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Family Dependence in 331 Models
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Using experimental results at the Z-pole, and considering the ansatz of Matsuda as an specific texture for
the quark mass matrices, we perform a χ2 fit at 95% CL to obtain family-dependent bounds to Z′ mass and
Z-Z’ mixing angle in the framework of the main versions of 331 models. The allowed regions depend on the
assignment of the physical quark families into different representations that cancel anomalies. Allowed regions
on other possible 331 models are also obtained.
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I. INTRODUCTION

In most of extensions of the standard model (SM), new
massive and neutral gauge bosons, called Z′, are predicted.
The presence of this boson is sensitive to experimental obser-
vations at low and high energies, and will be of great interest
in the next generation of colliders (LHC, ILC, TESLA) [1].
In particular, it is possible to study some phenomenological
features associated to Z′ through models with gauge symme-
try SU(3)c⊗SU(3)L⊗U(1)X , also called 331 models. These
models arise as an interesting alternative to explain the origin
of generations [2–4], where the three families are required in
order to cancel chiral anomalies. The electric charge is de-
fined as a linear combination of the diagonal generators of the
group

Q = T3 +βT8 +XI, (1)

where β allow classify the different 331 models. The two main
versions corresponds to β =−√3 [2] and β =− 1√

3
[3]. In the

quark sector, each 331-family can be assigned in 3 different
ways. Therefore, in a phenomenological analysis, the allowed
region associated with the Z−Z′ mixing angle and the physi-
cal mass MZ′ of Z′ will depend on the family assignment. We
adopt the texture structure proposed in ref. [5] in order to ob-
tain allowed regions for the Z−Z′ mixing angle, the mass of
the Z′ boson and the values of β for 3 different assignments of
the quark families in mass eigenstates. The above analysis is
performed through a χ2 statistics at 95% CL.

II. THE QUARK AND NEUTRAL GAUGE SPECTRUM

The fermion representations under SU(3)c⊗ SU(3)L ⊗
U(1)X read
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(2)

The second equality comes from the branching rules
SU(2)L ⊂ SU(3)L. The Xp refers to the quantum number as-
sociated with U (1)X . The generator of U(1)X conmute with
the matrices of SU(3)L; hence, it should take the form XpI3×3,
the value of Xp is related with the representations of SU(3)L
and the anomalies cancellation. On the other hand, this fermi-
onic content shows that the left-handed multiplets lie in either
the 3 or 3∗ representations. In the framework of three fam-
ily model, we recognize 3 different possibilities to assign the
physical quarks in each family representation as shown in Ta-
ble I in weak eigenstates.

On the other hand, we obtain the following mass eigenstates
associated to the neutral gauge spectrum

Z1µ = ZµCθ +Z′µSθ; Z2µ =−ZµSθ +Z′µCθ, (3)

where a small mixing angle θ between the neutral currents Zµ
and Z′µ appears, with

Zµ = CWW 3
µ −SW

(
βTWW 8

µ +
√

1−β2T 2
W Bµ

)
;

Z′µ = −
√

1−β2T 2
WW 8

µ +βTW Bµ, (4)

where the Weinberg angle is defined as SW =
g′/(

√
g2 +(1+β2)g′2) and g, g′ correspond to the coupling

constants of the groups SU(3)L and U(1)X , respectively.

III. THE NEUTRAL GAUGE COUPLINGS

The neutral Lagrangian associated to the SM-boson Z1µ in
the weak basis of the SM quarks U0 =

(
u0,c0, t0

)T and D0 =(
d0,s0,b0

)T
, is

LNC =
g

2CW

{
U0γµ

[
GU(r)

v −GU(r)
a γ5

]
U0

+ D0γµ

[
GD(r)

v −GD(r)
a γ5

]
D0Zµ

1

}
. (5)

The couplings of the Z1µ have the same form as the SM
couplings, where the usual vector and axial vector couplings
gSM

V,A are replaced by G(r)
V,A = gSM

V,AI +δg(r)
V,A, where
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Representation A Representation B Representation C

qmL =




d,s
−u,−c
J1,J2




L

: 3∗

q3L =




t
b
J3




L

: 3

qmL =




d,b
−u,−t
J1,J3




L

: 3∗

q3L =




c
s
J2




L

: 3

qmL =




s,b
−c,−t
J2,J3




L

: 3∗

q3L =




u
d
J1




L

: 3

TABLE I: Three different family structures in the fermionic spectrum

δg(r)
V,A = g̃(r)

V,ASθ, (6)

which corresponds to the correction due to the small Zµ−
Z′µ mixing angle θ, g̃(r)

V,A the Z′µ coupling constants, and r =
(A,B,C) each representation from Table I. The Z′µ couplings
for leptons are

∼
g

`

v,a =
g′CW

2gTW

[−1√
3
−βT 2

W ±2Q`βT 2
W

]
, (7)

while for the quark couplings we get

∼
g

q(r)
v,a =

g′CW

2gTW
K(r)† (

M±2QqβT 2
W

)
K(r), (8)

with q = U0,D0, M = 1/
√
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√
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βT 2
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√
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√

3] and where we define for each
representation from table I
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
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
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
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0 0 1
1 0 0


 . (9)

We will consider linear combinations among the three fam-
ilies to obtain couplings in mass eigenstates by adopting an
ansatz on the texture of the quark mass matrix in agree-
ment with the CKM matrix. We take the structure of mass
matrix suggested in ref. [5] given by M′

q = P†
q MP†

q , with
Pq = diag(exp(α1),exp(α2),exp(α3)), and where M is writ-
ten in the basis

(
u0,c0, t0

)
or

(
d0,s0,b0

)
as

Mq =


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0 Aq Aq
Aq Bq Cq
Aq Cq Bq


 . (10)

For up-type quarks, AU =
√mt mu

2 , BU = (mt +mc−mu)/2
and CU = (mt −mc −mu)/2; for down-type quarks AD =√

mdms
2 , BD = (mb + ms − md)/2 and CD = −(mb − ms +

md)/2. The above ansatz is diagonalized by [5]
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(11)
with c =

√
ms/(md +ms),s =

√
md/(md +ms),c′ =√

mt/(mt +mu) and s′ =
√

mu/(mt +mu). The complex
matrix M′

q = P†
q MP†

q is then diagonalized by the bi-unitary
transformation U†

LqM′
qURq with ULq = P†

q Rq and URq = PqRq.
Then, the diagonal couplings in Eq. (5) in mass eigenstates
have terms of the form U†

L,RqGq(r)
v,a UL,Rq = R†

qGq(r)
v,a Rq where

any effect of the CP violating phases P disappears. Thus, we
can write the Eq. (5) in mass eigenstates as

LNC =
g

2CW

[
Uγµ

(
G

U(r)
v −G

U(r)
a γ5

)
U

+ Dγµ

(
G

D(r)
v −G

D(r)
a γ5

)
D

]
Zµ

1 , (12)

where the couplings of quarks depend on the rotation ma-
trix, with

G
q(r)
v,a = gq

v,aI +R†
qδgq(r)

v,a Rq = gq
v,aI +δg

q(r)
v,a . (13)

We obtain flavor changing couplings in the quark sector due
to the family dependence shown by g̃q(r)

v,a . All the analytical
parameters (O) at the Z pole have the same SM-form (OSM)
but with small correction factors (δO) which are expressed in
terms of the coupling corrections δg

q(r)
v,a that depend on the

family assignment from table I. Each observable predicted
by the 331 model takes the form O331=OSM (1+δO) . For the
analysis, we take into account the observables at the Z pole
shown in Table II from ref. [7], including data from atomic
parity violation. The 331 corrections are
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FIG. 1: Allowed region for 331 models with β =−√3 in the MZ2 −
Sθ plane. The regions are dispayed for A,B and C representation.
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FIG. 2: Allowed region for 331 models with β = −1/
√

3 in the
MZ2 −Sθ plane. The regions are dispayed for A,B and C representa-
tion.
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FIG. 3: Allowed region for MZ2 = 1200 GeV in the Sθ − β plane.
Only the C representation exhibit allowed region.

IV. PRECISION FIT TO THE Z-POLE OBSERVABLES

With the expressions for the Z-pole observables and the ex-
perimental data from the LEP [7], we perform a χ2 fit for each
representation A,B and C at 95% CL and 3 d.o.f, where the
free quantities Sθ, MZ2 and β can be constrained at the Z1
peak. Figs. 1 and 2 show the allowed region for the main
versions of 331 models corresponding to β = −√3 [2] and
β = − 1√

3
[3], respectively, which exhibits family-dependent

regions. First of all, we note that A and B representations
display broader mixing angles than representation C. For the
model β = −√3, we see that the lowest bound in the MZ2
value is about 4000 GeV for A and B cases, while for the C
representation this bound increses to 10000 GeV, showing an
strong dependence on the family representation. The model
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Quantity Experimental Values Standard Model 331 Model

ΓZ [GeV ] 2.4952 ± 0.0023 2.4972 ± 0.0012 ΓSM
Z (1+δZ)

Γhad [GeV ] 1.7444 ± 0.0020 1.7435 ± 0.0011 ΓSM
had (1+δhad)

Γ(`+`−) MeV 83.984 ± 0.086 84.024 ± 0.025 ΓSM
(`+`−) (1+δ`)

σhad [nb] 41.541 ± 0.037 41.472 ± 0.009 σSM
had (1+δσ)

Re 20.804 ± 0.050 20.750 ± 0.012 RSM
e (1+δhad +δe)

Rµ 20.785 ± 0.033 20.751 ± 0.012 RSM
µ

(
1+δhad +δµ

)

Rτ 20.764 ± 0.045 20.790 ± 0.018 RSM
τ (1+δhad +δτ)

Rb 0.21638 ± 0.00066 0.21564 ± 0.00014 RSM
b (1+δb−δhad)

Rc 0.1720 ± 0.0030 0.17233 ± 0.00005 RSM
c (1+δc−δhad)

Ae 0.15138 ± 0.00216 0.1472 ± 0.0011 ASM
e (1+δAe)

Aµ 0.142 ± 0.015 0.1472 ± 0.0011 ASM
µ

(
1+δAµ

)

Aτ 0.136 ± 0.015 0.1472 ± 0.0011 ASM
τ (1+δAτ)

Ab 0.925 ± 0.020 0.9347 ± 0.0001 ASM
b (1+δAb)

Ac 0.670 ± 0.026 0.6678 ± 0.0005 ASM
c (1+δAc)

As 0.895 ± 0.091 0.9357 ± 0.0001 ASM
s (1+δAs)

A(0,e)
FB 0.0145 ± 0.0025 0.01626 ± 0.00025 A(0,e)SM

FB (1+2δAe)
A(0,µ)

FB 0.0169 ± 0.0013 0.01626 ± 0.00025 A(0,µ)SM
FB

(
1+δAe +δAµ

)

A(0,τ)
FB 0.0188 ± 0.0017 0.01626 ± 0.00025 A(0,τ)SM

FB (1+δAe +δAτ)
A(0,b)

FB 0.0997 ± 0.0016 0.1032 ± 0.0008 A(0,b)SM
FB (1+δAe +δAb)

A(0,c)
FB 0.0706 ± 0.0035 0.0738 ± 0.0006 A(0,c)SM

FB (1+δAe +δAc)
A(0,s)

FB 0.0976 ± 0.0114 0.1033 ± 0.0008 A(0,s)SM
FB (1+δAe +δAs)

QW (Cs) −72.69 ± 0.48 −73.19 ± 0.03 QSM
W (1+δQW )

TABLE II: The Z-pole parameters for experimental values, SM predictions and 331 corrections.
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FIG. 4: Allowed region for Sθ =−0.0002 in the MZ2 −β plane. The regions are dispayed for A,B and C representations.

β = − 1√
3

exhibits a lower bound in the Z2 mass, where the
lowest bound is about 1400 GeV for A and B regions, and
2100 GeV for the C spectrum. We also see that the mixing an-
gle in this model is smaller by about one order of magnitude
than the angles predicted by the β =−√3 model.

On the other hand, we get the best allowed region in the
plane Sθ−β for two different values of MZ2 . The lowest bound
that display an allowed region is about 1200 GeV, which ap-

pears only for the C assignments such as Fig. 3 shows. We
can see in this case that the usual 331 models are excluded,
and only those 331 models with 1.1 . β . 1.75 are allowed
with small mixing angles (Sθ ∼ 10−4). Fig. 4 display the al-
lowed region in the MZ2 − β plane for a small mixing angle
(Sθ =−0.0002). It is noted that the smallest bounds in MZ2 is
obtained for β > 0.
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