they suggest
a value of the density parameterΩ0 = 1.02± 0.02 at the1σ
level. The result is marginally compatible with strictly flat
space sections. Improved measurements could indeed lower
the value ofΩ0 closer to the critical value 1, or even below
to the hyperbolic case. Presently however, taken at their face
value, WMAP data favor a positively curved space, necessar-
ily of finite volume since all spherical spaceforms possess this
property. This provides (provisory) answers to the first two
questions stated above.

Now what about space topology ? There is an intriguing
feature in WMAP data, already present in previous COBE
mearurements (Hinshaw et al., 1996), although at a level of
precision that was not significant enough to draw firm con-
clusions. The power spectrum of temperature anisotropies
(Fig. 6) exhibits a set of “acoustic” peaks when anisotropy is
measured on small and mean scales (i.e. concerning regions
of the sky of relatively modest size). These peaks are remark-
ably consistent with the infinite flat space hypothesis. How-
ever, at large angular scale (for CMB spots typically separated
by more than 60◦), there is a strong loss of power which de-
viates significantly from the predictions of the concordance
model. Thus it is necessary to look for an alternative.

CMB temperature anisotropies essentially result from den-
sity fluctuations of the primordial Universe : a photon coming
from a denser region will loose a fraction of its energy to com-
pete against gravity, and will reach us cooler. On the contrary,
photons emitted from less dense regions will be received hot-
ter. The density fluctuations result from the superposition of
acoustic waves which propagated in the primordial plasma.
Riazuelo et al. (2004a) have developed complex theoretical
models to reproduce the amplitude of such fluctuations, which
can be considered as vibrations of the Universe itself. In par-
ticular,they simulated high resolution CMB maps for various
space topologies (Riazuelo et al., 2004b ; Uzan et al., 2003a)
and were able to compare their results with real WMAP data.
Depending on the underlying topology, the distribution of the
fluctuations differs. For instance, in an infinite flat space, all
wavelengths are allowed, and fluctuations must be present at

FIG. 6: The CMB power spectrum depicts the minute temperature
differences on the last scattering surface, depending on the angle of
view. It shows a series of peaks corresponding to small angular sep-
arations (the position and amplitude of the main peak allows us to
measure space curvature), but at larger angular scales, peaks disap-
pear. According to the predictions of the concordance model (con-
tinuous curve), at such scales the power spectrum should follow the
so-called “Sachs-Wolfe plateau”. However, WMAP measurements
in this region (black diamonds) fall well below the plateau for the
quadrupole and the octopole moments (first two diamonds on the
left). While the flat infinite space model cannot explain this fea-
ture, multiconnected space models with a “well-proportioned” topol-
ogy are remarkably consistent with such data. WMAP Homepage :
http://map.gsfc.nasa.gov

all scales.

V. COSMIC HARMONICS

The CMB temperature fluctuations can be decomposed into
a sum ofspherical harmonics, much like the sound produced
by a music instrument may be decomposed into ordinary har-
monics. The “fundamental” fixes the height of the note (as
for instance a 440 hertz acoustic frequency fixes theA of the
pitch), whereas the relative amplitudes of each harmonics de-
termine the tone quality (such as theA played by a piano dif-
fers from theA played by a harpsichord). Concerning the relic
radiation, the relative amplitudes of each spherical harmon-
ics determine the power spectrum, which is a signature of the
geometry of space and of the physical conditions which pre-
vailed at the time of CMB emission.

The first observable harmonics is the quadrupole (whose
wavenumer is̀ = 2). WMAP has observed a value of the
quadrupole 7 times weaker than expected in a flat infinite
Universe. The probability that such a discrepancy occurs by
chance has been estimated to 0.2 % only. The octopole (whose
wavenumber is̀ = 3) is also weaker (72 % of the expected
value). For larger wavenumbers up to` = 900 (which cor-
respond to temperature fluctuations at small angular scales),
observations are remarkably consistent with the standard cos-
mological model.

The unusually low quadrupole value means that long wave-
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lengths are missing. Some cosmologists have proposed to ex-
plain the anomaly by still unknown physical laws of the early
universe (Tsujikawa et al., 2003). A more natural explana-
tion may be because space is not big enough to sustain long
wavelengths. Such a situation may be compared to a vibrat-
ing string fixed at its two extremities, for which the maximum
wavelength of an oscillation is twice the string length. On
the contrary, in an infinite flat space, all the wavelengths are
allowed, and fluctuations must be present at all scales. Thus
this geometrical explanation relies on a model of finite space
whose sizesmallerthan the observable universe constrains the
observable wavelengths below a maximum value.

VI. WELL-PROPORTIONED SPACES

Such a property has been known for a long time, and
was used to constrain the topology from COBE observations
(Sokolov, 1993 ; Starobinsky, 1993). Preliminary oversim-
plified analyses (Stevens et al., 1993 ; de Oliveira-Costa &
Smoot, 1995) suggested that any multi-connected topology
in which space was finite in at least one space direction had
the effect of lowering the power spectrum at large wave-
lengths. Weeks et al. (2004) reexamined the question and
showed that indeed, some finite multiconnected topologies do
lower the large–scale fluctuations whereas others may elevate
them. In fact, the long wavelengths modes tend to be rela-
tively lowered only in a special family of closed multicon-
nected spaces called “well-proportioned”. Generally, among
spaces whose characteristic lengths are comparable with the
radius of the last scattering surfaceRlss (a necessary condition
for the topology to have an observable influence on the power
spectrum), spaces with all dimensions of similar magnitude
lower the quadrupole more heavily than the rest of the power
spectrum. As soon as one of the characteristic lengths be-
comes significantly smaller or greater than the other two, the
quadrupole is boosted in a way not compatible with WMAP
data. The property was proved geometrically (Weeks et al.,
2004), and checked out by numerical simulations (Riazuelo
et al., 2004a). In the case of flat tori, they have varied their
proportions and shown that a cubic torus lowers the quadru-
pole whereas an oblate or a prolate torus increase the quadru-
pole. They have also studied spherical spaces and shown that
polyhedric spaces suppress the quadrupole whereas high order
lens spaces (strongly anisotropic) boost the quadrupole. Thus,
well-proportioned spaces match the WMAP data much better
than the infinite flat space model.

VII. THE POINCAR É DODECAHEDRAL SPACE

Among the family of well-proportioned spaces, the best fit
to the observed power spectrum is thePoincaŕe Dodecahedral
Space(hereafter PDS) (Luminet et al., 2003).

PDS may be represented by a dodecahedron (a regular
polyhedron with 12 pentagonal faces) whose opposite faces
are glued after a 36◦ twist (Fig. 7). Such a space is posi-
tively curved, and is a multiconnected variant of the simply-

connected hypersphereS3, with a volume 120 times smaller.
A rocket going out of the dodecahedron by crossing a given
face immediately re-enters by the opposite face. Propagation
of light rays is such that any observer whose line-of-sight in-
tercepts one face has the illusion to see inside a copy of his
own dodecahedron (Fig. 8).

FIG. 7: Poincaŕe Dodecahedral Space can be described as the inte-
rior of a spherical dodecahedron such that when one goes out from
a pentagonal face, one comes back immediately inside the space
from the opposite face, after a 36◦ rotation. Such a space is finite,
although without edges or boundaries, so that one can indefinitely
travel within it.

FIG. 8: View from inside PDS perpendicularly to one pentagonal
face. In such a direction, ten dodecahedra tile together with a 1/10th
turn to tessellate the universal covering spaceS3. Since the dodeca-
hedron has 12 faces, 120 dodecahedra are necessary to tessellate the
full hypersphere. Thus, an observer has the illusion to live in a space
120 times vaster, made of tiled doecahedra which duplicate like in a
mirror hall (courtesy Jeffrey Weeks).

The associated power spectrum, namely the repartition of
fluctuations as a function of their wavelengths corresponding
to PDS, strongly depends on the value of the mass-energy den-
sity parameter. Luminet et al. (2003) computed the CMB mul-
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tipoles por̀ = 2,3,4 and fitted the overall normalization fac-
tor to match the WMAP data at` = 4, and then examined their
prediction for the quadrupole and the octopole as a function of
Ω0. There is a small interval of values within which the spec-
tral fit is excellent, and in agreement with the value of the total
density parameter deduced from WMAP data (1.02± 0.02).
The best fit is obtained forΩ0 = 1.016 (Fig. 9). The result is
quite remarkable because the Poincaré space has no degree of
freedom. By contrast, a 3-dimensional torus, constructed by
gluing together the opposite faces of a cube and which consti-
tutes a possible topology for a finite Euclidean space, may be
deformed into any parallelepiped : therefore its geometrical
construction depends on 6 degrees of freedom.

FIG. 9: The values of the total mass-energy density parameter (as-
sumingΩm = 0.28) for which the Poincaŕe Dodecahedral Space fits
the WMAP observations.

The values of the matter densityΩm, of the dark energy
densityΩλ and of the expansion rate H0 fix the radius of the
last scattering surfaceRlss as well as the curvature radius of
spaceRc, thus dictate the possibility to detect the topology
or not. ForΩm = 0.28,Ω0 = 1.016 and H0 = 62 km/s/Mpc,
Rlss ∼ 53 Gpc andRc = 2.63 Rlss. It is to be noticed that
the curvature radiusRc is the same for the simply-connected
universal covering spaceS3 and for the multiconnected PDS.
Incidently, the numbers above show that, contrary to a current
opinion, a cosmological model withΩ0 ∼ 1.02 is far from
being “flat” (i.e. with Rc = ∞) ! For the same curvature ra-
dius, PDS has a volume 120 times smaller than S3. Therefore,
the smallest dimension of the fundamental dodecahedron is
only 43 Gpc, and its volume about 80% the volume of the
observable universe (namely the volume of the last scattering
surface). This implies that some points of the last scattering
surface will have several copies. Such a lens effect is purely
attributable to topology and can be precisely calculated in the
framework of the PDS model. It provides a definite signa-
ture of PDS topology, whereas the shape of the power spec-
trum gives only a hint for a small, well-proportioned universe
model.

To resume, the Poincaré Dodecahedral Space accounts for
the low value of the quadrupole as observed by WMAP in the

fluctuation spectrum, and provides a good value of the octo-
pole. To be confirmed, the PDS model, which has been pop-
ularized as the “soccerball universe model”, must satisfy two
experimental tests :
1) A finer analysis of WMAP data, or new data from the future
European satellite “Planck Surveyor” (scheduled 2007), will
be able to determine the value of the energy density parameter
with a precision of 1 %. A value lower than 1.01 will discard
the Poincaŕe space as a model for cosmic space, in the sense
that the size of the corresponding dodecahedron would be-
come greater than the observable universe and would not leave
any observable imprint on the CMB, whereas a value greater
than 1.01 would strengthen its cosmological pertinence.
2) If space has a non trivial topology, there must be partic-
ular correlations in the CMB, namely pairs of “matched cir-
cles” along which temperature fluctuations should be the same
(Cornish et al, 1998). The PDS model predicts 6 pairs of an-
tipodal circles with an angular radius less than 35◦.

Such circles have been searched in WMAP data by two dif-
ferent teams, using various statistical indicators and massive
computer calculations. On the one hand, Cornish et al. (2004)
claimed to have found no matched circles on angular sizes
greater than 25◦, and thus rejected the PDS hypothesis. More-
over, they claimed that any reasonable topology smaller than
the horizon was excluded. This is a wrong statement because
they searched only for antipodal or nearly-antipodal matched
circles. However Riazuelo et al. (2004b) have shown that for
generic topologies (including the well-proportioned topolo-
gies which are good candidates for explaining the WMAP
power spectrum), the matched circles are not back-to-back
and space is not globally homogeneous, so that the positions
of the matched circles depend on the observer’s position in
the fundamental polyhedron. The corresponding larger num-
ber of degrees of freedom for the circles search in the WMAP
data generates a dramatic increase of the computer time, up to
values which are out–of–reach of the present facilities.

On the other hand, Roukema et al. (2004) performed
the same analysis for smaller circles, and found six pairs of
matched circles distributed in a dodecahedral pattern, each
circle on an angular size about 11◦. This implies Ω0 =
1.010± 0.001 for Ωm = 0.28± 0.02, values which are per-
fectly consistent with the PDS model.

It follows that the debate about the pertinence of PDS as the
best fit to reproduce CMB observations is fully open. Since
then, the properties of PDS have been investigated in more
details by various authors. Lachièze-Rey (2004) found an an-
alytical expression of the eigenmodes of PDS, whereas Aurich
et al. (2005) computed numerically the first 10 521 eigenfunc-
tions up to thè = 155mode and also supported the PDS hy-
pothesis for explaining WMAP data. Eventually, the second–
year WMAP data, originally expected by February 2004 but
delayed for at least one year due to unexpected surprises in
the results, may soon bring additional support to a spherical
multiconnected space model.
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VIII. CONSEQUENCES FOR THE PHYSICS OF THE
EARLY UNIVERSE

Finite well–proportioned spaces, and specially the Poincaré
dodecahedral spherical space, open something like a “Pandora
box” for the physics that prevailed in the early universe. The
concordance model relies mostly on the hypothesis that the
early universe underwent a phase of exponential expansion –
the celebrated “inflationary process”. Even without mention-
ing topological subtleties, it is good to recall that inflation the-
ory gets into some troubles. In the simplest inflationary mod-
els, space is supposed to have become immensely larger than
the observable universe after its phase of exponential growth.
Therefore apositive curvature (i.e.Ω0 > 1), even weak, im-
plies a finite space and sets strong constraints on the number
of e-foldings that took place during an inflation phase. It is
possible to build models of “low scale” inflation where the
inflationary phase is short and leads to a detectable space cur-
vature (Uzan et al., 2003b). It turns out that, if space is not
flat, the possibility of a multiconnected topology is not in con-
tradiction with the general idea of inflation, due a number of
free and adjustable parameters in this kind of models. Yet, no
convincing physical scenario has been proposed (see however
Linde, 2003).

In most cosmological models, it is generally assumed that
spatial homogeneity stays valid beyond the horizon scale. For
instance, in the model of chaotic inflation (Linde et al., 1994 ;
Guth, 2000), the universe could be very homogeneous but on
scales much larger than the horizon scale. On this respect, the
PDS model seems incompatible with chaotic inflation : it re-
quires only one expanding bubble universe, of size sufficlently
small to be entirely observable. In his seminal cosmological
paper, Einstein (1917) had already emphasized that spatially
closed universes had the advantage to eliminate boundary con-
ditions (Wheeler, 1968). A small universe like the PDS or a
well–proportioned one, in which the observer could have ac-
cess to all the existing physical reality is still more advanta-
geous (Ellis & Schreiber, 1986). It is the only type of model
in which the astronomical future could be definitely predicted
– such as the return of Halley’s comet –, because only in such
universes the observer could access to all the data in order to
perform such predictions.

Maybe the most fundamental issue is to link the present–
day topology of space to a quantum origin, since classical gen-
eral relativity does not allow for topological changes during
the course of cosmic evolution. Theories of quantum grav-
ity could allow to address the problem of a quantum origin of
space topology. For instance, in the approach of quantum cos-
mology, some simplified solutions of Wheeler-de Witt equa-
tions show that the sum over all topologies involved in the
calculation of the wavefunction of the universe is dominated
by spaces with small volumes and multiconnected topologies
(Carlip, 1993 ; e Costa and Fagundes, 2001). In the approach
of brane worlds (see Brax 2003 for a review), the extra–
dimensions are often assumed to form a compact Calabi-Yau
manifold ; in such a case, it would be strange that only the or-
dinary dimensions of our 3–brane would not be compact like
the extra ones.

These are only heuristic indications on the way unified the-
ories of gravity and quantum mechanics could “favor” mul-
ticonnected spaces. Whatsoever the fact that some particular
multiconnected space models, such as PDS, may be refuted
by future astronomical data, the question of cosmic topology
will stay as a major question about the ultimate structure of
our universe.
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Lachìeze-Rey, M. and Luminet, J. P. (1995), Phys. Rep.254,
135–214.
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