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We apply the theory of random walks to quantitatively describe the general problem of how to
search eÆciently for randomly located objects that can only be detected in the limited vicinity of
a searcher who typically has a �nite degree of \free will" to move and search at will. We illustrate
L�evy 
ight search processes by comparison to Brownian random walks and discuss experimental
observations of L�evy 
ights in the special case of biological organisms that search for food sites. We
review recent �ndings indicating that an inverse square probability density distribution P (`) � `�2

of step lengths ` can lead to optimal searches. Finally we survey the explanations put forth to
account for these surprising �ndings.

I Introduction

What is the most eÆcient strategy for searching ran-
domly located objects whose exact locations are not

known a priori? This question has been recently stud-

ied by physicists [1, 2]. The general problem of how to

search eÆciently is a challenging one, because on the
one hand the searchers typically have a certain degree

of \free will" to move and search according to their

choice. On the other hand, they are subject to certain

physical and biological constraints which restrict their

behavior.

A classic example of eÆcient search strategies re-
lates to animal foraging. On the one hand, the an-

imal's brain is suÆciently complex to allow a broad

range of behavioral choices and \freedom," but on the

other hand the animal must adapt and restrict its be-
havior to increase the chances of survival, e.g., if an

animal does not eat food for a certain maximum time

then it will die.

The richness of the problem stems partially because
of the \ignorance" of the locations of the randomly lo-

cated \target sites." However, even if the positions of

all target sites were completely known in advance by

a \demon" as resourceful as Laplace's [3], the prob-
lem of what sequential order to visit the sites in or-

der to reduce the energy costs of locomotion is itself

rather challenging: the famous \travelling salesman"

optimization problem [4]. The ignorance of the tar-

get site locations, however, introduces yet another level
of diÆculty and renders the problem unsuited to de-

terministic search algorithms that do not use some el-

ement of randomness. Indeed, only a statistical ap-

proach to the search problem can deal adequately with
the element of ignorance. Such a statistical approach

is analogous to how only the conceptual framework of
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a statistical mechanical entropy can adequately model

the ignorance involved in the relationship between a

single macroscopic (\thermodynamic") state and the

very large number of corresponding microstates of a
system in thermodynamic equilibrium [5]. Similarly, it

has been argued that statistical physics is ideally suited

to the study of complex phenomena of this nature [6].

Indeed, the general problem of how to search eÆciently
for randomly-located target sites can be quantitatively

described [1, 2, 6] using ideas developed in the study of

random walks [7, 8, 9].

Quantifying the statistical properties of search pat-

terns is of practical relevance not only in physics but
also in theoretical ecology, industry, and conceivably

even to problems such as the search for missing chil-

dren. Very recently, such concepts have even found ap-

plication in information technology (e.g., information

foraging theory [10] ).

II Random walks and random

searches

When a searcher wanders in search of the target sites,

the resulting motion can be described quantitatively

as a list of the visited sites, in sequential (temporal)

order. Such motion is typically random. Speci�cally,

the motion has some degree of stochastic noise, just
like a random walk created by a hypothetical \drunk"

who takes steps forwards and backwards randomly with

equal probability.

Brownian motion can be thought of as a kind of ran-
dom walk, but the particle can move on a continuous

scale. The name \Brownian" refers to Robert Brown

who, in 1827, observed the irregular motion of pollen

grains suspended in water [11]. Brownian motion was

not satisfactorily explained until 1905 when Albert Ein-
stein published his classic paper [12]. Although Brow-

nian random walks were the �rst to be studied, there

also exist non-Brownian random-walks.

Speci�cally, random walks can be classi�ed either as
Brownian (B) random walks or L�evy (L) walks:

(B) The step lengths `j have a character-

istic scale, usually de�ned by the �rst

or second moment (mean and variance

respectively) of the step length density

distribution P (`). An essential fea-
ture of such random walks is that their

square displacement increases linearly

with the number of steps taken.

(L) The step lengths have no charac-

teristic scale, by which we mean
that the moments diverge and the

distribution has self-aÆne properties:

P (�`) � ���P (`): The square dis-

placement of L�evy random walks, also

called L�evy 
ights, can grow quadrati-

cally with the number of steps, so their
behavior is dominated by extremely

long but rare step lengths.

The majority of studied probability distributions

lead to Brownian motion as a consequence of the Cen-

tral Limit Theorem (CLT). If the steps are (i) large in

number (� 102) and (ii) independent, i.e., free of cor-

relations, then any probability distribution with �nite
moments will lead to Brownian motion. L�evy distribu-

tions have diverging lower moments, therefore the CLT

is not applicable and superdi�usive behavior is possi-

ble. Moreover, L�evy walks result in a set of visited sites
that form a fractal.

It is often possible to estimate experimentally the
probability density distribution P (`) of the step or 
ight

lengths ` taken by a searcher. Until recently it has of-

ten been assumed [7, 8, 9] that such a histogram of


ight lengths P (`j) has a well de�ned second moment.

Hence arise Gaussian, Poisson and other classical dis-
tributions that lead to Brownian behavior. Indeed, it

has generally been assumed a priori that searchers per-

form movements in their environments that correspond

to normal di�usion.

Recently, however, it has been questioned if this as-

sumption is unnecessarily restrictive, and whether its
predictions can be supported by existing experimental

data [1,2,13,14,15]. To address this question, one can

assume the more general L�evy distribution [8, 9, 21],

P (`j) � `��j ; (1)

with 1 < � � 3 where, in fact, Gaussian behavior is

a special case for � � 3 [16]. Values � � 1 do not

correspond to normalizable probability distributions.
Apart from its intrinsic mathematic merit, as being

the largest class of stable distributions, L�evy distribu-

tions have in the last decade found useful applications

in biology [8, 9], and studies of biological search pro-

cesses speci�cally [2,13,14,15]. (Note that P. L�evy origi-
nally had studied L�evy statistics since 1937, see ref. [8].)

Whereas Brownian motion corresponds to normal di�u-

sion, L�evy 
ights, in contrast, correspond to anomalous

super-di�usive motion [8, 9, 17] (Fig. 1). L�evy 
ights
have also been found to be associated with enhanced

di�usion in chaotic systems (see, for instance, [18]).
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Figure 1. 2-D random walks for � = 2:5; 2:0; and 1:5 re-
spectively with identical total lengths of 103 units. Micro-
organisms, mammals, birds, and insects show episodes of
approximately straight locomotion randomly interrupted by
re-orientation events.

Search processes can be found in biological phenom-
ena [19]. Extensive experimental data exist for the spe-
cial case of animal search processes, in which an animal
optimizes its search for, say, food [2,13,14,15]. Evo-
lution has through natural selection led over time to
highly eÆcient|even optimal|biological search strate-
gies. According to optimal foraging theory, animals seek
to maximize the returns (in calories, nutrients etc.) on
their labor in deciding how best to forage [20]. Since
physical as well as neurophysiological and evolutionary
factors come into play, searching is a rich problem that
continues to present multi-faceted and interdisciplinary
challenges.

Microorganisms, insects, birds, and mammals have
been found to follow a L�evy distribution of 
ight lengths
or times (assumed to be proportional or at least cor-
related statistically) [1,2,13,14,15] (Fig. 2). Moreover,
the exponent � appears to be the same in many in-
stances [1]. When the nectar concentration is nor-
mal (low), the 
ight length distribution of bumble
bees [1, 22] decays like Eq. (1) with � � 2 (Fig. 2(a)).
Similarly, the value � � 2 is also found for the search-
ing time distribution of the Wandering Albatross [2]
(Fig. 2(b)) and deer (Fig. 2(c)) in both wild and fenced
areas [1, 23]. Even the value 2 � � � 2:5 found for
amoebas [14] supports the hypothesis that �opt = 2
might be a universal value of the exponent in L�evy 
ight
searches. What, might we ask, drives animals to this
type of behavior and what bene�ts, if any, do they thus
derive from L�evy 
ight motion?
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Figure 2. (a) Double log plot of the 
ight length percent-
age distributions for searching bumble bees, digitized from
ref.[22]. Note the value � � 2 for normal (low) nectar con-
centration. The value � � 3:5 for (� 10�) higher nectar
concentrations in which long 
ights become very rare (see
text) is also consistent with the theory. (b) double log plot
of the histograms of 
ight times (in 1 h intervals) for the
Wandering Albatross[2]. (c) Double log plot of the searching
time (secs) percentage distributions for deer in wild areas
and fenced areas.
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III L�evy 
ight search patterns

Why 
ight lengths might follow a L�evy distribution

rather than a Gaussian or Poisson distribution is of

general interest. The reasons behind the experimen-

tally observed L�evy 
ights in biological searches have
never been fully understood, but a number of studies

have shed some light. Levandowsky et al.[13, 14] have

suggested reasons why microorganisms may perform

L�evy 
ights in three dimensions (3-D), showing that
a L�evy distribution is advantageous since the probabil-

ity of returning to a previously-visited site is smaller

than for a Gaussian distribution, irrespective of the

value of � chosen [24]. A related explanation proposed

by M. F. Shlesinger (see [2]) argues that foragers may
perform L�evy 
ights because the number of new vis-

ited sites is much larger for n L�evy walkers than for n

Brownian walkers [25]. The n L�evy walkers di�use so

rapidly that the competition for the resources (target
sites) among themselves is greatly reduced relative to

the competition encountered by the n Brownian walk-

ers, who typically remain close to the origin, hence to

each other. A L�evy 
ight strategy is also a good so-

lution for the related problem where N radar stations
search for M targets [26]. Yet another proposed hy-

pothesis is that the fractal properties of the set of sites

visited by a L�evy walker are related to scale invariant

properties of the underlying ecosystem [2]. Speci�cally,
a fractal distribution of target sites may explain the ob-

served L�evy 
ights [2]. Very recently, there has been a

study of how the search eÆciency depends on the value

� of the L�evy exponent [1]. This study �nds that there

is an optimum value �opt = 2 which can lead to opti-
mal searches when the target sites are randomly and

sparsely distributed. Below, we discuss this latest de-

velopment in greater detail.

By studying how the search eÆciency varies with �,
one can compare di�erent classes of search strategies

characterized by unique values of �: In the �rst case

of \non-destructive search", the forager can visit the

same target site many times. Nondestructive search is

more realistic (see below) and can occur in either of
two cases: (i) if the target sites become temporarily de-

pleted, or (ii) if the forager becomes satiated and leaves

the area. In the second case of \destructive search", the

target site found by the forager becomes undetectable
in subsequent 
ights. Consider the following idealized

model that captures some of the essential dynamics of

searches in the limiting case in which predator-prey re-

lationships are ignored, and learning is minimized. As-

sume that target sites are distributed randomly, and
the forager behaves as follows (see Fig. 3):

(1) If there is a target site located within
a \direct vision" distance rv , then the

forager moves on a straight line to the

nearest target site.

(2) If there is no target site within a dis-

tance rv , then the forager chooses a

direction at random and a distance
`j from the probability distribution,

Eq. (1). It then incrementally moves

to the new point, constantly looking

for a target within a radius rv along

its way. If it does not detect a target,
it stops after traversing the distance `j
and chooses a new direction and a new

distance `j+1, otherwise it proceeds to

the target as in step (1).

2 rv

l j

(a) (b)

Figure 3. Search strategy: (a) If there is a target site (full
square) located within a \direct vision" distance rv; then
the forager moves on a straight line to it. (b) If there is no
target site within a distance rv, then the forager chooses a
random direction and a random distance `j from the L�evy

probability distribution P (`j) � `��j , and then proceeds as
explained in the text.

One can solve this model as follows: let � be the

mean free path of the forager between successive target
sites (for 2-D, � � (2rv�)

�1 where � is the target site

area density). The mean 
ight distance is

h`i �

R �
rv
dxx1�� + �

R
1

� x��dxR
1

rv
x��dx

=

�
�� 1

2� �

��
�2�� � r2��v

r1��v

�
+
�2��

r1��v

: (2)

The second term of this \mean �eld" calculation is an

approximation because it assumes that the distances

between successive sites are identically equal to �; so

that there are no 
ights longer than �: A new target

site is always encountered a maximum distance � away
from the previous target site, e�ectively resulting in

a truncated L�evy distribution [27]. A more rigorous

treatment that considers not only the mean value but

also a Poisson distribution of the free paths does not
seem to alter the results signi�cantly, as further dis-

cussed below.
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One de�nes the search eÆciency function �(�) to

be the ratio of the number of target sites visited to the

total distance traversed by the forager. Since the total

distance travelled is approximately equal to the prod-
uct of the total number of 
ights and the mean 
ight

lengthh`i, therefore

� =
1

Nh`i
; (3)

where N is the mean number of 
ights taken by a L�evy

forager in order to travel between two successive target

sites.
Consider �rst the case of destructive search, when

the target site is \eaten" or destroyed by the searching

animal and becomes unavailable in subsequent 
ights.

The mean number of 
ights Nd taken to travel an aver-
age distance � between two successive target sites scales

as

Nd � (�=rv)
��1 (4)

for 1 < � � 3. Here � � 1 is the fractal dimension of

the set of sites visited by a L�evy random walker[28].

Note that Nd � (�=rv)
2 for � > 3 (Brownian case).

Consider the common case in which the target sites
are \sparsely" distributed, de�ned by � � rv . Sub-

stituting Eqs. (2) and (4) into (3) one �nds that the

mean eÆciency � has no maximum, with lower values

of � leading to more eÆcient searches. Note that when

� = 1 + � with � ! 0+, the fraction of 
ights with
`j < � becomes negligible, and e�ectively the forager

moves along straight lines until it detects a target site.

Consider next the case of nondestructive search

for sparsely distributed target sites. Since previously-
visited sites can then be revisited, the mean number Nd

of 
ights between successive target sites in Eq. (4) over-

estimates the true number Nn for the nondestructive

case. It can be shown that Nn � N
1=2
d holds generally,

so it follows that

Nn � (�=rv)
(��1)=2 (5)

for 1 < � � 3: Notice that Nn � �=rv for � > 3
(Brownian case). Indeed, we have recently proved that

Eq. 5 is in fact a rigorous result [17]. This result has

also been systematically tested using simulations and

found to become better and better as (�=rv) increases
(compare also Figs. 4(a) and (b)). Note that if �� rv
then Nd � Nn: Substituting Eqs. (2) and (5) into (3)

and di�erentiating with respect to �, one �nds that the

optimal eÆciency � = 1=(Nnh`i) is achieved at

�opt = 2� Æ ; (6)

where Æ � 1=[ln (�=rv)]
2 : So in the absence of a priori

knowledge about the distribution of target sites, an op-
timal strategy for a forager is to choose �opt = 2 when

�=rv is large but not exactly known.
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Figure 4. The product of the search eÆciency � and the
mean free path � vs. � in 1-D for di�erent �; found (a) from
Eqs. (2) and (3) (rv = 1) for the case of nondestructive
search and (b) from simulations. (c) �� found from simula-
tions in 2-D, with � = 5000 (rv = 1). In each case, �opt � 2
emerges as an optimal value of the L�evy 
ight exponent.
Inset: the food is distributed in patches of food-rich areas
in an otherwise empty environment, obtained by comput-
ing �m = �d logN(`)=d log ` from the histograms N(`) of

ight lengths. Only 
ights with log

10
` <4.5 are considered

in order to eliminate the e�ects of the periodic boundaries.
Again, �m � 2 seems to optimize the search eÆciency.

IV Discussion

The above results are independent of the dimension of
the search space. This is analogous to the behavior of
Brownian random walks whose mean square displace-
ment is proportional to the number of steps in any di-
mension [7]. Furthermore, Eqs. (4) and (5) describe
the correct scaling properties even in the presence of
short-range correlations in the directions and lengths
of the 
ights. Short-range correlations can alter the
width of the distribution P (`), but cannot change �,
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so these �ndings remain unchanged. Hence, learning,
predator-prey relationships, and other short-termmem-
ory e�ects become unimportant in the long-time long-
distance limit.

Note also that for both destructive and nonde-
structive searches, Brownian behavior, corresponding
to � � 3; is signi�cantly less eÆcient than L�evy 
ight
motion. This �nding suggests that a power law dis-
tribution of 
ight lengths may be essential for opti-
mal searches when the target sites are sparsely and
randomly distributed. (One may argue that animals
would possibly starve to death while adopting a Gaus-
sian strategy of foraging.)

For completeness, consider also the case in which the
target sites are plentiful, i.e., � � rv . Then h`i � � and
Nd � Nn � 1:Hence, � becomes independent of �. This
behavior does not correspond to L�evy 
ight searches
but is more similar to a Brownian random walk. The
independence of � on � is a direct consequence of the
extreme rarity of long 
ights with `j > rv :

These theoretical results have been supported with
numerical simulations which do not depend on approx-
imations. Indeed, 1-D and 2-D simulations have been
performed of the above model to study how � varies
with � for the case of nondestructive searches. For the
case of nondestructive searches, Fig. 4(a) shows the sim-
ulation results for various values of � and rv = 1: For
1-D, the position of the maximum in � for the simula-
tion agrees with the analytical results (Fig. 4(b)), and
approaches �opt = 2 as �!1. The simulation results
for 2-D nondestructive search also show maxima near
�opt = 2: Fig. 4(c) shows simulated search in a system
of size 104 � 104 with rv = 1; periodic boundary con-
ditions, and �=rv = 5� 103. Moreover, for destructive
search with � � rv , simulations show that � ! 1 op-
timizes the eÆciency as predicted. In contrast, if the
target sites are densely distributed such that � � rv ;
then, as expected, we �nd no signi�cant e�ect of varying
�: These �ndings agree with the theoretical predictions
and raise the possibility that L�evy 
ight searches with
� < 3 may be con�ned to instances of low global tar-
get site concentration, since the principal advantage of
choosing small � | long 
ights | becomes negligible
when there are ample target sites. Indeed, bees appear
not to apply L�evy 
ight foraging for arti�cally high nec-
tar concentrations (see also Figs. 2(a) and 2(b)).

We also note that nondestructive search is more re-
alistic than destructive search because in nature, 
ow-
ers, berries, krill, �sh, etc. are usually found in patches
or clumps which are rarely completely depleted. Thus
an animal can revisit the same food patch many times,
and a patch can restore itself by regrowth. Simula-
tions of destructive searches in patchy target site dis-
tributions give results consistent with nondestructive
searches for uniformly distributed target sites. As an
illustrative example, Fig. 4c (inset) shows �(�) found
from simulating a patchy distribution of food. There

are many small randomly distributed food-rich regions,
each with radius R, outside of which there is no food
to be found. To speed up the simulations, it was as-
sumed that the forager performs a L�evy Flight only
outside the region of radius R; and that it instead per-
forms Brownian motion within, �nding food at each
site along the way separated by the local mean free
path � = R=3. The system size used was 105 � 105:
A low patch area to system area ratio of � � 10�6

is achieved using a patch radius of R = 10; and 104

patches. Here, �m � �d logN(`)=d log ` was measured
from the histogram N(`) of 
ight lengths instead of us-
ing the parameter � from the model. Such a histogram
represents an experimentally observable distribution of

ight lengths. Note that �m is consistent with the the-
oretically predicted value �opt:
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