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BK Equation and Traveling Wave Solutions
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It has been shown that the transition to the saturation regime of high energy QCD is similar to the formation
of the front of a traveling wave. In particular, it can be verified that Balitsky-Kovchegov (BK) evolution equa-
tion reduces, after some approximations, to the nonlinear Fisher and Kolmogorov-Petrovsky-Piscounov (FKPP)
equation, well-known from statistical physics. In these proceedings, based on the current knowledge of the
asymptotic solutions of the BK equation, we propose a parametrization for the forward scattering amplitude
which interpolates between the traveling wave solution and the saturation region.

Keywords: Traveling waves; Transition to saturation

I. INTRODUCTION

Solving the problem of the growth of the cross sections for
hadronic interactions with energy is still an important chal-
lenge in Quantum Chromodynamics (QCD). As well-known,
the increase of energy causes a fast growth of the gluon den-
sity and consequently of the cross sections. At very high en-
ergies, it is expected that, at some point, gluon recombination
and multiple scattering might be important and unitarity can
be restored. This phenomenon is called saturation and has
been deeply investigated over the last thirty years [1–6].

From the theoretical side, the main contribution to describe
and understand the saturation in high energy QCD comes from
the development of non-linear QCD equations describing the
evolution of scattering amplitudes towards this limit. The sim-
plest of such equations is the Balitsky-Kovchegov (BK) equa-
tion [7, 8], which corresponds to the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) [9] linear evolution equation with the ad-
dition of a non-linear term responsible for the tame of the
growth of gluon density.

From the phenomenological side one has the discovery of
geometric scaling in deep inelastic scattering (DIS) at HERA
[10]. This phenomenological feature of high energy DIS is
expressed as a scaling property of the virtual photon-proton
cross section

σγ∗−p(Y,Q) = σγ∗p
(

Q2

Q2
s (Y )

)
, (1)

that is, the cross section depends on the scaling variable τ =
Q2/Q2

s (Y ) instead of Q2 and Q2
s (Y ) separately. Here Q is the

virtuality of the photon, Y is the total rapidity (Y = log(1/x))
and Qs(Y ) is an increasing function of Y called saturation
scale. Indeed, geometric scaling has a natural explanation
[11] in terms of traveling wave solutions of the BK equation.

In these proceedings we use the dipole model [12] to relate
the γ∗p cross section to the dipole-proton forward scattering
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amplitude through a parametrization for the latter in momen-
tum space. In Section II we relate σγ∗p to the dipole-proton
scattering amplitude through the dipole framework. In Sec-
tion III we introduce the BK equation which describes the di-
pole scattering amplitude and the properties of its solutions,
and from these we build the parametrization for the amplitude
in Section IV. In Section V we present the conclusions and
discuss the applications of our model.

II. MUELLER’S DIPOLE PICTURE
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FIG. 1: Picture of the dipole model.

Let us consider the collision between a virtual photon and a
proton at high energy. In a frame where the photon travels fast,
but most of the energy is still carried by the proton, one can
consider that the photon fluctuates into a qq̄ (quark-antiquark)
pair, a colorless dipole, which then interacts with the proton
[12]. In the leading logarithmic approximation (LLA) of per-
turbative QCD (pQCD), the cross section factorizes and one
gets the well-known formula

σγ∗p(Y,Q) =
∫ ∞

0
r dr

∫ 1

0
dz |Ψ(z, r, Q)|2 σγ∗p

dip(r,Y ), (2)

where r is the size of the dipole, z is the longitudinal momen-
tum fraction of the photon carried by the quark and σγ∗p

dip(r,Y )
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is the dipole-proton cross section. Assuming an independence
on the impact parameter of the collision, this cross section
is proportional to the proton-dipole forward scattering ampli-
tude, T (r,Y ), through the relation

σγ∗p
dip(r,Y ) = 2πR2

pT (r,Y ),

where R2
p is the proton radius. As we shall see in the next

section, the amplitude T (r,Y ) obeys the BK equation in coor-
dinate space but the asymptotic behaviour of its solutions is
naturally expressed in momentum space. We want to express
σγ∗p in terms of T̃ (k,Y ), the Fourier transform of T (r,Y ):

T (k,Y ) =
1

2π

∫ d2r
r2 eik.r T (r,Y ) =

∫ ∞

0

dr
r

J0(kr)T (r,Y ). (3)

III. SCATTERING AMPLITUDES AT HIGH-ENERGY

Consider now a fast-moving colorless qq̄ dipole of trans-
verse size r = |x− y|, where x and y are the coordinates of
the quark and antiquark, respectively, interacting with a given
dense target. In the large-Nc approximation (Nc is the num-
ber of colors), and in the mean-field approximation, the high-
energy behaviour of the dipole forward scattering amplitude
T (x,y;Y ) follows the BK equation [7, 8]. In coordinate space
this equation reads

∂Y T (x,y;Y ) =
ᾱ
2π

∫
d2z

(x−y)2

(x− z)2(z−y)2

[T (x,z;Y )+T (z,y;Y )−T (x,y;Y )−T (x,z;Y )T (z,y;Y )]
(4)

which, as it was said in the Introduction, corresponds to the
BFKL equation (the first three terms inside the brackets),
but with an additional term (the term quadratic in T ) which
by its turn corresponds to the nonlinear effects responsible
for the decreasing of the growth in the gluon density. Here
ᾱ = αsNc/π, αs is the strong coupling constant (considered
fixed). If one neglects the dependence on the impact para-
meter b = (x+y)/2 and integrates out the remaining angular
dependence of r, Eq.(4) becomes an equation for T (r,Y ). The
latter can be expressed in momentum space through (3).

The amplitude T̃ (k,Y ) obeys the BK equation in momen-
tum space

∂Y T̃ = ᾱχ(−∂L)T̃ − ᾱT̃ 2, ᾱ =
αsNc

π
, (5)

where αs is the strong coupling constant, Nc is the number of
colours,

χ(γ) = 2ψ(1)−ψ(γ)−ψ(1− γ) (6)

is the characteristic function of the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) kernel [9] and

L = log
(

k2

k2
0

)
,

where k0 is some fixed low momentum scale. The kernel χ(γ)
is an integro-differential operator which may be defined with
the help of the formal series expansion

χ(−∂L) = χ(γ0)1+χ′(γ0)(−∂L− γ01)

+
1
2

χ′′(γ0)(−∂L− γ01)2 +
1
6

χ(3)(γ0)(−∂L− γ01)3 + . . .

(7)

for some γ0 between 0 and 1, i.e. for the principal branch of
the function χ.

A. Traveling wave solutions

If one performs the following change of variables

t ∼ ᾱY, x∼ log(k2/k2
0), u(x, t)∼ T̃ (k,Y ) (8)

it has been shown [11] that the BK equation reduces to the
Fisher and Kolmogorov-Petrovsky-Piscounov (F-KPP) equa-
tion [13] for u when its kernel (6) is approximated by the first
three terms of the expansion, the so-called diffusive approx-
imation. The F-KPP equation is a well-known equation in
non-equilibrium statistical physics, whose dynamics is called
reaction-diffusion dynamics, and it has the form

∂tu(x, t) = ∂2
xu(x, t)+u−u2, (9)

where t is time and x is the coordinate. This equation admits
the so-called traveling wave solutions.

t = 0 t1

X(t1)

2t1

X(t2)

3t1

X(t3) x0

1

u(x, t)

FIG. 2: Traveling wave behaviour for u(x, t), solution of Eq.(9).

For a traveling wave solution one can define the position of
a wave front x(t) = v(t), irrespective of the details of the non-
linear effects. At larger times, the shape of a traveling wave
is preserved during its propagation, and the solution becomes
only a function of the scaling variable x− vct, where vc is the
critical velocity.

In the language of saturation physics the position of the
wave front is nothing but the saturation scale

x(t)∼ lnQ2
s (Y ) (10)

and the scaling cited above corresponds to the geometric scal-
ing

x− vct ∼ lnk2/Q2
s (Y ) (11)
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The linear part of (5) is solved by [11]

T̃ (k,Y ) =
∫ dγ

2πi
T̃0(γ)exp(−γL+ ᾱχ(γ)Y ), (12)

where T̃0(γ) is the Mellin transform of the initial condition at
Y = 0. The velocity of the front is given by

vc = min
γ

ᾱ
χ(γ)

γ
= ᾱ

χ(γc)
γc

= ᾱχ′(γc) (13)

where γc is the saddle point of the exponential phase factor.
This fixes, for the BFKL kernel, γc = 0.6275..., and vc =
4.88ᾱ.
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FIG. 3: Numerical solution to BK equation for increasing (from left
to right) values of rapidity Y = 0,5,10,15,20,25. The traveling wave
behaviour with increasing rapidity is clearly manifest.

In terms of QCD variables, the dipole forward scattering
amplitude in momentum space in the tail of the wave front
reads

T̃ (k,Y )
kÀQs≈

(
k2

Q2
s (Y )

)−γc

log
(

k2

Q2
s (Y )

)
exp

[
− log2 (

k2/Q2
s (Y )

)

2ᾱχ′′(γc)Y

]
.

(14)
The saturation scale is defined as

Q2
s (Y ) = k2

0 exp

(
ᾱvcY − 3

2γc
log(Y )− 3

γ2
c

√
2π

ᾱχ′′(γc)
1√
Y

)
.

(15)

IV. CONNECTION WITH SATURATION

The goal of this work is to describe the matching around the
saturation scale between two regions: the one described by the
tail of the wave front, Eq.(14) and the other one, characterized
by saturation. The latter can be parametrized as

T̃ (k,Y )
k¿Qs≈ c− log

(
k

Qs(Y )

)
, (16)

where c is an arbitrary constant.
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FIG. 4: Matching procedure between the tail of the wave front (solid
line) and the saturation region (dashed line) through the continuity of
T̃ (k,Y ) and its first derivative for Y = 1.

Given that the fully asymptotic behaviour of the amplitude
is described by (14) and (16), our first attempt to connect both
was to use both behaviours separately and match the constant
c from continuity conditions (see Figure 4).

However, such matching procedure does not necessarily
imply a positive Fourier transform of the scattering amplitude.
Then, the best way to obtain the description of such transition
to the saturation region is to make an analytic interpolation
procedure. The idea is to build the saturation domain from the
dilute one and the starting point is a function, that we call T̃dil,
which reproduces (up to the logarithmic factor) the amplitude
for diffusive scaling (14),

T̃dil = Aexp

[
−γc log

(
k2

Q2
s (Y )

)
− L2

red− log2(2)
2ᾱχ′′(γc)Y

]
(17)

with

Lred = log
[

1+
k2

Q2
s (Y )

]
(18)

and write T̃ in terms of it in such a way that we can recover
the asymptotic behaviours of T̃ , i.e., Eqs. (14) and (16).

One expression which satisfies these properties is the fol-
lowing:

T̃ (k,Y ) =
LF

1+ 1
T̃dil

, (19)

where the logarithmic factor

LF =

√
K2 +

1
4

log2 k2

Q2
s (Y )

(20)

The constants A and K can be determined by applying the
parametrization proposed to describe some physical observ-
able, for example, via fitting procedure to some experimental
data. Such procedure could be a good way to test the robust-
ness of our model.
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V. CONCLUSIONS

In this work we have investigated the matching between
saturation and travelling wave solutions of the BK equation
which describe the forward scattering amplitude at high en-
ergies in the virtual photon-proton scattering. As the result
does not necessarily imply a positive Fourier transform of the
amplitude, we concluded that the best way to connect both
solutions is through an analytic interpolation model. An ex-
pression for the amplitude, Eqs.(17)–(20), has been proposed

and tested in order to be used to describe some experimental
data. This work is in progress.
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