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An equation for MHD stationary equilibrium of rotating plasmas in the azimuthal direction is
derived in the case of an orthogonal curvilinear coordinate system. The basic assumptions we made
are: (i) there is an ignorable coordinate so that surface quantities are independent of it; (ii) the
entropy is a surface quantity.

I Introduction

Azimuthal rotation in Tokamaks and other fusion ma-

chines is observed, for example, when the con�ned

plasma is subjected to neutral beam heating. The im-

pacts of the beam particles with plasma electrons and

ions amounts to a net momentum transfer with causes

rotation in the toroidal direction [1, 2]. Plasma rotation

with high Mach numbers have been observed in almost

all operating regimes of Tokamaks [3, 4], as well as in

reversed-�eld pinches [5].

A key problem in the theoretical study of azimuthal

rotation is whether such a plasma ow could coexist

with a state of MHD (stationary) equilibrium. The an-

swer turns to be positive provided some requirements

are ful�lled by the system. Without resistivity, Alfv�en's

theorem says that magnetic �eld lines rotate rigidly

with the plasma. If axissymetry exists, �eld lines lie

on magnetic ux surfaces with topology of tori and

characterized by surface quantities, like the transver-

sal magnetic ux. The set of ideal MHD equations al-

lows us to derive a partial di�erential equation for it

[6, 7]. Maschke and Perrin [8, 9] obtained a MHD equi-

librium equation for azimuthal plasma ows supposing

that either the temperature or the entropy were surface

quantities. They have considered only cylindrical coor-

dinates, having obtained exact analytical solutions for

the transversal magnetic ux. There are a few other

solved cases in cylindrical [10] and spherical [11] ge-

ometries, but considering the temperature as a surface

quantity.

The case where the plasma ow is adiabatic, how-

ever, demands the use of the entropy as a surface

quantity. This is particularly important in the case of

anisotropic plasmas, where a double-adiabatic theory

is necessary to describe the situation [12, 13]. To ap-

ply the MHD equilibrium theory for realistic magnetic

con�nement schemes, one would need an equilibrium

equation in a general curvilinear coordinate system.

In a previous paper [14] an equilibrium equation for

plasmas with azimuthal rotation was derived, assum-

ing that the temperature was a surface quantity, in an

orthogonal curvilinear coordinate system. In this paper

we will derive a similar equation, but with the plasma

entropy as a surface quantity, according the methodol-

ogy introduced by Maschke and Perrin [8].

This paper is organized as follows: in the second

section we outline the basic equations and thermody-

namical relations to be used, the magnetic �eld and ve-

locity representations. In section III we use these equa-

tions to obtain a pressure equilibrium equation, which

is supplemented by a Bernoulli-like algebraic equation.

Section IV presents a particular form of this equation,

obtained by a special choice of some surface quantities.

Section V discusses how the, general equations look like

in some coordinate systems, like cylindrical, spherical

and prolate spheroidal ones.

II Basic Equations

In a stationary MHD equilibrium theory, we consider

an ideal (in�nite conductivity) plasma of electrons and

singly charged ions, where all partial time derivatives

vanish, but allowing a constant velocity. The corre-

sponding set of MHD equations are, in S.I. units [15]:

r:(�v) = 0; (1)

�(v:r)v = �rp+ j�B; (2)
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r:B = 0; (3)

r�B = �0j; (4)

r�E = 0; (5)

E+ v �B = 0; (6)

where � = n(me + m{) is the mass density, n is the

particle number density and me, m{ are the electronic

and ionic masses, respectively. v, p, E, B, and j are

the velocity, pressure, electric �eld, magnetic �eld and

plasma current density, respectively.

The speci�c internal energy e and the speci�c en-

tropy S satisfy Gibbs' equation

de = TdS +
p

�2
d�: (7)

and the speci�c enthalpy h satis�es the thermodynam-

ical identity

dp = �(dh� TdS): (8)

We also suppose the plasma as an ideal gas, obeying

the equation

p = � �RT = nkT; (9)

where T is the plasma temperature (sum of electronic

and ionic temperatures), �R and k being the gas con-

stant and the Boltzmann constant, respectively.

We assume that the thermodynamical processes in-

volved with plasma rotation are adiabatic, so that the

caloric equation of state holds

p = A(S)� ; (10)

where A = A(S) is a constant depending only on the

entropy, and  = 5=3 is the ratio of speci�c heats. The

internal energy in this case is

e = A(S)
��1

 � 1
=

h


; (11)

so that the plasma temperature is given by

T =
@e

@S

����
�

=
��1

 � 1

dA

dS
: (12)

The adiabatic sound velocity in the plasma is given by

Eqs. (8) and (11) as

cs =

s
@p

@�

����
S

=

q
 �RT: (13)

For an adiabatic process we have an entropy con-

stant in time, and so is any function of entropy:

dA(S)

dt
=

d

dt

�
p

�

�
= 0: (14)

However, the convective derivative of A is given by

dA(S)

dt
=

@A

@t
+ v:rA = 0; (15)

where the partial derivative vanishes for equilibria, giv-

ing the following relation for S

v:rS = 0: (16)

We will denote by (x1; x2; x3) the contravariant co-

ordinates in a curvilinear coordinate system, and as-

sume that x3 is an ignorable coordinate, such that sur-

face quantities do not depend on it. ê{ ({ = 1; 2; 3)

denote the covariant basis vectors for this system, and

g{| = ê{:ê| are the covariant components of the metric

tensor 1. Only orthogonal coordinate systems, in which

g{| = 0 for { 6= |, will be considered here.

The representation of a solenoidal magnetic �eld in

terms of two scalar surface functions is

B(x1; x2) =
ê3
g33

�r	(x1; x2)� �0I(x
1; x2)

ê3
g33

; (17)

where 	 and I are the transversal ux and current

functions, respectively. A plasma ow satisfying mass

conservation Eq. (1) may be a rotation with constant

angular frequency 
 along the ê3 (azimuthal) direction

v(x1; x2) = 
(x1; x2)ê3; (18)

which satis�es Ferraro's iso-rotation law

r
�r	 = 0; (19)

so that 
 = 
(	) is also a surface quantity.

III The equation of motion

The equation of motion for the rotating plasma in this

ideal MHD theory is derived from the momentum bal-

ance equation (2), in which we have used the magnetic

�eld and velocity representations, and Amp�ere's law,

Eq. (4). A standard calculation would give the plasma

current density in terms of the surface functions 	 and I

1See the appendix of Ref. [14] for further details about curvilinear coordinate systems
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j(x1; x2) =
1

�0
��	

�
ê3
g33

�
� 1p

g

�
@I

@x2
ê1 � @I

@x1
ê2

�
; (20)

where the generalized Shafranov operator is given by

��	 = g33r:
�r	
g33

�
= r2	+ g33r	:r

�
1

g33

�
: (21)

The velocity-dependent term in the momentum balance equation Eq. (2) may be written as

�(v:r)v = �1

2
�
2rg33; (22)

A straightforward algebra leads to�
��	+

�2
0

2

dI2

d	

�
r	 = ��0g33

�
rp� �
2

2
rg33

�
: (23)

Using the representation (18) for velocity, the condition (16) is identically satis�ed due to axisymmetry, so it

does not give any further information about the plasma entropy. Hence, we will assume that the entropy is a surface

quantity: S = S(	). Using (7) we have for the pressure gradient rp = �(rh � TrS). Using also the isorotation

law (19) we obtain�
��	+

�2
0

2

dI2

d	
� �0g33�

�
T
dS

d	
� g33


d


d	

��
r	 = ��0g33�r

�
h� 1

2

2g33

�
: (24)

Let us de�ne

� = h� 1

2

2g33; (25)

as a kind of centrifugally corrected enthalpy. Making the cross product with r	 it follows that � is also a surface

quantity. In this way, for arbitrary and non-vanishing r	 we obtain the form of Maschke-Perrin equation with

entropy as a surface function

��	+
�2
0

2

dI2

d	
+ �0g33�

�
g33


d


d	
+

d�

d	
� T

dS

d	

�
= 0: (26)

d

In the limit of vanishing rotation 
 = 0 we have sim-

ply � = h, and using Gibbs' equation (7) we re-obtain

the Grad-Shafranov equation for static equilibria

��	+
�20
2

dI2

d	
+ �0g33

dp

d	
= 0: (27)

From Eq. (12), and since S and A are surface quan-

tities, we have for the temperature-dependent term in

(26)

T
dS

d	
=

��1

 � 1

dA

d	
: (28)

By the same token, then density can be eliminated by

noting that, from (11), the enthalpy is

h =


 � 1
A(S)��1; (29)

which gives

� =

�
 � 1

A

�
�+

1

2

2g33

�� 1

�1

; (30)

showing that, in this model, the plasma density is not a

surface function neither an independent variable, rather

being determined by the knowledge of the surface func-

tions A, � and 
. These are �xed, on the other hand,

by the solution of the equilibrium equation itself, since

it contains four arbitrary surface functions (the fourth

being the current function I). The complete system

of equations contains Eq. (26) and an algebraic rela-

tion de�ning �, Eq. (25). With appropriate boundary

conditions it becomes a well-posed model.

IV Alternative form of the equi-

librium equation

Let us de�ne, for later convenience

� =


 � 1
; (31)
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and rewrite the equilibrium equation (26) in the form

c

��	+
�2
0

2

dI2

d	
+ �0g33

�
1 +

g33

2

2�

���1

� = 0; (32)

where

� �
�
�

�A

���1�
g33

�


0 �

�
� � 1

�

�
A0

A


2

2

�
+�0 �

�
� � 1

�

�
A0

A
�

�
; (33)

and the primes denote di�erentiation with respect to the magnetic ux. It may be rewritten as

� =

��
�

�

��

A1��

�0
+ g33

"��
�

�

���0

A1��


0

�0
+

�
�

�

��

(A1��)
0 
2

2�

#
: (34)

Thus the equilibrium equation assumes the following form

��	+
�2
0

2

dI2

d	
+ �0g33

�
1 +

g33

2

2�

���1

� (35)(��
�

�

��

A1��

�0
+ g33

"��
�

�

���0

A1��


0

�0
+

�
�

�

��

(A1��)
0 
2

2�

#)
= 0;

d

which has four surface functions to be speci�ed: I(	),

A(	), 
(	), and �(	). According to Ref. [8] we choose

the latter two such that


2(	)

�(	)
=

!2

`2
; (36)

where ! is a constant, and ` is a characteristic length

of the system.

It is also convenient to introduce an auxiliary sur-

face function

G(	) =

�
�

�

��

A1�� : (37)

The physical meaning of this function comes from the

static limit of the problem. From (25) we have � = h,

and using (10), (11), and (31), a simple calculation

shows that G ! p, so we may regard G as a kind of

centrifugally corrected plasma pressure.

With help of (36) and (37) we rewrite once more the

equilibrium equation in a very concise form as

��	+
�20
2

dI2

d	
+ �0g33

�
1 +

g33
2

!2

`2

��
dG

d	
= 0; (38)

where the number of surface functions to be speci�ed

has been reduced to just two: G and I .

The Mach number for the plasma azimuthal nota-

tion is given by

M =
jv<3>j
cs

=

p
g33
p
 �RT

; (39)

where v<3> is the \physical" component of the veloc-

ity in the azimuthal direction, and we have used Eq.

(13). It is worth-noting that the positive-de�niteness

of the function � (since � = (
`=!)
2
> 0) imposes

a limit on the possible values of the Mach number for

our hypothesis (36) to be valid. From (25) it follows

that h > (
2g33=2). Now, using (11) and (13) there

results that c2s = h( � 1). Combining the two preced-

ing inequalities we have the following condition for the

rotational Mach number

M2 <
2

 � 1
: (40)

For  = 5=3, we have thatM <
p
3, i.e., the plasma ro-

tational velocity should not be larger than � 1:73 times

the adiabatic sound velocity. This is a rather restric-

tive condition since it precludes most of the supersonic

regime.

Finally it follows from the above analysis that the

constant ! which have entered in the equilibrium equa-

tion is related to the Mach number by the following

formula

!2 =
`2

g33

�
( � 1)M2

1� ( � 1)M2=2

�
: (41)

For vanishing rotation we have simply !2 = `2=g33, i.e.,

it is just a geometrical factor.
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V Particular cases

Cylindrical geometry. In this case we have

(x1; x2; x3) = (R;Z; �), and take the angle � as our ig-

norable coordinate, so that g33 = R2. The characteris-

tic length in this case will be written ` = R0, which may

represent the radius of the cylindrical conductor shell

surrounding the rotating plasma, with 	(R0; �; Z) = 0

as a convenient boundary condition. The Shafranov

operator (21) in this case is

��	 = R
@

@R

�
1

R

@	

@R

�
+

@2	

@Z2
; (42)

and the equilibrium equation (38) is

��	+
�2
0

2

dI2

d	
+ �0R

2

�
1 +

!2

2

R2

R2

0

��
dG

d	
= 0 (43)

In units where �0 = 1, and after the following changes

of notation: �� ! L, 	 ! F , ! ! 
, and G ! ps,

this equation reduces to Eq. (3.8) of Ref. [8]. This

partial di�erential equation has to be supplemented by

an algebraic equation de�ning �, obtained from (25) as

� = h� 1

2
R2
2: (44)

Since 
 is the plasma angular velocity, the term R2
2=2

is the speci�c rotational kinetic energy. On a given

ux surface one has 	 = constant, and so any sur-

face function like �(	). As in uid mechanics, we

may write down a Bernoulli-type equation of the form

h � (R2
2=2) = const: along the points of a stream

line of the plasma ow (v � dl = 0). This is possible

because the entropy is a surface quantity (v:rS = 0),

being an absent feature in isothermal plasma ows (in

which the temperature is a surface quantity).

The equilibrium equation contains two surface func-

tions whose pro�les have to be speci�ed a priori. In Ref.

[8] linear pro�les were chosen for both

G(	) =
$

R4
0

(	�	0); (45)

I2(	) = I2
0
+ 2

M

R2

0

(	�	0); (46)

with $, 	0, I0 and M are model constants. Maschke

and Perrin [8] have found an exact and analytical solu-

tion for the equilibrium equation (43), using elementary

functions only. Some features present in their solution

may be cited here. First, the magnetic axis (de�ned

as the extremum of the magnetic ux 	 at the z = 0

plane) is displaced outwards due to the centrifugal ef-

fect. The magnitude of the displacement is proportional

to 
. Also, the magnetic ux surfaces and pressure (iso-

baric) surfaces do not coincide, as it occurs in the static

case. This is easily understood by noting that the pres-

sure p is no longer a surface quantity. In a later paper

[9] an approximate analytical solution was given to a

combined poloidal and toroidal adiabatic rotation.

Up to our knowledge, there are no further analytical

solutions of the equilibrium equation in cylindrical co-

ordinates, when the entropy is a surface quantity. Even

in the other case (with the temperature as a surface

quantity) there are very few solutions.

Spherical geometry. This symmetry turns to be

necessary to deal with some fusion plasma schemes, like

�eld-reversed con�gurations; and astrophysical prob-

lems, like magnetic stars. The corresponding equation

in spherical coordinates (x1; x2; x3) = (r; �; ') follows

from the general equation (38) by choosing ' as an ig-

norable coordinate so that g33 = r2 sin2 �. Introducing

a characteristic length r0 we have the following equilib-

rium equation

c

@2	

@r2
+

1

r2

�
@2	

@�2
� cot �

@	

@�

�
+

�2
0

2

dI2

d	
+ �0r

2 sin2 �

�
1 +

!2

2

r2

r2
0

sin2 �

��
dG

d	
= 0; (47)

and the centrifugally corrected enthalpy is

� = h� 1

2

2r2 sin2 �: (48)

Adopting the same linear pro�les, Eqs. (45) and (46), used in the cylindrical case, and using the adimensional

radius x = r=r0 we have the following inhomogeneous partial di�erential equation

L�	+ �20	+ �0$x2 sin2 �

�
1� 1

2
!2x2 sin2 �

��

= 0; (49)
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where L� = r2
0
�� is a reduced Shafranov operator in

spherical coordinates. This equation does not seem to

allow for an exact analytical solution for arbitrary �.

Approximate solutions (for low !) may be investigated

by using a binomial expansion of the �-dependent term.

Retaining only the lowest order term the resulting equa-

tion would be similar to that solved in Ref. [11], with

the di�erence that here the entropy is supposed to be

a surface quantity, rather than the temperature. With

similar boundary conditions (at a spherical conductor

shell) the analytical solutions would be similar as well.

Prolate spheroidal geometry. This is a conve-

nient coordinate systems to study MHD equilibria in

spheromak-type and compact tori con�gurations. The

z-axis is the symmetry axis and the curvilinear coordi-

nates are (�; �; '), de�ned as [16]:

x = r cos'; y = r sin'; z = c cosh � cos �; (50)

where 0 � � < 1; 0 � � � �; 0 � ' < 2�, and

r = c sinh � sin �, 2c > 0 being the distance between

the foci of coordinate surfaces, which turn to be prolate

spheroids of semi-major axis c cosh �0 and semi-minor

axis c sinh �0. For this system g33 = c2 sinh2 � sin2 �.

Without loss of generality we may take ` = c as our

characteristic length.

The generalized Shafranov operator in this coordi-

nate system is

c

��	 =
1

c2(cosh2 � � cos2 �)

�
@2	

@�2
+

@2	

@�2
� coth �

@	

@�
� cot �

@	

@�

�
; (51)

entering the equilibrium equation, which reads in this case

��	+
�20
2

dI2

d	
+ �0c

2 sinh2 � sin2 �

�
1 +

!2

2
sinh2 � sin2 �

��
dG

d	
= 0: (52)

d

In the static case, evidently there is no di�erence

between taking the entropy or temperature as surface

quantities, since these thermodynamical hypotheses are

no longer necessary in this situation. This limit was

studied in the early eighties by Kaneko and Takimoto

[17], who have used pro�les for G ! p and I2, linear

and quadratic in 	, respectively. They also have found

analytical solutions involving combinations of angular

and radial spheroidal wave functions. Unlike the similar

equation we have derived for spherical coordinates, it is

very diÆcult to �nd a situation in which the Eq. (52)

is amenable to analytic, even approximate, treatment.

VI Conclusions

We have extended the previous results regarding MHD

equilibria with constant angular velocity in the az-

imuthal direction (using the entropy as a surface quan-

tity) to a general context in which it suÆces to specify

three things about the coordinate system to be used:

(i) an ignorable coordinate (with respect to it is the di-

rection of the plasma ow); (ii) a corresponding compo-

nent of the covariant metric tensor; (iii) a characteristic

length, related to some obvious boundary condition or

the plasma boundary itself.

The equilibrium equation in this case is a nonlin-

ear elliptic partial di�erential equation where the main

variable is the transversal magnetic ux function 	.

Four surface quantities (which depend only on 	) have

to be previously set up in order to reduce the number

of dependent variables. This equation has to be sup-

plemented by a Bernoulli-type algebraic equation which

describes the centrifugally corrected plasma enthalpy.

A particular form of the equation is obtained by

choosing a given form for two of the surface functions,

reducing their number to just two. This choice, how-

ever, limits our treatment to rotations with Mach num-

bers up to
p
3. The plasma density is not a surface func-

tion, being determined in terms of the speci�ed pro�les

chosen.

Besides the cylindrical case, which was already

known in the literature, we have applied our general

equation to the spherical and prolate spheroidal geome-

tries, which are relevant to describe some magnetic con-

�nement schemes like Spheromaks and compact tori.

The equation in spherical coordinates is most likely sol-
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uble, at least in an approximate situation (low Mach

number). The prolate spheroidal case seems to be only

amenable to numerical treatment.
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