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The structure of the dissipative relativistic hydrodynamics is discussed. The second order thermodynamics
developed by Israel, Stewart and Müller is briefly reviewed to be incorporated in the scheme of SPH formalism.
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I. INTRODUCTION

In the early stage of ultra-relativistic heavy ion collisions it
is expected emergence of a new state of nuclear matter called
Quark Gluon Plasma (QGP) in which quark and gluons are
in a deconfined phase as predicted by the quantum chromo-
dynamics (QCD). Ideal hydrodynamics has been applied with
success to describe this early stage, giving good quantitative
and qualitative description of the observables from the exper-
iments. Despite this fact, it is still a great mystery why we are
able to apply ideal hydrodynamics to this system and still get
such good results.

Although the ideal fluid description is useful to understand
general features of the system, we have no reason to expect
that it should give accurate quantitative results, especially in
microscopic systems where large fluctuations are present such
as relativistic nuclear collisions[1]. In fact, we are not certain
up to what extent we can conclude from the success of ideal
hydrodynamics that viscosity has no great role in the descrip-
tion of the QGP. That is, we are not able to say that the data
are consistent with the image of ideal fluid. This is mainly
because we do not know the effects of the inclusion of dissi-
pation in relativistic hydrodynamic systems. This problem has
not yet been solved for complex systems such as the QGP. So
there is a great need to study this question in detail to extract
more precise properties of the matter.

It is known that the inclusion of viscosity in relativistic hy-
drodynamics imposes a new conceptional and mathematical
difficulties. Israel, Stewart and Müller had pointed out[2] that
the formalism of Landau and Eckart[3] leads to non-causal
propagations of density wave which are unacceptable in a rel-
ativistic theory. In this formalism, although the small devi-
ations from equilibrium are incorporated in hydro evolution,
it is assumed that the thermodynamical relations remain valid
just as if the system were in equilibrium. In order to cure this
problem, Israel, Stewart and Müller extend the thermodynam-
ical relations up to the second order corrections with respect
to the small deviations from local equilibrium.

The Israel-Stewart-Müller approach gives rise to causal
propagation. However, the equations of motion are extremely
difficult to solve, even numerically, and the several parameters
introduced in the model are unknown. In this paper we give a
brief introduction to this second-order hydrodynamics, trying
to give a main idea of its main postulates and the difficulties
that arise when we try to solve them. A schematic descrip-
tion of how to incorporate this scheme into a well-developped

relativistic hydro code such as SPHERIO[1] is presented.

II. PHENOMENOLOGICAL THEORY

In this section we attempt to summarize the phenomenolog-
ical derivation of the relativistic viscous hydrodynamics equa-
tions with the second order thermodynamics. Tensor notation
is used in the whole article thus the equations to show the
manifestly covariant nature of the system. Covariant deriva-
tives with respect to xµ are denoted by ;µ. We take the unit
c = 1 so that the normalization of the 4-velocity is

uµuµ = 1. (1)

From this, we have

uµuµ;ν = 0, (2)

so that the 4-velocity is orthogonal to its derivative. This prop-
erty is used frequently in this paper. It is thus useful to intro-
duce the tensor,

∆µν := gµν−uµuν

which projects, when contracted, into the transverse direction
with respect to uµ. Using the constraint (1) we can consider
only the spatial components, ui, as independent variables. In
addition to the velocity, several thermodynamcal quantities,
such as baryon number density, entropy density, etc are treated
as independent variables of the theory. For a density n of a
conserved quantity such as baryon number, we have the con-
tinuity equation,

(nuµ);µ = 0 (3)

as constraint.

A. Equilibrium

For ideal fluid, the fluid’s entropy is conserved

(suµ);µ = 0. (4)

In local equilibrium, the energy density then should be speci-
fied by

ε(n,s) , (5)
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through the equation of state of the matter, relating the parti-
cle and entropy densities with the energy density. Here, for
simplicity, we only consider non-zero baryon number as con-
served charge.

The temperature T (=: 1/β) and chemical potential µ are
thus defined with the aid of the first law of thermodynamics
as T := ∂ε/∂s and µ := ∂ε/∂n. In this paper the thermody-
namical potentials to be used are βµ := βuµ and α := µβ.These
quantities determine the pressure P in terms of the Euler’s re-
lation,

βε = s−Pβ+αn. (6)

Calculating the covariant derivative of (5) and using the
above thermodynamical potential definitions one gets

βε;µ = s;µ +αn;µ (7)

Combining (6) and (7) it is easy to obtain the Gibbs’ relation

(Pβ);µ =−εβ;µ +nα;µ. (8)

Multiplying both sides of (6) and (8) by uµ one gets the
covariant Euler’s equation

εβµ = suµ−Pβµ +αnuµ (9)

and the covariant Gibbs’ relation

(Pβµ);λ =−εuµβ;λ +Pβuµ
;λ +nuµα;λ (10)

Taking the divergence of (9) and using (10) and the conser-
vations laws (3) and (4) it is found that

(εuµ);µ +Puµ
;µ = 0. (11)

With some manipulations with the help of (2) it is easy to see
that this last equation introduces a new conserved quantity

T µν
eq ;µ := (εuµuν−P∆µν);µ = 0, (12)

which is known as the equilibrium energy-momentum tensor.
It is useful to rewrite (10) using the energy-momentum ten-

sor

(Pβµ);λ =−T µν
eq βν;λ +nuµα;λ (13)

B. Off-equilibrium

Let us consider the phase space of the thermodynamical
system, where the equilibrium is represented by a hypersur-
face in this space which is specified by independent variables
n, s and ui. States near the equilibrim should be close to this
hypersurface so that these states must be addressed by, in ad-
dition to these equilibrium variables n, s and ui, a finite set of
off-equilibrium quantities that should vanish in equilibrium.

To accomodate these new quantities off-equilibrium fluxes
are introduced. These must keep some relation with the equi-
librium ones. For instance, the 4-velocity parallel part of

the particle flux and energy-momentum tensor are kept un-
changed

uµNµ = n, uµuνT µν = ε. (14)

Then the off-equilibrium effects must only appear in the trans-
verse components of these quantities with respect to uµ. Thus
the expression for the particle flux and energy-momentum ten-
sor can be generally written as

Nµ = nuµ +∆µ
νqν, (15a)

T µν = εuµuν− (P+Π)∆µν +P (µν)
στπστ. (15b)

It has been emphasized in the particle flux that the new term
is velocity orthogonal by the use of the projector ∆µν. In (15b)
the last term should not only the orthogonal to the first term,
but also it should be symmetric and traceless. This can be
ensured by the use of the symmetric form of the bi-orthogonal
traceless projector P µνστ = ∆λ

λ∆µσ∆ντ−∆µν∆στ.
In contrast to the baryon number flux, the entropy flux has

an additional contribution from second order terms in the lon-
gitudinal direction:

uµSµ = s+uµQµ. (16)

Of course, Qµ must vanish once the equilibrium is achieved
by the fluid.

From (6), using (14) and (16) and supposing arbitrary 4-
velocities one deduces

βνT µν = Sµ−Pβµ +αNµ−Qµ. (17)

The above equation differs from equilibrium for the second
order term Qµ.

Differentiating (17) and using (10) one gets

Sµ
;λ =

(
T µν−T µν

eq
)

βν;λ− (Nµ−nuµ)α;λ +Qµ
;λ

+βνT µν
;λ−αNµ

;λ. (18)

Taking the trace of the last expression it is straightforward to
arrive at

Sµ
;µ =

(
T µν−T µν

eq
)

β(µ;ν)− (Nµ−nuµ)α;µ +Qµ
;µ. (19)

The term Qµ
;µ is a correction to the usual[3] second order re-

lation. This equation can also be seen as a series expansion of
the entropy divergence where the first two terms vanish and
we are taking up to third order terms.

With the aid of (15) the above equation can be expressed in
terms of the off-equilibrium dynamic quantities

Sµ
;µ = (−Π∆µν +πµν)β(µ;ν)−qµα;µ +Qµ

;µ. (20)

The four-vector Qµ which represents the deviation from the
thermal equilibrium may not be a perfect differential, depend-
ing on the integration path of the system and its functional
form can not be specified as a function of other indepen-
dent thermodynamical quantities. Therefore, in order to es-
tablish the phenomenological theory, we should parametrize
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the scalar Qµ
;µ rather than Qµ in terms of our independent vari-

ables. The most general form of Qµ
;µ expressed in terms of the

off-equilibrium independent dynamic quantities and involving
third order terms is

Qµ
;µ = a0ΠΠ̇+a1qµq̇µ +a2πµνπ̇µν

+
(
b0qµqν +b1πµλπν

λ
)
u(µ;ν) +2

(
c0Πqµ + c1qνπµ

ν
)
u̇µ

+
(
d0Π;µ +d1πν

µ;ν
)

qµ + e0Πqµ
;µ + e1πµνq(µ;ν). (21)

The coefficients introduced above may all be themodynamic
potentials depending on n and s.

We further add the constraint which ensures the positivity
of the entropy production

Sµ
;µ = ζV Π2 +κqµqµ +ζSπµνπµν. (22)

The parameters ζV , κ and ζS are determinied by the properties
of the fluid and are dinamically constant.

Equalizing (21) and (22) and using that Π, qµ and πµν are
independent variables, the expressions for the heat flux and
viscous stress tensors are obtained

ζV Π =−βuµ
;µ +a0Π̇+ c0qµu̇µ + e0qµ

;µ, (23a)

κqµ = ∆µν(−α;ν +a1q̇ν +b0qλu(ν;λ) + c0Πu̇ν

+ c1πλ
νu̇λ +d0Π;ν +d1πλ

ν;λ
)
, (23b)

ζSπµν = P (µν)στ(β(σ;τ) +a2π̇στ +b1πλ
σu(τ;λ)

+ c1qσu̇τ + e1q(σ;τ)
)
. (23c)

III. SMOOTHED PARTICLE HYDRODYNAMICS

The Smoothed Particle Hydrodynamics (SPH) method has
been succesfully applied in the description of the dynamic
evolution of cosmological phenomena such as star explosions.
This numerical method makes use of lagrangean coordinates,
thus being well suited for rapid, assymetric explosive dynam-
ics. This last feature has called the attention of the Heavy Ion
Collision (HIC) researchers because SPH stands as a very ad-
equate method to study the dynamical evolution of the early
stage of HICs. One of the other advantages of this approach
is that it can easily deal with event-by-event fluctuating initial
conditions with complicated geometry. We will briefly intro-
duce the bases of the SPH formalism and in the next section
try to point a way to incorporate Second-Order Thermody-
namics to it.

We start by an identity and with the application of two nu-
merical approximations we reach the SPH parametrization of
a given quantity

a(xi, t) =
∫

d3riδ3(xi− ri)a(ri, t)

≈
∫

d3riW (xi− ri,h)a(ri, t)

≈
N

∑
p=0

A(ri
p(t))W (xi− ri

p(t),h) =: aSPH (xi, t).

The function W is a normalized distribuition function that in
the limit of h → 0 it tends to the δ3 function. For computa-
tional complications it is also wished the W is symmetric and
have a finite support, that is, that its value goes strictly to 0 at
a finite distance from the origin. This distance is idicated by
the parameter h. We may define now the function

ξi
p(x

j, t) :=
xi− ri

p(t)
h

,

and without lost of generalization say that Wdepends on xiand
tby the norm of ξi

p, that is, W (xi− ri
p(t),h) = W (|ξi

p|).
To describe a physical system using SPH we should first

elect a reference conserved density that would have its weights
set to constants in such a way that its SPH parametrization
becames the most close to the actual field

ρ(xi, t) =
N

∑
p=0

RpW (|ξi
p(x

j, t)|). (24)

(We have abandoned the ”SPH” subscript.) Based on this
choice the weights of another quantity expressed in SPH
would be related to the reference ones by

A(ri
p(t)) = Rp

a(ri
p(t))

ρ(ri
p(t))

.

The most important feature of SPH now becames clear.
Gradients of SPH parametrized quantities will not depend on
the quantity’s derivative, but on W ′

a;i = ∑
p

Rp
ap

ρp
ξ̂piW ′. (25)

Here the hat has been use to denote a unitary vector.
In order to exploit in a more clever way the property above,

one should write quantities always multiplying the reference
density

a;i = (1/ρ)
(
(aρ);i−aρ;i

)
. (26)

With (25) the local conservation of ρ becomes

∑
p

Rp(vi
p− ṙi

p)ξ̂piW ′ = 0.

Thus the assumption vi
(
r j

p(t)
)

= ṙi
p(t) satisfies the conserva-

tion of ρ. By this assumption one may also notice that tha
SPH ”particles” do not behave as fluid elements.

IV. SECOND-ORDER THERMODYNAMICS IN SPH

We have seen that the formalism of SPH is best applied to
conservative systems since the conservation of its reference
densities is ensured by construction. In the attempt to take to
account dissipative effects we rewrite the SPH entropy density
in a way that its weights may vary in time

s∗ := γ : s(xi, t) = ∑
p

νp(t)W (|ξ j
p(x

i, t)|),

n∗ := γ : n(xi, t) = ∑
p

bp(t)W (|ξ j
p(x

i, t)|). (27)



674 Philipe Mota, Gabriel S. Denicol, and Takeshi Kodama

(From now on we will use the definititions γ := u0 and
vi := ui/u0.)

The equations to be solved numerically are

(nuµ +qµ);µ = 0, (28a)

(εuµui− (P+Π)∆µi +πµi);µ = 0, (28b)
(suµ);µ = (−Π∆µν +πµν)βµ;ν +αqµ

;µ, (28c)

plus (23).
The set of equations above sum up to 14 equations for

the 14 independent variables~Y := {n,s,vi,Π,qi,π1i,π22,π23}.
With the use of the equation of state and Euler’s relation, other
thermodynamical variables such as P, α and β are expressed
in terms of these independent variables, so we get a closed
system. The coefficients in viscous tensors equations (23)
should be specified using some other theory such as transport
equations. These coefficients were estimated in [2] for spe-
cial cases. For more realistic system for the QCD matter, their
expressions are not known yet.

Due to the lagrangean coordinates of the SPH method
we may want to use the total (local) derivatives, d/dt =
(1/u0)d/dτ. To do so we use the relation for any quantity
A,

A;0 = dA/dt− viA;i.

Using this transformation in (28a), it can be rewritten as

dn∗

dt
+qi dvi

dt
+ vi dqi

dt
= (n∗gi j + v jqi)vi; j +(viv j−gi j)qi; j.

Applying the same approach to the other equations (28) and
(23) we get a system of equations expressed in the matrix form
as

M
d
dt

~Y = (N ·∇)~Y , (29)

where N = (N1,N2,N3) with M and Ni are 14 by 14 matrices
and complicated functions of the 14 independent variables and
other thermodynamical quanties. The ∇ in the right-hand side
represents the spatial part of the covariant derivative of the
independent variable~Y , ∇i~Y =

(
n;i s;i · · · π23

;i
)
.

Although complicated, (29) is an ordinary first order dif-
ferential equations and can be integrated in time for a given
initial contidition. We may study the nature of sound wave
propagation from this equation. For example, to verify if the
system preserves the causality, we may analyse the linearized
form of this equation and calculate the eigen value equation
for the dispersion relation of the sound wave,

det |ωM−k ·N|~Y=~Y0
= 0, (30)

where~Y0 =
(
n0 s0 0 · · · 0

)
represents the hydrostatic back-

ground for the sound wave.

V. DISCUSSION AND PERSPECTIVES

In this work, we developed the formalism of the second
order thermodynamics to be adapted into the smoothed hy-
drodynamc code presently used for the study of relativistic
heavy ion collisions. We have constructed an explicit form
of coulped equations. However, we note: a) Second-order
thermodynamics brings in a set of coefficients, in its general
form, that should be specified from other model, such as ki-
netic theories. For some special cases, they can be estimated,
but for the strongly interacting matter, the most of these co-
efficients are unknown. b) 14 by 14 matrixes are extremely
complicated and very hard to deal with. To avoid this prob-
lem the number of dimentions could be decreased (in 2+1
dimentions the matrixes are 7 by 7) or some quantity could
be neglected (such as baryon number and consequently heat
flux). c) Some people study the simplified case of the second
order thermodynamcis. Although Israel and Stewart proved
causality only for the complete set of equations, it is not clear
what is the minimal structure of relativistically causal viscous-
hydrodynamcis. This question should be important to under-
stand the physical role of viscosity in the process of relativis-
tic heavy ion collisions. For this purpose, we should study
carefully (30). d) The variational principle cannot be directly
applied to ensure the optimized SPH parametrization when
dealing with dissipative systems.
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