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The inuence of the ionic adsorption on the anchoring energy of a nematic liquid crystal sample
is investigated. We determine the behavior of the anchoring energy as a function of the thickness
of the sample, and as a function of the adsorption energy of ions. We show that the contribution
to the anchoring energy, due to ionic adsorption, can be of the same order of magnitude of the
bare anchoring strength. Our analysis generalizes similar calculations previously published by
incorporating the e�ect of adsorbed charges on the potential and �eld pro�les in the sample.

I Introduction

From the practical point of view it is important to

know the alignment of a nematic liquid crystal sam-

ple when it is in contact with a solid substrate. The

uniform alignment of liquid crystals in this case is cru-

cial for display applications and other liquid crystalline

devices [1]. Therefore, the liquid crystal surface prop-

erties and, in particular, the characteristics features of

the anchoring of the liquid crystals are very important

for the performance of the liquid crystal devices since

the strength of the anchoring a�ects the threshold char-

acteristics of the sample [2]. It is known that in many

real samples the anchoring energy can be thickness de-

pendent [3, 4] and can be also dependent on the bias

voltage [5]. However, the precise nature and the origin

of the anchoring energy in nematic liquid crystals is still

a subject of many fundamental and experimental stud-

ies and cannot be considered as a solved problem [3, 6].

To explain the thickness dependence of the anchoring

energy found in some real nematic liquid crystal sam-

ples the phenomenon of the selective ion adsorption has

been invoked [7-10]. The inuence of the selective ion

adsorption on the anisotropic part of the anchoring en-

ergy strength has been discussed by several authors in

the last years [4,5,11-16]. According to this point of

view [8, 9], the adsorption phenomenon is responsi-

ble for an ionic separation inside the liquid. To this

charge separation is connected an electric �eld distri-

bution across the sample. The coupling of this �eld

with the dielectric and exoelectric properties of the

liquid crystal gives rise to a dielectric energy density,

localized near to the limiting surfaces, on mesoscopic

thicknesses. This energy can be considered as a surface

energy, which renormalizes the anisotropic part of the

interfacial energy characterizing the interface nematic

liquid crystal - substrate. The distribution of the �eld

across the sample and its connection with the adsorp-

tion energy has been discussed in [10, 17, 18]. In the

case in which the phenomenon of selective adsorption is

absent, the e�ect discussed above is also absent. Sum-

marizing: the charge separation induced by an external

�eld gives rise to a spatial dependent electric �eld inside

the sample. This electric �eld couples with the dielec-

tric and exoelectric properties of the nematic media.

Recently, a complete model for the adsorption phe-

nomena in an isotropic liquid was proposed, in which

the e�ect of external �elds was taken into account in a

successful way [18]. In this model, the presence of pos-

itive and negative charges was taken into account, but

the adsorption was considered as selective with respect

to the positive ones, i.e., the adsorption energy for the

negative charges was taken as in�nite. It was shown

also that, according to the value of the external di�er-

ence of potential applied to the sample by an external

power supply, two regimes are possible. The border
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between the two regimes is �xed by the surface den-

sity of ions, originated from the chemical dissociation

of the impurities present in the liquid. In the low volt-

age region the electric �eld in the sample changes sign.

On the contrary, in the high voltage region, the electric

�eld is everywhere oriented in the same direction.

Very recently, the dieletric contribution to the an-

choring strength in a nematic liquid crystal sample was

analyzed [19]. The analysis was performed in the hy-

pothesis that the electrodes are perfectly blocking and

that there is no selective ion adsorption. The proposed

theory predicts an e�ective anchoring energy dependent

on the applied voltage, in good agreement with exper-

imental results. According to the sign of the dielectric

anisotropy and of the exoelectric coeÆcient the depen-

dence of the anchoring energy strength with the applied

voltage can be monotonic or not. For large applied volt-

age the e�ective anchoring energy strength tends to a

constant value.

In this paper, we focus our attention on the e�ect

of an adsorption energy on the anchoring energy of di-

electric origin. More precisely, we explicitly consider

the phenomenon of selective ionic adsorption and its

inuence on the anchoring energy of an NLC sample.

First, we recall the formalism proposed in Ref. [19] to

analytically determine the dielectric contribution to the

anchoring energy. After that, we present the general

equations governing the �eld distribution in the sam-

ple, when the phenomenon of ionic adsorption is taken

into account, as is done in Ref. [18]. Finally, we ap-

ply this formalism to determine the behavior of the an-

choring energy as a function of the adsorption energy

and as a function of the thickness of the sample. We

show that the trend and the order of magnitude of the

anchoring energy of dielectric origin, theoretically pre-

dicted in our analysis, as a function of the thickness

of the sample, is in good agreement with experimen-

tal results. We show furthermore that the magnitude

of the anchoring energy of dieletric origin is strongly

a�ected by the adsorption energy of positive ions and

presents a nonmonotonic behavior as a function of this

energy. It is also shown that the exoelectric contribu-

tion plays a dominant role in establishing the correct

order of magnitude for the anchoring energy.

II Dielectric contribution to the

anchoring strength

Let us consider a nematic liquid crystal limited by two

solid surfaces, at a distance d apart. The z�axis is

normal to the bounding surfaces, with the origin in the

middle of the sample. The liquid is supposed to con-

tain ions and submitted to an external �eld. As we

shall show below, in this case the electric �eld pro�le

inside the sample is z�dependent and will be denoted

by E(z). The �eld E(z) di�ers from the one in the bulk,

EB = E(0), mainly close to the bounding surfaces, due

to the presence of the ions, as it will be discussed in

details later. If the liquid is an anisotropic uid, as a

nematic liquid crystals, the presence of the ionic charges

gives rise to a surplus of surface energy characterizing

the nematic liquid crystal-substrate interface. To eval-

uate the dielectric contributions to the surface energy

we have to take into account the coupling of the ex-

ternal �eld with the dielectric anisotropy, fD(E), and

with the exoelectric properties of the liquid crystal,

fQ(E) [8, 9].

The quantities fD(E) and fQ(E), which are bulk

energy densities, are given by

fD(E) = �1

2
�aE

2(z) cos2 �; (1)

and

fQ(E) = e

�
cos2 � � 1

3

�
dE(z)

dz
; (2)

where � = cos�1(~n �~z) is the angle formed by the direc-

tor �eld ~n with the z�axis. Furthermore �a = �k � �?
is the dielectric anisotropy (k and ? refer to ~n), and

e = e11 + e33 the total exoelectric coeÆcient.

Let us indicate by EB = E(0) and by ES = E(d=2)

the values of the electric �eld in the middle and at the

surface of the sample, respectively. The dielectric en-

ergy, per unit surface, is

FE =

Z d=2

�d=2

[fD(E) + fQ(E)]dz: (3)

This quantity can be written as

c

FE =

Z d=2

�d=2

[fD(E)� fD(EB) + fQ(E)� fQ(EB)]dz

+

Z d=2

�d=2

[fD(EB) + fQ(EB)]dz: (4)
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Taking into account that E(z) � EB is di�erent from zero, practically, only in two surfaces layers of mesoscopic
thickness, for the presence of the ions, we can put Eq. (4) in the form

FE = f1 + f2 +

Z d=2

�d=2

[fD(EB) + fQ(EB)]dz; (5)

where

f1 = �1

2
�a cos

2 �1

Z 0

�d=2

[E2(z)�E2
B ]dz � e

�
cos2 �1 � 1

3

�
(ES �EB); (6)

and

f2 = �1

2
�a cos

2 �2

Z d=2

0

[E2(z)�E2
B ]dz + e

�
cos2 �2 � 1

3

�
(ES �EB); (7)

with �1 = �(�d=2) and �2 = �(d=2). f1 and f2 are the dielectric contributions, due to the ions, to the surface
energy. The relevant anchoring energy strengths, coinciding with the coeÆcient of cos2 �i (i = 1; 2), are then

WD = �1

2
�a

Z d=2

0

�
E2(z)�E2

B

�
dz; (8)

and

WQ = �e(ES �EB); (9)

d

where � refer to z = �d=2. Once the electric �eld dis-
tribution across the sample is known, one can directly
evaluate the contribution of dielectric origin to the an-
choring energy of a nematic liquid crystal sample, by
means of Eqs. (8) and (9). It is necessary to reinforce
the fact that these equations represent only the con-
tribution of dielectric origin to the anchoring energy.
There is a localized surface energy which does not de-
pend on the presence of ions in the sample. It is an
intrinsic characteristic of the interface. In this sense
the dielectric contribution renormalizes this \bare" an-
choring energy,W0, giving rise to an e�ective anchoring
energy that can be written in the form

We� =W0 +WD +WQ: (10)

In this paper we focus our attention only on the con-
tribution of dielectric origin in order to emphasize the
necessity to take into account the presence of ions and
of an adsorption energy on the anchoring energy of an
NLC sample.

In order to show the importance of the above for-
malism, let us calculate WD and WQ by explicitly tak-
ing into account the presence of the ions in the sample.
To do this we have to establish the electric �eld pro�le
inside it. The equations governing the electric �eld dis-
tributions were established in Ref. [18]. However, it is
convenient to present them here in details, due to the
extensive use that will be made along this paper.

III The model for the electric

�eld distributions

The model deals with a cell in the shape of a slab of
thickness d, �lled with a liquid characterized by a di-
electric constant �, but containing impurities. These
impurities are the source of the ions by means of a
chemical reaction, whose activation energy is indicated
by Eactivation. The activation energy Eactivation can be
identi�ed with the electrostatics interaction energy be-
tween the positive and negative ions resulting from the
dissociation of the particle. We consider the case in
which the surfaces are identical, but in the hypothesis
that the adsorption energy for positive ions is di�erent
from the one for negative ions in each surface. We use a
Cartesian reference frame whose z-axis is normal to the
limiting walls, located at z = �d=2. We assume that all
the physical quantities entering in the model are only
z dependent. The distribution of charges produced by
the ionic adsorption gives rise to a liquid which is lo-
cally charged, but globally neutral. We denote by n0
the bulk density of impurities for an in�nite sample.
The equilibrium distribution of the bulk density of non
dissociated impurities is given by

nb = n0e
�; (11)

where � is the chemical potential in kBT units. Fur-
thermore, the bulk densities of positive and negative
ions are given by

n�(z) = n0e
���� (z); (12)
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where � = Eactivation=kBT is the activation energy and
 (z) = qV (z)=kBT is the electrostatic energy of the
charge q, in kBT units. This means that in our for-
malism the surface electrical potential is also measured
in units of kBT=q and, for convenience, the quantity
 S will be henceforth referred simply as the \surface
potential".

The surface density of adsorbed ions of a given sign
is given by

�i;� = N�e
��A�� i ; (13)

where i = 1; 2 refers to the surfaces (1 for z = �d=2
and 2 for z = d=2) and N� are the surface densities
of sites where the ions (+ and �) can be adsorbed. In
the above expression we have introduced the adsorption
energies A� (for + and � ions) measured in kBT units.
The adsorption energy can be identi�ed with the elec-
trostatic interaction energy of an adsorbed ion with its
image in the substrate (physical adsorption) [22]. Fi-
nally, in (13)  1 =  (z = �d=2) and  2 =  (z = d=2)
are the values of the surface potentials. We work in the

hypothesis that only the internal charges move to the
surface. The external charges supplied to the system
are supposed to remain in the surface, separated from
the liquid by blocking electrodes. We assume, further-
more, that N+ = N� = N and, in this manner, the
actual surface density of adsorbed ions is given by

Ni = Ne�(e�A+� i + e�A�+ i): (14)

The actual surface charge density due to the adsorption
phenomenon is

Qi = q(�i;+ � �i;�) = q�i: (15)

Notice that the surface densities of charges will have
both the internal contribution (coming from the ionic
charges present in the liquid) and the external contri-
bution (coming from the external power supply).

To establish the fundamental equations governing
the equilibrium distributions of charges and �elds in
our model we start by imposing the conservation of the
number of particles in the system. This requirement,
per unit surface, is written as

c

N+ +N�
2

+NB +
�1 + �2

2
= n0d; (16)

where

N� =

Z d=2

�d=2

n�(z)dz; and NB =

Z d=2

�d=2

nb(z)dz = nbd: (17)

Using the de�nitions of n�(z), given by (12), and �i, given by (13), it is possible to rewrite Eq. (16) in the form

e�

(
n0e

��

Z d=2

�d=2

cosh (z)dz + n0d+
N

2

�
e�A+

�
e� 1 + e� 2

�
+ e�A�

�
e 1 + e 2

��)
= n0d: (18)

In this case the chemical potential is given by

e�� = 1 +
1

2n0d

�
e�A+

�
e� 1 + e� 2

�
+ e�A�

�
e 1 + e 2

��
+
e��

d

Z d=2

�d=2

cosh (z)dz: (19)

d

This equation connects the chemical potential � with
the surface potentials  1 and  2. It is the �rst fun-
damental equation of the model. In the case in which
we consider only adsorption of positive ions, we have to
put A+ = A, and A� ! 1. In this limiting case Eq.
(19) is reduced to Eq. (6) of Ref. [18](for A1 = A2).

The second fundamental equation of the model is
obtained in the framework of the Poisson-Boltzmann
theory, by means of the Poisson's equation

d2V

dz2
= �q

�
[n+(z)� n�(z)]; (20)

because we consider only the steady-state distribution
of charges and �elds when the applied voltage is held
constant. Equation (20) can be put in the form

d2 

dz2
=

1

L2
e��� sinh ; (21)

where

L =

s
�kBT

2n0q2
(22)

is an intrinsic length of the problem. This length is con-
nected to the Debye screening length �D [23] through
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the relation �D = Le�=2 [10]. Equation (21) can be
integrated to give

1

2

�
d 

dz

�2

=
e���

L2
[cosh (z) + c] ; (23)

where c is an integration constant to be determined by
the boundary conditions.

Since the electric �eld is given by

E(z) = �dV
dz

= �kBT
q

d 

dz
; (24)

in the presence of an external �eld the boundary con-
ditions are

E(�d=2) = �kBT
q

�
d 

dz

�
z=�d=2

=
q

�
(�1 ��) ;

E(d=2) = �kBT
q

�
d 

dz

�
z=d=2

= �q
�
(�2 +�) ;

(25)

where � is the surface density of external charges.
Equations (25) are written by assuming that the sur-
face at z = �d=2 is connected with the negative pole of
the external power supply. The set of equations (19),
(21) and (25) furnishes the complete formal solution of
the electrostatic problem, giving �,  1,  2 and c.

In the absence of external �eld, equations (25) are
reduced, respectively, to

E(�d=2) = q
�1
�

and E(d=2) = �q �2
�
: (26)

Equations (25) permits to consider two separated cases
for which �1�� > 0 (low voltage regime) and �1�� < 0
(high voltage regime).

When �1 � � � 0, E(�d=2) > 0 (i.e.,
(d =dz)z=�d=2 < 0) and E(d=2) < 0 (i.e.,
(d =dz)z=d=2 > 0). This implies that the electrical
potential has a minimum at some point z� inside the
slab, where the electric �eld vanishes [18], namely�

d 

dz

�
z=z�

= 0; (27)

and the integration constant in (23) can be written as

c = � cos �; (28)

where  � =  (z�). In this case Eq. (23) can be rewrit-
ten as

d 

dz
= �

p
2

L
e(���)=2

p
cosh � cosh �; (29)

where the sign � refers to the region �d=2 � z � z�,
and + to the region z� � z � d=2. Equations (29) can
be integrated to give

I [ �;  2;� cosh �]�I [ 1;  �;� cosh �] =
p
2
d

L
e(���)=2;

(30)
where

I [a; b; c] =

Z b

a

d p
cosh + c

: (31)

In this manner the boundary conditions (25) can be
rewritten as

p
2kBT

q2L
e(���)=2

p
cosh 1 � cosh � =

�1 � �

�
;

p
2kBT

q2L
e(���)=2

p
cosh 2 � cosh � =

�2 +�

�
:

(32)

The fundamental equations of the model for the low
voltage regime are then (19), (30) and (32). We have
to solve this system of four equations to obtain �,  1,
 2 and  �. Once this system of equations is solved, it
is straightforward to obtain the surface charge densi-
ties �i by means of Eqs. (13). As it follows from these
equations, the surface charge densities depend on the
external charges at the surface through the chemical
potential and the electric potentials at the surfaces.

The border separating the two regimes is de�ned by
�1(�c)��c = 0, where �c is the critical surface density
of external charges. For � = �c,  

�(�c) =  1(�c), as it
follows from Eqs. (32). In the high-voltage regime the
adsorbed charge, at z = �d=2, is then smaller than
the one sent by the power supply on the electrode.
From Eqs. (25) we now have that E(�d=2) < 0 and
E(d=2) < 0. The electrical potential is a monotonic
function of z and, consequently, the electric �eld never
vanishes for �d=2 � z � d=2 [18]. In this case, from
Eq. (23) we obtain

I [ 1;  2; c] =
p
2
d

L
e(���)=2; (33)

connecting c to  1 and  2. By using Eqs. (23) and (25)
we deduce that the boundary conditions read

kBT

q

p
2

L

p
cosh 1 + c = q

�� �1
�

kBT

q

p
2

L

p
cosh 2 + c = q

�+ �2
�

: (34)

In the high-voltage regime, the fundamental equations
are (19), (33) and (34). These equations give �,  1,  2
and c in terms of � and d.



H
.
A
.
P
ereira

e
t
a
l.

5
8
9

IV
E
le
c
tr
ic

�
e
ld

d
istr

ib
u
tio

n
s

a
n
d
a
n
c
h
o
r
in
g
e
n
e
r
g
y

In
th
is

sectio
n
w
e
sh
a
ll
co
n
sid

er
tw
o
p
a
rticu

la
r
situ

a
-

tio
n
s
to

in
v
estig

a
te

th
e
e�
ect

o
f
th
e
a
d
so
rp
tio

n
en
erg

y
o
n
th
e
electric

�
eld

d
istrib

u
tio

n
s
in

th
e
sa
m
p
le

a
n
d
,

co
n
seq

u
en
tly,

o
n
th
e
a
n
ch
o
rin

g
en
erg

y
o
f
d
ielectric

o
ri-

g
in
.
T
h
e
b
a
sic

eq
u
a
tio

n
s
o
f
th
e
m
o
d
el
a
re

n
u
m
erica

lly
so
lv
ed

to
o
b
ta
in
�
,
 
1 ,
 
2
a
n
d
 
�
(low

-v
o
lta

g
e
reg

im
e)

o
r
c
(h
ig
h
-v
o
lta

g
e
reg

im
e).

O
n
ce

th
ese

q
u
a
n
tities

a
re

d
eterm

in
ed

it
is
p
o
ssib

le
to

esta
b
lish

th
e
p
ro
�
le
o
f
E
(z
)

fo
r
d
i�
eren

t
va
lu
es

o
f
�
a
n
d
A
�
a
n
d
a
lso

d
.

C
a
s
e
I:
A
+
=
A
6=
0
,
A
�

!
1

,
�
=
0

T
h
is

ca
se

refers
to

a
situ

a
tio

n
in

w
h
ich

o
n
ly

p
o
s-

itiv
e
ch
a
rg
es

a
re

a
d
so
rb
ed
,
in

th
e
a
b
sen

ce
o
f
ex
tern

a
l

v
o
lta

g
e.

S
in
ce

w
e
h
av
e
su
p
p
o
sed

th
a
t
th
e
su
rfa

ces
a
re

id
en
tica

l,
th
e
electrica

l
p
o
ten

tia
l
d
istrib

u
tio

n
is

sy
m
-

m
etric,

i.e.,
 
1
=
 
2
=
 
s ,

a
n
d
z
�
=

0
,
w
h
ich

m
ea
n
s

th
a
t
th
e
p
o
ten

tia
l
is
m
in
im
u
m

a
t
th
e
m
id
d
le
o
f
th
e
sa
m
-

p
le,

 
�
=
 
(z

=
0
)
=
 
0 .

In
th
is
sim

p
le
ca
se

th
e
th
ree

eq
u
a
tio

n
s
to

b
e
so
lv
ed

co
n
n
ect

 
s ,
�
a
n
d
 
0 .

E
q
u
a
-

tio
n
(1
9
)
is
red

u
ced

to

e
�
�
=
1
+

Nn
0 d
e
�
A
�
 
s
+
e
�
�
J
[ 

0 ; 
s ;�

co
sh
 
0

I
[ 

0 ; 
s ;�

co
sh
 
0 ] ;

(3
5
)

w
h
ere

J
[a
;b;c]

= Z
b

a

co
sh
 

p
co
sh
 
+
c
d
 
:

(3
6
)

F
u
rth

erm
o
re,

eq
u
a
tio

n
s
(2
5
)
b
eco

m
e

p
2
k
B
T

q
L
e
(�
�
�
)=
2 p

co
sh
 
s �

co
sh
 
0
=
q
��
;

(3
7
)

w
h
ere

�
=
�
1
=
�
2
=
N
e
�
�
A
�
 
s:

(3
8
)

F
ro
m

th
e
a
b
ov
e
eq
u
a
tio

n
s
th
e
ch
em

ica
l
p
o
ten

tia
l
ca
n

b
e
w
ritten

a
s

e
�
=
2 �

�k
B
T

N
L
q
2 �

2

e
�
�
+
2
(A

+
 
s
)
(co

sh
 
s �

co
sh
 
0 )
:

(3
9
)

F
in
a
lly,

E
q
.
(3
0
)
ca
n
b
e
w
ritten

a
s

I
[ 

0 ; 
s ;�

co
sh
 
0 ]
=

p
22

dL
e
(�
�
 
s
)=
2:

(4
0
)

T
h
e
b
eh
av
io
r
o
f
�
,
 
s
a
n
d
 
0
a
s
a
fu
n
ctio

n
o
f
th
e

th
ick

n
ess

o
f
th
e
sa
m
p
le
d
w
a
s
in
v
estig

a
ted

in
d
eta

ils
in

R
ef.

[1
0].

H
ere,

o
u
r
a
tten

tio
n
w
ill

b
e
d
ev
o
ted

to
th
e
ca
lcu

la
tio

n
o
f
th
e
a
n
ch
o
rin

g
en
erg

y.
T
h
is
sim

p
li�

ed
ca
se

is
o
f
p
a
rticu

la
r
im

p
o
rta

n
ce

b
eca

u
se

it
p
erm

its
to

eva
lu
a
te
th
e
d
irect

e�
ect

o
f
a
n
a
d
so
rp
tio

n
en
erg

y
o
n
th
e

a
n
ch
o
rin

g
en
erg

y
o
f
d
ielectric

o
rig

in
in

th
e
a
b
sen

ce
o
f

ex
tern

a
l
ch
a
rg
es.

0
1

2
3

4
5

6
7

8
0.00

0.02

0.04

0.06

0.08

0.10

0.12

W (erg/cm2)

d (µ m
)

F
ig
u
re

1
.
A
n
ch
o
rin

g
en
erg

y
W

=
W
E
=
W
D
+
W
Q
v
ersu

s
th
e
th
ick

n
ess

o
f
th
e
sa
m
p
le
d
,
in

th
e
a
b
sen

ce
o
f
ex
tern

a
l

a
p
p
lied

v
o
lta

g
e
�
=
0
.
T
h
e
cu
rv
e
w
a
s
p
lo
tted

fo
r
�
a
=
1
4
�
0 ,

e
=

4
�
1
0
�
1
1
C
/
m

[2
4
],
�
D
=

0
:6
�
m

[2
1
],
�

=
8
:0
,
a
n
d

A
=
�
0
:3
.

In
F
ig
.
1
th
e
b
eh
av
io
r
o
f
W

=
W
E
=
W
D
+
W
Q
a
s
a

fu
n
ctio

n
o
f
th
e
th
ick

n
ess

o
f
th
e
sa
m
p
le
d
is
sh
ow

n
.
T
h
e

tren
d
is
in

g
o
o
d
a
g
reem

en
t
w
ith

th
e
d
a
ta

fro
m

R
ef.

[3]
a
s
d
iscu

ssed
in

[9
].
T
h
e
a
g
reem

en
t
o
b
ta
in
ed

in
[9
]
w
a
s

fa
irly

g
o
o
d
.
H
ow

ev
er,

in
[9
]
tw
o
a
p
p
rox

im
a
tio

n
s
w
ere

m
a
d
e.

T
h
e
�
rst

o
n
e
co
n
sid

ered
a
n
ex
p
o
n
en
tia

l
d
ecrea

s-
in
g
d
istrib

u
tio

n
fo
r
th
e
electric

�
eld

in
th
e
sa
m
p
le;

th
e

seco
n
d
o
n
e
co
n
sid

ered
a
n
a
p
p
rox

im
a
ted

ex
p
ressio

n
fo
r

th
e
su
rfa

ce
d
en
sity

o
f
ch
a
rg
es
a
s
a
fu
n
ctio

n
o
f
th
e
th
ick

-
n
ess

o
f
th
e
sa
m
p
le.

T
h
e
p
resen

t
m
o
d
el

rem
ov
es

th
ese

sim
p
lify

in
g
h
y
p
o
h
tesis.

-50
-40

-30
-20

-10
0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

H
. A

. P
e

re
ira

 e
t a

l. - F
ig

. 2

W(erg/cm2)

A

F
ig
u
re

2
.
A
n
ch
o
rin

g
en
erg

y
W
E
v
ersu

s
th
e
a
d
so
rp
tio

n
en
-

erg
y
o
f
p
o
sitiv

e
ch
a
rg
es
A
=
A
+
in

th
e
a
b
sen

ce
o
f
ex
tern

a
l

a
p
p
lied

v
o
lta

g
e
�
=
0
.
T
h
e
p
a
ra
m
eters

a
re

th
e
sa
m
e
a
s
in

F
ig
.
1
.

In
F
ig
.
2
th
e
b
eh
av
io
r
o
f
th
e
a
n
ch
o
rin

g
en
erg

y
o
f
d
i-

electric
o
rig

in
W

=
W
E
a
s
a
fu
n
ctio

n
o
f
th
e
a
d
so
rp
tio

n
en
erg

y
fo
r
p
o
sitiv

e
ch
a
rg
es

is
sh
ow

n
.

W
h
en

th
e
a
d
-

so
rp
tio

n
en
erg

y
is
n
o
t
v
ery

h
ig
h
th
e
o
rd
er

o
f
m
a
g
n
itu

d
e

o
f
W

a
g
rees

w
ith

th
e
o
n
es

u
su
a
lly

fo
u
n
d
(W

�
1
0
�
2

erg
/
cm

2)
(see

th
e
in
set).

W
h
en

th
e
a
d
so
rp
tio

n
en
erg

y



590 Brazilian Journal of Physics, vol. 32, no. 2B, June, 2002

is very high, W tends to a constant value, indepen-
dent of the value of A. This value is of the order of few
erg/cm2 and corresponds practically to a strong anchor-
ing situation. This result indicates again that the ionic
adsorption can play a fundamental role in establishing
the correct order of magnitude of W .

Case II: A+ = A 6= 0, A
�

!1, � 6= 0

In this case, we have again only adsorption of pos-
itive charges, but now in the presence of an external
voltage. In Fig. 3 we present an illustrative result when
the external density of charge is �=N = 0:6. The �gure
shows the behavior ofW =WE as a function of d. This
situation has to be compared with the one depicted in
Fig. 1 where the external charges are absent. Notice
that the e�ect of an external electric �eld strongly af-
fects the magnitude of the anchoring energy. This re-
sult is in complete agreement with the ones established
in [19], where it was demonstrated that the anchoring
energy is bias-voltage dependent.
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Figure 3. The same as in Fig. 1, in the presence of external
applied voltage �=N = 0:6. The parameters are the same
as in Fig. 1.
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Figure 4. The same as in Fig. 2, in the presence of external
applied voltage �=N = 0:6. The parameters are the same
as in Fig. 1.

In Fig. 4 the quantityW =WE is plotted as a func-
tion of the adsorption energy A, also in the presence
of an external charge density �=N = 0:6. This �gure
illustrates the combined e�ect of an external voltage
and an adsorption energy in the behavior of W =WE .
Both e�ects act to increase the magnitude ofW . Again
we have a saturation value for W for large values of A,
corresponding to a situation of strong anchoring (when
A! �1).

In Fig. 5 the anchoring energyW =WE is shown as
a function of the di�erence of potential across the sam-
ple. � =  2� 1 is the e�ective di�erence of potential,
i.e., it comes from the external charges and the internal
charges that move to the surface. The value of W is an
increasing function of this di�erence of potential, but
presents a maximum near � = 50, i.e., �V ' 1:25V
(for monovalent ions). For large di�erence of potential
the anchoring energy of dielectric origin tends to a sat-
uration value. The curve was plotted for an adsorption
energy A = �0:4.
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Figure 5. Anchoring energy of dielectric origin WE as a
function of the e�ective potential di�erence across the sam-
ple � =  2 �  1, for A+ = �0:3 and A

�

! 1. The
parameters are the same as in Fig. 1.

Finally, just to show the e�ect of the adsorption of
negative charges on the net surface charge density, this
quantity is exhibited as a function of the thickness of
the sample in two cases - in the absence of external
applied voltage. In Fig. 6 �=N = �1=N = �2=N is
shown as function of the d for the case A+ = �0:4 and
A� ! 1. In this case, only the adsorption of positive
charges is considered. One observes that the behavior
of � is linear with d, for small d, and tends to a value
which is independent of d, for very large values of d,
as discussed in [10]. In Fig. 7 the same quantity is ex-
hibited as a function of d for the case A+ = �0:4 and
A� = �1:0 The global behavior is similar, in the sense
that there is a linear behavior for small d and a satura-
tion value for large d. However, as expected, the order
of magnitude of the density in this case is less than in
the preceding �gure, because the net charge density is
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given by � = �+ � �� (see Eq. (15)). Furthermore,
in this situation � tends to a saturation value only for
very large values of d, as compared with the previous
case where the saturation is abrupt.
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Figure 6. Surface charge density � versus the thickness of
the sample in the case of adsorption of only positive charges
A+ = �0:4 (A
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!1). The parameters are the same as in
Fig. 1.
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parameters are the same as in Fig. 1.

A more extensive analysis consists in taking into
account also the e�ect of the adsorption of negative
charges on the anchoring energy. Due to the general-
ity of the proposed model, it is also possible to con-
sider di�erent surfaces, with di�erent adsorption ener-
gies for each species of ions. This will permit a com-
plete overview on the main predictions of the model.
This analysis is under progress and will be published
elsewhere.

V Conclusions

We have analyzed the e�ect of the selective ionic ad-
sorption on the anchoring energy of a nematic liquid
crystal sample. The problem of a sample of thickness
d formed by two identical surfaces, under the action of
an external applied voltage was analyzed. It was shown
that the adsorption energy has a profound e�ect on the
magnitude of the anchoring energy. Our analysis rein-
forces the conclusion that the anchoring energy depends
on the external applied voltage, in agreement with the
predictions of Ref. [19]. Furthermore, we have shown
that, also in the absence of external �eld, the anchoring
energy is strongly inuenced by the adsorption energy
of the ions. The anchoring energy presents a nonmono-
tonic behavior as a function of the adsorption energy.
For very large values of this quantity, the anchoring en-
ergy tends to a saturation value whose magnitude is
of the order of a few erg/cm2. In the cases we have
analyzed, the presence of the exoelectricity was ex-
plicitly taken into account, and plays a dominant role.
In conclusion, to investigate the correct behavior of the
anchoring energy in a real sample one has to consider
the renormalization of the anchoring energy of dielec-
tric origin. This contribution results from the coupling
of spatial dependent electric �eld inside the sample -
originated from the ionic adsorption- with the dielec-
tric and exoelectric properties of the medium.

Acknowledgments

This work has been partially supported by Funda�c~ao
Arauc�aria, Capes, and INFM.

References

[1] P. J. Coolings, Liquid Crystals, (Adam Hilger, Bristol,
1990), Chapters 6 and 7.

[2] G. Barbero and L. R. Evangelista, An Elementary

Course on the Continuum Theory for Nematic Liquid

Crystals, (World Scienti�c, Singapore, 2000).

[3] L. M. Blinov, A. Yu. Kabaenkov, and A. A. Sonin, Liq.
Cryst. 5, 645 (1989).

[4] O. A. Gomes, R. C. Falc~ao, and O. N. Mesquita, Phys.
Rev. Lett. 86, 2577 (2001)

[5] G. Strangi, C. Versace, and N. Scaramuzza, Appl.
Phys. Lett. 78, 2455 (2001).

[6] B. Jerome, Rep. Prog. Phys. 54, 391 (1991).

[7] G. Barbero and G. Durand, Liq. Cryst. 2, 401 (1982).

[8] G. Barbero and G. Durand, J. Phys. (France) 51, 281
(1990).

[9] A. L. Alexe-Ionescu, G. Barbero, and A. G. Petrov,
Phys. Rev. E 48, R1631 (1993).

[10] G. Barbero, A. K. Zvezdin, and L. R. Evangelista,
Phys. Rev. E 59, 1846 (1999).

[11] V. G. Nazarenko and O. D. Lavrentovich, Phys. Rev.
E 49, R990 (1994).



592 Brazilian Journal of Physics, vol. 32, no. 2B, June, 2002

[12] U. K�uhnau, A. G. Petrov, G. Klose, and H. Schmiedel,
Phys. Rev. E 59, 578 (1999).

[13] V. G. Nazarenko, V. M. Pergamenshchik, O. V. Ko-
val'chuk, A. B. Nych, and B. I. Lev, Phys. Rev. E 60,
5580 (1999).

[14] V. U. Fazio, and L. Komitov, Europhys. Lett. 46(1),
38 (1999).

[15] R. Meister, and B. J�erôme, J. Appl. Phys. 86, 2473
(1999).

[16] A. L. Alexe-Ionescu, A. T. Ionescu, N. Scaramuzza,
G. Strangi, C. Versace, G. Barbero, and R. Bartolino,
Phys. Rev. E 011708-1 (2001).

[17] K. Bohinc, V. Kralj-Iglic, and A. Iglic, Electrochimica
Acta 46, 3033 (2001).

[18] L. R. Evangelista and G. Barbero, Phys. Rev. E 64,
021101-1, (2001).

[19] D. Olivero, L. R. Evangelista, and G. Barbero, Phys.
Rev. E 65, 031721 (2002).

[20] R. N. Thurston, J. Cheng, R. B. Meyer, and G. D.
Boyd, J. Appl. Phys. 56, 264 (1984).

[21] R. N. Thurston, J. Appl. Phys. 55, 4154 (1984).

[22] L. D. Landau and E. I. Lifshitz, Electrodynamique des

Milieux Continus, (MIR, Moscow, 1956).

[23] J. Israelachvili, Intermolecular Forces (Academic Press,
London, 1985), Chap. 12.

[24] G. Barbero, A. N. Chuvyrov, A. P. Krekhov, and O.
A. Scaldin, J. Appl. Phys. 69, 6343 (1991).


