
Brazilian Journal of Physics, vol. 32, no. 2A, June, 2002 275

The Regime of Electromagnetically Induced

Transparency in Optically Dense Media:

from Atoms to Excitons

M. Artonia, F. Bassanib, I. Carusottoc, and G.C. La Roccad;b

aINFM and LENS, Largo E. Fermi 2, I-50125, Florence, Italy
bINFM, Scuola Normale Superiore, Piazza dei Cavalieri, I-56126 Pisa, Italy

cLaboratoire Kastler-Brossel, Ecole Normale Superieure, 75231 Paris Cedex 05, France
dDipartimento di Fisica \E.R. Caianiello", Universit�a di Salerno, I-84081 Baronissi (Sa), Italy

Received on 23 April, 2001

The phenomenon of electromagnetically induced transparency (EIT) was discovered by Adriano
Gozzini and coworkers in 1976 in Pisa. Novel schemes to investigate and exploit EIT in the optical
domain have attracted much interest both in atomic and solid state systems. We discuss some of
our recent theoretical results, in particular: i) a well developed EIT regime based on free exciton
levels in undoped bulk crystalline Cu2O; ii) light dragging e�ects in moving media under EIT; iii)
the coherent control of Cherenkov radiation in the EIT regime.

I Introduction

In the context of optical pumping experiments on Na,
Adriano Gozzini and coworkers observed for the �rst
time in 1976 in Pisa a peculiar phenomenon: when-
ever the separation among two Zeeman sublevels of the
two hyper�ne components of the 3S ground state would
equal the frequency di�erence between two laser modes
nearly resonant with the D1 line, no absorption would
be induced, and therefore no 
uorescence from the 3P
level would be observed, as if Na would be \transpar-
ent" to the resonant light. This phenomenon, originally
referred to as the Na \black line", was immediately ex-
plained by Ennio Arimondo et al. in terms of quantum
coherence and interference whereby the ground state
doublet is pumped into a coherent superposition state
where the population is trapped due to destructive in-
terference between the two distinct paths of absorp-
tion to the third excited level. After these seminal
works [1], such a mechanism of coherent population
trapping underlying electromagnetically induced trans-
parency (EIT) has received increasing attention [2] be-
cause of the many applications, such as for instance
subrecoil laser cooling [3], lasing without inversion [4],
adiabatic transfer [5]. More recently, both in ultracold
atomic clouds as well as in solids, EIT has been shown
to open novel regimes of the electrodynamics of con-
tinuous media. We here present some of our recent
theoretical results: in particular, a well developed EIT
regime based on free exciton levels in undoped bulk
crystalline Cu2O [6]; light dragging e�ects in moving

media under EIT [7]; and, in more detail, the coherent
control of Cherenkov radiation in the EIT regime.

II EIT for intrinsic bulk exciton

lines

The investigation of fundamental coherent optical ef-
fects in semiconductors is an important �eld of re-
search where quantum interference plays a role: we are
here concerned with electromagnetically induced trans-
parency (EIT), so far demonstrated mostly for dilute
atomic vapors. Condensed matter exhibits quite a va-
riety of three-level systems where EIT could also be
realized. Yet dephasings, which can easily break the
coherence of the population trapping state, make it
diÆcult to observe a large EIT e�ect in solids. For
microwaves, EIT has been observed in ruby [8] using
a strong external magnetic �eld, while in the infrared
EIT has been observed in intersubband transitions in a
quantum well [9]. For optical frequencies, EIT in solids
has only been observed in an inhomogeneously broad-
ened hole-burning Pr3+-doped Y2SiO5 crystal [10]. We
predict a remarkable enhancement of electromagneti-
cally induced transparency in an undoped bulk semi-
conductor exhibiting sharp free-exciton lines that cor-
respond to intrinsic delocalized electronic states. We
speci�cally consider the \yellow exciton" series in Cu2O
for which all the relevant spectroscopic parameters are
available [11, 12].

In Cu2O both conduction and valence band extrema
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occur at the � point (Oh symmetry) and have, respec-
tively, �+6 and �+7 symmetry, each twofold degenerate
spin included. The four states of the 1S exciton man-
ifold split into an upper quadrupole allowed threefold
degenerate �+5 level and a lower forbidden nondegen-
erate �+2 level. The twelve states of the 2P exciton
manifold are classi�ed according to their symmetries
as follows: ��2 � ��3 � ��4 � 2��5 , among which only
the threefold degenerate ��4 states are dipole active
and give rise to the second class 2P \yellow exciton"
line [13]. In the following, we assume that the ��4 op-
tically active 2P states are suÆciently separated from
all others so that we can restrict ourselves only to the
�+5 1S and ��4 2P exciton states. The longitudinal-
transverse splitting of the second class 2P exciton is
negligible. The inclusion of the complete 2P exciton
manifold [14] would not change signi�cantly the main
results here discussed.

We are interested in the optical responce experi-
enced by a weak probe beam of frequency !p tuned
around the 2P \yellow" exciton line of resonant fre-
quency !2P , while a strong coupling beam of fre-
quency !c and Rabi frequency 
c is nearly resonant
with the 1S to 2P exciton transition of resonant fre-
quency !2P�1S = !2P � !1S . All relevant parameters
in the e�ective hamiltonian describing this � three ex-
citon level con�guration can be determined from the
usual envelope function picture of Wannier-Mott exci-
ton states. The dipole forbidden 1S exciton state has
a small linewidth (~
1S ' 0:1 meV) compared to that
of the second class allowed 2P exciton state (~
2P ' 1
meV) and a well developed EIT can be established in
the presence of the coupling beam. A transparency
window about the 2P exciton line appears, while for
very high pump intensities, or at least for 
c larger
than about 2 
2P , the Autler-Townes regime is eventu-
ally reached [2, 12, 6]. The optical susceptibility expe-
rienced by a probe polarized along x in the presence of
a pump polarized along y is given by

�p =
A
2P (Æp � Æc � i
1S)

(Æp � i
2P )(Æp � Æc � i
1S)�
2
c=4

;

with A ' 0:02 is a numerical constant proportional
to the 2P exciton oscillator strength[6] whereas Æp =
!2P � !p and Æc = !2P�1S � !c are the two relevant
detunings.

Fig.1 shows the imaginary part of the susceptibil-
ity for pump intensities characterizing both EIT and
Autler-Townes regimes for a probe tuned to the 2P
exciton line. The actual transmission through a slab,
including the e�ect of the complex background dielec-
tric constant, is shown instead in Fig.2 anticipating a
nearly 50% transmission due to EIT. Apart from the
background absorption, the 1S exciton linewidth 
1S
is the material parameter that mostly limits the possi-
bility of achieving even larger EIT e�ects in this sys-
tem. Finally, Fig.3 shows the transmission for param-

eters appropriate to the experiments by Fr�ohlich and
coworkers [12] where a very tiny EIT e�ect could indeed
be recognized: this �gure reproduces well the di�eren-
tial transmission measured in [12] for a nearly resonant
pump.
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Figure 1. Imaginary part of the susceptibility vs. the probe
frequency detuning in units of 
2P for a resonant coupling
beam. The coupling Rabi frequencies are 
c=
2P = 2 (solid)
and 4 (grey dash) while in the absence of the coupling beam
(
c = 0) the susceptibility is described by the solid grey
curve.
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Figure 2. Transmission coeÆcient GT vs. the probe fre-
quency detuning in units of 
2P ; the background dielectric
constant is �1 = 6:5+i 2�10�3, the slab thickness d=35�m
while the other parameters are the same as in Fig. 1.
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Figure 3. Same as in Fig.2 except for a slab thickness
d=60�m, a coupling Rabi frequencies 
c=
2P = 0.2, and
a pump detuning of Æc=
2P = �0:2. Notice the change of
scale.
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The observation of a fully developed EIT regime for
intrinsic exciton lines in semiconductors would open
the way to many opportunities involving either device
applications of EIT or fundamental issues such as, e.g.,
the role of polaritonic e�ects and of ponderomotive
forces in the EIT context.

III Fresnel light drag under EIT

The phase velocity of light depends on whether light is
propagating in a moving or in a stationary medium.
This e�ect, which gives rise to the familiar Fresnel
light{drag [15], has been observed for the �rst time in
Fizeau's 
owing water experiment [16] and had a pro-
found in
uence on the change of our perception of the
nature of space and time at the turn of the century.
Several other observations of light{drags have followed
in which di�erent dragging media and di�erent interfer-
ometric measurement techniques have been employed.
There still remains, however, a formidable challenge to
perform high-precision measurements of light{drags as
they have not yet reached the level of accuracy of other
tests of special relativity [17].

In order to perform a high{precision measurement
of the Fresnel-Fizeau e�ect one needs rather high sen-
sitivity to velocity induced phase shifts which means
large sample speeds. At the same time, in order to pre-
serve high contrast of the interference fringe pattern, vi-
brations transmitted from the sample movement to the
interfereometer itself have to be minimized. To this ex-
tent we here anticipate that precision can be improved
through EIT when this is devised to occur in a slab of
cuprous oxide (Cu2O) used as a dragging medium. Im-
provements consist in quite large positive and negative
light{drags that enable one to achieve high interfero-
metric sensitivities even for low drag velocities. Large
drags are associated with the steep dispersion occur-
ring within a transparency window centered at the 2P
exciton resonance and arising from the quantum inter-
ference in a speci�c pump{probe � con�guration which
involves the ground, the 1S and the 2P exciton levels,
as shown above.

Not only can one increase precision, but in a sam-
ple rendered anisotropic by a suitable choice of the
pump polarization one can also make the phase shift
corresponding to the light-drag to vanish. This means
that in a typical interferometric experiment no fringe
shift would be observed for light propagating through
the moving medium with respect to light propagating
through the medium at rest. This somewhat surprising
conclusion holds for all velocities of experimental inter-
est while tuning of the light{drag to zero may turn out
to be quite favorable for investigating the electromag-
netic and mechanical balance of the momentum associ-
ated with light in EIT media.

We then examine Cu2O under EIT as dragging
medium and look at the Fresnel drag experienced by
a weak probe beam of frequency ! tuned about the 2P
\yellow" exciton line of resonant frequency !2P , while
a strong beam of Rabi frequency 
c is resonant with
the 1S to 2P exciton transition. For a pump Rabi fre-
quency 
c � p


2P 
1S EIT takes place whereby a nar-
row transparency window with a rather steep dispersion
appears around the 2P exciton line.

The e�ective dielectric tensor seen by the probe in
the presence of the pump is in general anisotropic, de-
pending on the pump polarization and on the detailed
structure of the exciton levels involved. For the sake of
simplicity, we here assume that the ��4 states are well
separated from all other 2P states and the pump po-
larization is along the cubic axis x̂0 (See Fig.4). The
resulting dielectric tensor is uniaxial with the optical
c-axis along x̂0, i.e., �x0x0 = �k, �y0y0 = �z0z0 = �? and
�j0 6=k0 = 0 and for a resonant pump beam one has

�? = �EIT = �1 +
A
2P (Æp � i
1S)

(Æp � i
2P )(Æp � i
1S)� 
2
c=4

;

while �k is obtained by setting 
c ! 0 in the above
equation.
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Figure 4. Probe beam path across a Cu2O slab moving with

velocity v in the laboratory frame S. The probe wavevector

kp, the slab velocity and its surface normal are all in the

same direction x̂. The pump is directed along ẑ = ẑ0 and its

polarization is parallel to the optical axis x̂0 which makes a

�xed angle � with x̂.

In a typical con�guration [18, 17] a slab of thick-
ness L moves in one arm of an interferometer with con-
stant velocity v = � c with respect to an observer in
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the laboratory frame S as sketched in Fig.4. The quan-
tity of experimental relevance is the velocity dependent
phase-shift �� experienced by the probe upon single{
pass transmission. We do not account here for small
tilt angles between the surface normal and the cavity
axis x̂ employed in practice [17] to avoid multiple re
ec-
tions. We give the phase{shift for a probe single{pass
at normal incidence as it is suÆcient here to illustrate
the e�ect of frequency and angular dispersion associ-
ated with EIT on the light{drag.

The shift �� is a relativistic invariant and can be
conveniently evaluated in the slab rest frame S0. Un-
der EIT the dispersion equation for a probe polarized
in the x0y0 plane is that of an extraordinary ray [19]
whose complex refractive index is given by

n2(!0; �) =
�k(!

0)

1 + �r(!0) cos2 �
; �r(!

0) � �k(!
0)

�?(!0)
� 1 ;

with n0 and n00 respectively its real and imaginary parts.
In the laboratory frame the single-pass phase shift, in-
cluding contributions to �rst order in �, can be written
as [7]

�� ' ��0 � �
!L

c

�
1� n0(!;��)� !

@ n0(!;��)
@!

�

� ��0 � �
!L

c
�d;

where ��0 corresponds to the shift induced by a sta-
tionary slab and �d represents the e�ective phase shift
coeÆcient in terms of the probe laboratory frame fre-
quency !. The usual de�nition [20] of the drag coeÆ-
cient for the phase velocity of light can be related to the
measurable quantity �d [14]. Owing to EIT the absorp-
tive part n00 only appears as a higher{order correction
to �� and can therefore be neglected.

The magnitude and sign of the coeÆcient �d can be
controlled through the cleavage angle � and the cou-
pling beam Rabi frequency 
c. In the following, we
discuss numerical results for a resonant pump.

0 0.5 1 1.5 2

Ωc

-15

-10

-5

0

5

10

15

20

αe

a

Figure 5. CoeÆcient �d vs. 
c in units of 
2P for a reso-

nant probe crossing a Cu2O slab. Here the cleavage angle

is � ' 5o and 
2P = 1meV.
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Figure 6. CoeÆcient �d vs. Æp in units of 
2P for a Rabi

frequency of 
c=
2P = 0.18 (solid), 0.7 (dash) and 0 (grey).

The other parameters are the same as in Fig.5.

Fig.5 shows the variation of �d as a function of

c for a resonant probe. Notice that �d vanishes at
~
c ' 0:18 meV but can be as large as 17, that is
over one order of magnitude larger than the �d's of
dragging glasses [17] typically used for high{precision
measurements of the Fresnel{drag. This novel and im-
portant feature is due to the anisotropy and to the
strong dispersion both characteristic of the EIT regime.
Fig.6 shows instead the variation of �d as a function
of the probe detuning for �xed pump intensities. Be-
cause of EIT, transmission is quite large in the range
jÆpj < 0:5 
2P ; for a slab thickness L = 25 �m this
varies between 10 � 30 % despite the 2P exciton
resonance[6]. Apart from the background absorption,
the 1S exciton linewidth 
1S is the material parame-
ter that mostly limits the possibility of controlling the
magnitude of �d through EIT.

IV Cherenkov radiation in the

EIT regime

The recent observation of ultraslow group velocities in
coherently driven media [21, 22, 23] has opened the way
towards new regimes of light propagation [24] and non{
linear optics at very weak intensities [25]. Here, we
investigate the e�ect of ultraslow group velocities on
the Cherenkov radiation emitted by a charged parti-
cle uniformly moving with a velocity larger than the
phase velocity of light. In the case of isotropic and
non-dispersive media, the surface on which the inten-
sity peaks coincides with the well known wave cone or-
thogonal to the wavevector of the emitted light and the
aperture of which is determined by the usual Cherenkov
coherence condition. In the case of highly dispersive
media, as we show here, the intensity is instead peaked
on the surface of a group cone [26] neither orthogonal
to the phase nor to the group velocity of the emitted
light and much narrower than the wave cone. First, we
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develop a general theory for Cherenkov emission in ar-
bitrary dispersive and non-isotropic media from which
we obtain analytical expressions for the electric �eld
intensity pro�le and, in particular, for the group cone

aperture. Then, as an example, we investigate the op-
tical properties of an ultracold atomic cloud of 23Na
atoms in the EIT regime which appears to be amenable
to the observation of such a singular behaviour.

Consider a charged point-like particle moving with
constant velocity w = wẑ = c�ẑ through a non-
absorptive and homogeneous medium characterized by
an anisotropic and dispersive hermitian dielectric ten-
sor �̂(!) = �i;j(!). The e�ects of a weak absorption
will be considered afterward for the case of interest.
Using Maxwell equations in Fourier space, we write the
(k; !) component of the radiated electromagnetic �eld
E(k; !) in terms of the corresponding Fourier compo-
nents of the current density J(k; !) = 2�q Æ(!�k�w)w
as

E(k; !) =
4�i!

c2

�
k2P̂k � !2

c2
�̂(!)

��1
J(k; !) (1)

where P̂ki;j = Æi;j � kikj
k2 is the projection operator onto

the subspace orthogonal to k and k2 =
P

i kiki is the
square modulus of k.

The poles of (1) determine the propagating modes of
the electromagnetic �eld through the well-known Fres-
nel equation [20]�

k2P̂k � !2
�

c2
�̂(!�)

�
e
(�) = 0: (2)

For each wavevector k, the di�erent modes are charac-
terized by the frequency !� and the polarization unit

vector e(�) normalized as he(�)je(�)i =P
i e

(�)�
i e

(�)
i =

1. We will not account here for longitudinal modes, as-
suming !2 6= 0 and det[�̂(!)] 6= 0 for all values of !.
For each mode, the group velocity can be shown to be

v
(�)
g = rk!� = c2

2k� e
(�)he(�)jki � e

(�)�hkje(�)i

e(�)

�� @
@! (!2�̂(!))

��e(�)� :

(3)
This expression for vg corresponds to the ratio of the
Poynting vector S and the energy density u [20]. We
shall also restrict our attention to the simple case of a
medium with rotational symmetry around the direction
of the charge velocity; in this case, the revolution sym-
metry of the dispersion surface !�(k) = ! guarantees
the parallelism of the components of the group velocity
and the wavevector perpendicular to the ẑ axis.

The electric �eld at a position x = (x?; z) =
(x?û?; z) can be obtained from the inverse Fourier
transform of (1). At suÆciently large distances from
the charge trajectory, only the poles of (1) e�ectively
contribute to the Fourier transform. In fact, the elec-
tric �eld at these distances is given by the resonant ex-
citation of propagating modes, while the non-resonant

contribution from all other modes decays out in space
with a faster power law. In the electric dipole emis-
sion, a similar distinction is done between the near zone
(kr � 1) and the radiation zone (kr � 1). Within such
an approximation we can write for the ith component,

Ei(x?; z; t) =
2iq

c2

Z 1

0

d!
X
�=1;2

k
(�)
? !he(�)jŵi

��

�
s

i

2�k
(�)
? x?

eik
(�)

?
x?ei

!
w
(z�wt)

e
(�)
i

(4)

Here, ŵ = w=w is the direction of the charge velocityw

and �� =


e
(�)
�� @
@k?

�
k2P̂k

� ��e(�)� is a weight factor.

In obtaining the expression (4) the angular integration
in k? has been already performed in the large k?x?
limit so that, for each position x?, only the �eld com-
ponents with k? parallel to x? have a stationary phase
and therefore give a nonvanishing contribution to the
integral.
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Figure 7. Schematic plot of the longitudinal cross section

of the dispersion surfaces for the two propagating � = 1; 2

modes at a given !. The vertical lines are the cross sections

of the kz = !=�c planes. For � = �1, no Cherenkov radi-

ation occurs at !; � = �2 is the thershold velocity for the

� = 1 mode; for � = �3, both modes are excited.

Depending on the velocity of the charged particle,
for each direction û? and frequency !, at most two

distinct poles at k
(�)
? (� = 1; 2) contribute to the in-

tegral, which correspond to propagating modes with

wavevector k(�) = (k
(�)
? û?; !=w) and polarization e

(�).
As shown in Fig.7, at a given frequency ! Cherenkov
light is emitted into the mode � only if the kz = !=c�
plane has a non-vanishing intersection with the disper-
sion surface !�(k) = ! of the mode. In the case of a
medium with rotational symmetry, this condition is sat-
is�ed if the particle velocity exceeds the phase velocity
of mode � for k parallel to w, i.e.

�2 >
!2

c2k(�)2

����
kkw

=
1

�
(�)
? (!)

(5)



280 G.C. La Rocca et al.

and the intersection is the k? = k
(�)
? circle. Here

�
(�)
? (!) are the eigenvalues of the dielectric constant
in the plane perpendicular to the ẑ axis. For an
isotropic medium, the condition (5) reduces to the usual
Cherenkov condition �2�(!) > 1 [27].

The theory developed up to now has considered the
case of a non-absorptive medium for which the poles

k
(�)
? are real; the e�ect of a weak absorption consists
in the introduction of a small and positive imaginary

part Im[k
(�)
? ] in the argument of the exponential in (4)

without modifying the pole structure of the integral.

The resulting damping factor e�Im[k
(�)

?
]x? accounts for

absorption of the emitted radiation during propagation.

We now consider a medium with a narrow trans-
parency window centered at �!; for a single polarization
state � = 1, the absorption factor in the neighborhood

of �! can be approximated by Im[k
(1)
? ] ' �

2 (!� �!)2 with

� = @2Im[k
(1)
? ]=@!2. Inserting this expression into (4),

we �nally obtain an explicit expression for the electric
�eld intensity pro�le

c

jE(x; t)j2 = Aq2

x2?
exp

"
� 1

�x?

�
z

w
+
x?
vr

� t

�2
# ���he(1)jŵi���2 ; (6)

d

where e(1) is the polarization vector of the mode at fre-

quency �! and A = 4k
(1)
? �!2=c4�21�. The radial velocity

vr is de�ned according to

v�1r =

"
@k?
@!

����
kz=

�!
w

#
=

w � v
k
g

wv?g
(7)

where v?g and v
k
g are respectively the perpendicular and

parallel components of the group velocity v
(1)
g with re-

spect to the direction ŵ = w=w of the charge velocity.
As it can be observed in Fig.8, suÆciently far from the
charge, i.e. at points x? � � = �v2r , the electric �eld
intensity (6) is peaked on the group cone described by

x?
vr

+
z

w
= t (8)

whose aperture � is equal to

tan � = vr=w: (9)

In general, � is di�erent from the aperture � of the wave
cone orthogonal to the wavevectors of the emitted ra-

diation, which is instead given by tan� = �!=wk
(1)
? . A

simple physical interpretation of the group cone can be
put forward in terms of group velocity [26] consider-
ing that, for each direction around the charge velocity,
the burst of Cherenkov light is emitted into a group
of modes centered at k(1) while the peak of the pulse
moves in space with a velocity equal to the group ve-

locity v
(1)
g experiencing an almost negligible absorp-

tion. The cone de�ned by this geometrical construc-
tion (Fig.9) can be proven in all cases to be equivalent
to the group cone de�ned by (8) and to coincide, for
the case of an isotropic medium, with the group cone
introduced by Frank [26]. Notice that this cone turns
out to be in general neither orthogonal to the group
velocity nor to the wavevector. In the case of isotropic
and non-dispersive media, in which vg = vph = c

n k̂,

n being the refractive index, the group and the wave
cones coincide and have an aperture � de�ned by the
usual Cherenkov condition �n sin� = 1.

The weak dispersion of common dielectrics makes
the di�erence between the group and the wave cones
very small and has prevented upto now its experimen-
tal observation [26]. When the group velocity is much
smaller than the phase velocity the group cone is ex-
pected to be well separated from the wave cone (�g.9)
and to have an extremely narrow shape � � 1. Fol-
lowing the recent observations of ultraslow light in co-
herently driven hot [21, 22] and cold [23] atomic gases,
such media appear as promising candidates for the ex-
perimental characterization of the role of group velocity
in Cherenkov radiation.
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z�Ξ
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Figure 8. Intensity contour{plot of the longitudinal cross-
section of the group cone at t = 0 for v?g =w = 0:01.
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Figure 9. Geometrical construction for the group cone.
During the time �t, the charge moves from A to B with
~AB = w�t, while the radiation emitted in A propagates
from A to C with ~AC = vg �t. As discussed in the text,
the straight line joining B and C is a generatrix of the group
cone.

We consider a cloud of ultracold atoms in a three-
level �-type con�guration under EIT regime. In usual
EIT experiments the e�ect of Doppler broadening in
hot gases is overcome by choosing a dressing �eld co-
propagating with the probe �eld [2]; unfortunately, the
conical geometry of Cherenkov emission does not allow
for such a choice, so that one is here forced to use an
ultracold sample in which Doppler broadening is ab-
sent. We take, as a speci�c example, the case of 23Na
atoms (Fig.10) magnetically trapped in the MF = �1
sublevel of the Fg = 1 ground state. Let !g be the
frequency of such a state. The other hyper�ne com-
ponent of the S1=2 ground state is a metastable state
with Fm = 2 approximately 1:8GHz blue-detuned with
respect to the ground state. A weak coherent �eld po-
larized along the trap magnetic �eld drives the opti-
cal transition from the metastable state to the Fe = 2
hyper�ne component of the P1=2 excited state. Its
Rabi frequency 
 is smaller than the excited state
linewidth 
e ' 2� � 10MHz while its frequency is taken
to be exactly on resonance with the transition between
the MF = 0 Zeeman components !dr = !e[MF =
0] � !m[MF = 0]. Assuming the charge velocity to be
parallel to the trap magnetic �eld, the rotational sym-
metry of the system around the ẑ axis implies [28] the
following decomposition of the dielectric tensor �̂(!) =
�z(!)jẑ ih ẑj + �+(!)j�̂+ ih �̂+j + ��(!)j�̂� ih �̂�j. For

each frequency ! and direction k̂, the two propagating
modes de�ned by (2) are generally non-degenerate ex-
cept at high symmetry points and have elliptical polar-
izations; from the point of view of the spatial symmetry
of the optical constants, the polarized atomic cloud is in
fact not only uniaxial, but also optically active. Since
the linewidth 
m of the metastable m state is orders of
magnitude smaller [23] than that of the excited e state

e, electromagnetically induced transparency (EIT) oc-
curs on the �̂+ polarization in a narrow frequency win-
dow of linewidth � = 
2=
e � 
e around !+ =
!e[MF = 0]� !g [2] where absorption is quenched and
dispersion enhanced so as to give slow light propaga-
tion. In the same frequency window ! ' !+, the tran-
sitions from the ground state to the MF = �2;�1 sub-
levels of the excited state are suÆciently o�-resonance

(�!z;� = !e[MF = �1;�2] � !e[MF = 0] � 
e) so
as to give a positive and relatively frequency-
at back-
ground contribution to the �̂� and ẑ components of the
dielectric tensor

�+ = 1 +
4�f+

!+ � i
e � ! � j
j2

!+�i
m�!

(10)

�z;� = 1 + 4��1z;� = 1 +
4�fz;�
�!z;�

: (11)

The oscillator strengths f�;z are proportional to the
atomic density times the square of the dipole moment
of the optical transition and di�er from each other de-
pending on the relevant Clebsch-Gordan coeÆcients.
The detunings �!z;� follow from the Zeeman splitting
of the atomic levels, which implies that the background
refraction can be experimentally controlled by tuning
the magnetic �eld; with 23Na atoms, a splitting �!�
of about 2� � 40MHz occurs in a reasonable magnetic
�eld of the order of 80G. Given the di�erent magnetic
moments of metastable and excited states, the weak
dressing �eld can not e�ectively dress the optical tran-
sitions other than the resonant one between theMF = 0
sublevels. Thanks to their large detuning with respect
to !+, all transitions involving the other hyper�ne com-
ponents of the excited state can be neglected.

P1/2 (F=2)

S1/2 (F=2)

S1/2 (F=1)

Ωσ+

z
σ−

−2 −1 0 1 2 M F

g

m

e

Figure 10. Scheme of the 23Na atomic levels involved in the
optical process under examination.

The threshold velocity (5) for Cherenkov emission
at !+ is determined by the background refractive in-
dex (11). If the velocity is larger than the threshold
value, light is radiated into a mode with non-vanishing

k
(1)
? ; in presence of EIT, such a radiation will propa-
gate with ultraslow group velocity without being ab-
sorbed. The magnitude of the group velocity (3) is
mainly determined by the dispersive properties of EIT
while its direction depends on the background refractive
index only. Group velocities as low as 17m/sec have
been reported in an ultracold sodium gas [23] and this
means that the group cone would have an extremely
narrow shape, practically a cylindrical one (� � 1).
From the parameters of [23], the characteristic length
� = �v2r ' �v? 2

g turns out of the order of 10�m and
the background susceptibility 4��1z;� is of the order of
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10�2, i.e. much larger than that usually found in gas
Cherenkov counters [27].

The theory we have developed is based on the as-
sumption of a homogeneous medium. This approxi-
mation is reasonable provided the overall size of the
atomic cloud is much larger than the wavelength of the
Cherenkov light whose detection should be performed
within the cloud itself so to avoid re
ection e�ects at
the edges of the cloud. For the case of EIT media, a
picture of the group cone can be taken exploiting the
very large cross section for resonant two-photon absorp-
tion processes [30]: the absorption coeÆcient experi-
enced by a laser �eld on resonance with another optical
transition starting from the MF = 0 sublevel of the
metastable m state is in fact proportional to the lo-
cal intensity of the Cherenkov radiation at !+ which
forms the narrow group cone [25]. Since the interac-
tion of the charge with the atoms of the cloud results
not only on Cherenkov emission but also on other heat-
ing and ionization processes [20], it is necessary to re-
duce the importance of such short-range processes by
making the charge travel in a region of space free from
atoms. For the case of an atomic cloud, this can be
achieved e.g. by using the repulsive potential of a blue-
detuned laser so as to create a sort of \tunnel" through
the cloud; a small cylindrical hole with a radius of the
order of the wavelength does reduce the yield of the
Cherenkov radiation, but does not a�ect the qualita-
tive features of the Cherenkov pulse propagating in the
surrounding medium [29]. Unfortunately, the intensity
of the Cherenkov radiation emitted by a single electron
is rather low. For the 23Na parameters and statistically
independent electrons, a photon is emitted in the mode
under consideration each 107 electrons. This problem
may be overcome by looking at the electric �eld gen-
erated by a very large number of electrons at a time:
since the radial velocity vr is much smaller than the
charge velocity w, the pro�le of the group cone would
not be smeared out even if the spatial extension of the
bunch of electrons is much longer than the wavelength
of the emitted light.

Unlike in isotropic and non-dispersive media, the
group cone is here much narrower than the wave cone

de�ned by the usual Cherenkov coherence condition and
is neither orthogonal to the phase nor the group veloc-
ity. This conceptual distinction becomes of great physi-
cal relevance in media exhibiting slow light propagation.
For the realistic case of a coherently driven ultracold
23Na gas, the geometrical and dispersive properties of
the dielectric tensor are shown to be favourable to the
experimental characterization of the role of the group
velocity in the process of Cherenkov emission.
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