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Topological Charge Screening and Pseudoscalar Glueballs
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Topological charge screening in the QCD vacuum is found to provide crucial nonperturbative contributions to
the short-distance expansion of the pseudoscalar (0−+) glueball correlator. The screening contributions enter
the Wilson coefficients and are an indispensable complement to the direct instanton contributions. They re-
store consistency with the anomalous axial Ward identity and remedy several flaws in the0−+ glueball sum
rules caused by direct instantons in the absence of screening (lack of resonance signals, violation of the pos-
itivity bound and of the underlying low-energy theorem). The impact of the finite width of the instanton size
distribution and the (gauge-invariant) renormalization of the instanton contributions are also discussed. New
predictions for the0−+ glueball mass and decay constant are presented.

1 Introduction

The glueball sector of QCD has remained intriguing and
challenging since the early days of QCD [1] and glueball
physics offers promising opportunities for the study of low-
energy gluon dynamics and of the often elusive gluonic
component in hadron wavefunctionals. One such oppor-
tunity was recently exploited in OCD sum rule analyses,
which found nonperturbative short-distance physics in the
form of direct instantons [2] to play a crucial role in the
structure and dynamics of the scalar (0++) glueball [3, 4].
Indeed, the instanton-improved operator product expansion
(IOPE) of the0++ glueball correlator resolves two long-
standing problems of the conventional sum rules (the mu-
tual inconsistency of different Borel moment sum rules and
the conflict with the underlying low-energy theorem [5, 6]),
generates new scaling relations between fundamental glue-
ball and instanton properties, and leads to improved sum
rule predictions for scalar glueball properties [3]. (See also
the subsequent gaussian sum rule analysis [7], based on the
same instanton contributions.) The Borel sum rule analy-
sis has recently been improved and extended (to realistic in-
stanton size distributions and renormalized instanton contri-
butions) in [4]. Hard nonperturbative contributions to the
pseudoscalar glueball IOPE and sum rules were also inves-
tigated. On these we will report in the following. A com-
prehensive analysis of both spin-0 glueball channels can be
found in Ref. [4].

The implementation of the direct instanton contributions
in the0−+ channel is straightforward: the expressions from
the 0++ channel [3] can simply be taken over, with their
signs inverted. This is a consequence of the (Minkowski)
(anti-) self-duality of the (anti-) instanton’s field strength,

G
(I,Ī)
µν = ±iG̃

(I,Ī)
µν . However, one immediately suspects

that adding the dominant and, due to the sign change,
strongly repulsive instanton contributions will seriously un-
balance the Borel sum rules. Two of the consequences were
recently observed in [8]: any reliable signal for a pseu-
doscalar glueball resonance disappears (in contradiction to
lattice evidence), and even the fundamental spectral positiv-
ity bound is violated. In addition, the crucial low-energy the-
orem for the zero-momentum0−+ glueball correlator, and
therefore the underlying anomalous axial Ward identity, is
strongly violated [4]. As pointed out in [4], these problems
have an appealing solution in the form of additional nonper-
turbative short-range contributions to the IOPE, associated
with topological charge screening. Below, we will sketch
the implementation of the screening contributions and their
impact on the sum rule analysis. We also comment on the
effects of realistic instanton size distributions and the renor-
malization of the instanton-induced Wilson coefficients.

2 Correlator, IOPE and sum rules

Our discussion will be based on the pseudoscalar glueball
correlation function

ΠP (x) = 〈0|T OP (x)OP (0) |0〉 , (1)

whereOP is the standard gluonic interpolating field

OP (x) = αsG
a
µν (x) G̃aµν (x) (2)

(G̃µν ≡ (i/2) εµνρσGρσ), and its Fourier transform

ΠP (−q2) = i

∫
d4x eiqx 〈0|T OP (x)OP (0) |0〉 . (3)
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The zero-momentum limit of this correlator is governed by
the low-energy theorem (LET) [9]

ΠP

(
q2 = 0

)
= (8π)2

mumd

mu + md
〈q̄q〉 (4)

(for three light flavors andmu,d ¿ ms) which derives
from the axial anomaly and imposes stringent consistency
requirements on the sum rule analysis [4].

The hadronic information in the glueball correlators is
most directly accessible in the dispersive representation

ΠP

(
Q2

)
=

1
π

∫ ∞

si

ds
ImΠP (−s)

s + Q2
(5)

where the necessary number of subtractions is implied. The
QCD sum-rule description of the spectral functions contains
one or two resonances (in zero-width approximation) and
the local-duality continuum, i.e.

ImΠ(ph)
P (s) = π

2∑

i=1

f2
Pim

4
Piδ

(
s−m2

Pi

)

+ θ (s− s0) ImΠ(IOPE)
P (s) (6)

The continuum representation covers the invariant-mass re-
gion ”dual” to higher-lying resonances and multi-hadron
continuum, starting at an effective thresholds0. It is ob-
tained from the discontinuities of the IOPE, i.e. the expan-
sion of the correlator at large, spacelike momentaQ2 ≡
−q2 À ΛQCD into condensates of operatorsÔD of increas-
ing dimensionD,

ΠP (Q2) =
∑

D=0,4,...

C̃
(P )
D

(
Q2; µ

) 〈
0

∣∣∣ÔD

∣∣∣ 0
〉

µ
. (7)

“Hard” field modes with momenta|k| > µ contribute to the
momentum-dependent Wilson coefficientsC̃D

(
Q2

)
while

“soft” modes with|k| ≤ µ generate the condensates
〈
ÔD

〉
.

In order to write down the sum rules, the IOPE - with
the continuum subtracted and weighted by powers of−Q2 -
is Borel-transformed,

R(IOPE)
P,k (τ ; s0) = B̂

[(−Q2
)k

π

∫ s0

0

ds
ImΠ(IOPE)

P (−s)
s + Q2

]

(8)

= −δk,−1Π
(IOPE)
P (0)

+
1
π

∫ s0

0

dssk ImΠ(IOPE)
P (s) e−sτ ,

for k ≥ −1. The hadronic parametersmPi, fPi, s0 are then
determined by matching these moments in the fiducialτ -
region to their resonance-induced counterparts (and a sub-
traction constant fork = −1, fixed by the LET (4)). The
resulting IOPE sum rules are

R(IOPE)
P,k (τ ; s0) =

2∑

i=1

f2
Pim

4+2k
Pi e−m2

P iτ−δk,−1Π
(ph)
P (0).

(9)

The perturbative contributions to the IOPE coefficients,
i.e. the conventional OPE, can be found in [10, 11, 8, 4]. In
the following we will focus on the nonperturbative contribu-
tions due to direct instantons and topological charge screen-
ing.

3 Direct instantons

Dominant direct instanton contributions to the0−+ glueball
correlator are received by the unit-operator IOPE coefficient,

C̃
(P,I+Ī)

D
0 = Π(I+Ī)

P . They are best calculated inx-space,
with the result

C̃
(P,I+Ī)

D
0

(
x2

)
= −283

7

∫
dρn (ρ)

1
ρ4 2F1

(
4, 6,

9
2
,− x2

4ρ2

)
.

(10)
The further evaluation requires the (anti-) instanton distri-
butionnI,Ī (ρ) with its two leading moments, the instanton
densityn̄ and average sizēρ, as input. All previous studies
of direct instanton effects have relied on the simplest possi-
ble, spike-like approximationn(ρ) = n̄δ (ρ− ρ̄). In Ref.[4]
a realistic finite-width distribution was implemented instead,
which is fully determined bȳn, ρ̄ and the known small- and
large-ρ behavior [12], (forNc = Nf = 3)

ng (ρ) =
218

36π3

n̄

ρ̄

(
ρ

ρ̄

)4

exp
(
− 26

32π

ρ2

ρ̄2

)
. (11)

From the Fourier transform of (10) one finds the direct-
instanton-induced Borel moments [3]

L(I+Ī)
k−1 (τ) = −26π2−∂k

∂τk

∫
dρn (ρ)x2e−x

×
[
(1 + x)K0 (x) +

(
2 + x +

2
x

)
K1 (x)

]
,

(12)

(x = ρ2/2τ, k ≥ 0) and from the imaginary part [3]

ImΠ(I+Ī)
P (−s) = −24π4

∫
dρn (ρ) ρ4s2J2

(√
sρ

)
Y2

(√
sρ

)

(13)
at timelike momenta one then has

R(I+Ī)
P,k (τ) = −27π2δk,−1

∫
dρn (ρ)− 24π3

∫
dρ

× n (ρ) ρ4

∫ s0

0

dssk+2J2

(√
sρ

)
Y2

(√
sρ

)
e−sτ .

(14)

The direct-instanton contributions (with subtracted contin-
uum) are an important complement to the corresponding
perturbative ones.

The realistic (finite-width) instanton size distribution
tames the rising oscillations of the imaginary part (13) at
large s (an artefact with misleading impact on thes0 de-
pendence of the moments) into a strong decay∝ s−5/2.
Furthermore, it allows for a gauge-invariant renormalization
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of the instanton-induced coefficients by excluding contribu-
tions from instantons with sizeρ > µ−1, i.e. by replacing

n (ρ) → ñµ (ρ) ≡ θβ

(
ρ− µ−1

)
n (ρ) (15)

with a “soft” step functionθβ (e.g. θβ

(
ρ− µ−1

)
=[

exp
(
β

(
ρ− µ−1

))
+ 1

]−1
). The instanton-inducedµ-

dependence turns out to be relatively weak forµ < ρ̄−1, in
complicance with the other sources ofµ dependence. Note
that the standard spike distribution (with̄ρ < µ−1) misses
the reduction of the total instanton density to the direct in-
stanton part,

n̄ =
∫ ∞

0

dρn (ρ) →
∫ ∞

0

dρñµ (ρ) ≡ n̄direct. (16)

4 Topological charge screening

As argued above, it is not surprising that the dominant
and strongly repulsive direct instanton contributions, when
added as thesolenonperturbative contributions to the IOPE
coefficients, upset the0−+ glueball sum rules and have the
mentioned, detrimental effects. In fact, this suggests that
additional important contributions, which should predomi-
nantly affect the pseudoscalar IOPE, are still amiss. And in-
deed, the0−+ glueball correlator is proportional to the topo-
logical charge correlators and therefore maximally sensitive
to the short-distance topological charge (probably mainly
instanton - antiinstanton) correlations in the QCD vacuum.
Their impact on the pseudoscalar glueball correlators was
found to be exceptionally strong in the instanton liquid
model [2, 13]. Topological charge correlations are created
by light-quark loops or, equivalently at low energies, by
the attractive (repulsive)η′-meson exchange forces between
opposite-sign (equal-sign) topological charges. They lead to
Debye screening of the topological charge with “screening
mass”mη′ and the corresponding (small!) screening length
λD ∼ m−1

η′ ∼ 0.2 fm [14, 15]. Sincemη′ > µ, the screen-
ing correlations contribute to the Wilson coefficients of the
pseudoscalar glueball correlator.

The screening contributions can be obtained from the
coupling of theη′ mesons to the topological charge density,
as dictated by the axial anomaly [16]. In the chiral limit,
whereη′ = η0 is purely flavor-singlet, and fork . mη′ the
coupling to the topological charges in the vacuum medium
(approximated for simplicity as concentrated in pointlike in-
stantons) is governed by the effective lagrangian [14, 15]

L =
1
2

(∂η0)
2 − 2n̄ cos (γη0η0 + θ) (17)

wheren̄ is the global topological charge density and where
we have introduced a sourceθ (x) for the local topologi-
cal charge densityQ (x). Note the screening massm2

scr =
2n̄γ2

η0
of theη0. Taking two derivatives of the correspond-

ing generating functional with respect toθ leads (for small
amplitudesη0) to the topological charge correlator

〈Q (x) Q (0)〉 = ΠP (x) / (8π)2

' −2n̄δ4 (x)− (2n̄γη0)
2 〈η0 (x) η0 (0)〉 .

(18)

The first term is just the pointlike approximation to the
direct-instanton contribution evaluated above. The second
one is the screening correction, which modifies the nonper-
turbative contributions to the pseudoscalar IOPE coefficient
into

ΠP (x) = Π(I+Ī)
P (x)− (n̄γη0)

2 mη0

π2x
K1 (mη0x) . (19)

After implementing finite quark-mass effects (i.e.η0-η8

mixing), the (Minkowski) Borel moments associated with
the screening contributions become

R(scr)
P,k (τ) = −δk,−1

(
F 2

η′

m2
η′

+
F 2

η

m2
η

)

+ F 2
η′m

2k
η′ e

−m2
η′τ + F 2

η m2k
η e−m2

ητ . (20)

The τ -independent term in Eq. (20) is the screening-
induced subtraction constant−Π(scr)

P (0). It shows that in-
clusion of the screening contributions is mandatory in order
to satisfy the axialU (1) Ward identity and the ensuing LET
(4). Indeed, direct instantons generate a large subtraction

constantΠ(I+Ī)
P (0) = −27π2n̄ while the LET demands

the zero-momentum limit of the physical correlator to be of
the order of the light quark masses, i.e. much smaller. The
screening contribution (20) is necessary to cancel most of it
and to restore consistency with the LET. In the chiral limit,
the screening contribution turns into

Π(scr)
P (0) =

F 2
η′

m2
η′

=
(16πn̄γη0)

2

2n̄γ2
η0

= 27π2n̄ (21)

and the cancellation becomes exact (due to the infinite-
range interactions mediated by massless Goldstone bosons).
The above argument provides compelling evidence for the
screening contributions to be an indispensable complement
to the direct instantons.

The cancellation between the subtraction terms suggests
a simple strategy for renomalizing the screening contribu-
tions. Since the large-ρ cutoff µ−1 amounts to replacinḡn
by n̄dir = ζn̄ with ζ < 1 (cf. Eq. (16)), consistency with
the LET requires the same replacement in the screening con-
tributions (19).

Besides restoring the axial Ward identity, inclusion of
the screening contributions resolves the positivity-bound vi-
olation and creates a strong signal for both theη′ and the
pseudoscalar glueball resonances in the corresponding Borel
sum rules. The screening contributions (20) are of substan-
tial size, even relative to the direct-instanton contributions,
and they are largest at small and intermediateτ . λ2

scr ∼ 1
GeV2. Moreover, they modify qualitative features of the
Borel moments (e.g. the sign of the slope) to which the sum
rule fits are very sensitive. Hence, trustworthy sum rule re-
sults cannot be obtained even at small and intermediateτ
when the screening contributions are ignored [8]. Even the
bound obtained in [8] has therefore to be regarded as invalid.
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After including the screening contributions, all four
Borel-moment sum rules (9) are stable and yield consistent
results. Note that previous analyses of the0−+ sum rules
have discarded thek = −1 sum rule and therefore missed
the chance to implement the first-principle information from
the low-energy theorem, as well as a very useful consistency
check. The two-resonance fit is clearly favored over the one-
pole approximation, i.e. the IOPE provides clear signals for
theη′ resonance (with smallη admixtures due to mixing) in
addition to a considerably heavier0−+ glueball. The0−+

glueball mass is found to bemP = 2.2 ± 0.2 GeV, and the
decay constantfP = 0.6 ± 0.25 GeV. (For a complete dis-
cussion see [4].)

5 Summary

We have reported recent developments in understanding
and evaluating nonperturbative glueball physics in the pseu-
doscalar channel on the basis of the operator product ex-
pansion [4]. Contrary to naive expectation, much of this
nonperturbative physics takes place at surprisingly short dis-
tances|x| ∼ 0.2 − 0.3 fm, and consequently shows up
in the Wilson coefficients of the IOPE. Direct instantons
are the paradigm for such physics, and their contributions
to the spin-0 glueball correlators are indeed exceptionally
large. We have improved on the previous evaluation of these
contributions [3] by implementing a realistic instanton size
distribution and the renomalization of the instanton-induced
coefficients (both of these improvements should be useful
in other hadron channels as well). A further new develop-
ment is very specific to the0−+ glueball channel: we have
found compelling evidence for topological charge screen-
ing to provide crucial contributions to the unit operator co-
efficient of the pseudoscalar glueball IOPE. The screening
contributions form an indispensable complement to the di-
rect instantons, roughly speaking “unquenching” them and
thereby restoring the axial Ward identity. Moreover, they
balance the strong repulsion of the direct instantons, cor-
rect the otherwise gross violation of the LET, resolve the
violation of the spectral positivity bound and generate a
strong (and otherwise absent) signal for the0−+ glueball
resonance. With screening included, all Borel moment sum
rules provide consistent and stable predictions for the fun-
damental0+− glueball properties (mP = 2.2 ± 0.2 GeV,
fP = 0.6± 0.25 GeV).
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