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We consider the gravitational fields generated by a cosmic string, a global monopole and a tubular matter with
interior magnetic field (Safko-Witten space-time), and examine some classical and quantum effects due to these
fields. We investigate the Aharonov-Bohm effect in the space-time of a cosmic string, using the loop variables.
In the space-time of a global monopole, we calculate the total energy radiated by a uniformly moving charged
scalar particle, for small solid angle deficit. We show that the radiated energy is proportional to the cube of the
velocity of the particle and to the cube of the Lorenz factor, in the non-relativistic and ultra-relativistic cases,
respectively. In the Safko-Witten space-time, we investigate the existence of an electrostatic self-force on a
charged particle. We also consider a hydrogen atom in the background space-time generated by a cosmic string
and we find the solutions of the corresponding Dirac equation and we determine the energy levels of the atom.
We investigate how the topological features of this space-time lead to shifts in the energy levels as compared
with the flat Minkowski space-time. We study the behavior of non-relativistic quantum particles interacting with
a Kratzer potential in the space-time generated by a global monopole and we find the energy spectrum in the
presence of this topological defect. In the Safko-Witten space-time, an investigation is also made concerning
the interaction of an harmonic oscillator with this background gravitational field.
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I. INTRODUCTION

The general theory of relativity, as a metric theory, pre-
dicts that gravitation is manifested as curvature of space-time,
which is characterized by the Riemann tensor. On the other
hand, we know that there are connections between topolog-
ical properties of the space and local physical laws in such
a way that the local intrinsic geometry of the space is not
sufficient to describe completely the physics of a given sys-
tem. As an example of a gravitational effect of topological
origin, we can mention the fact that only when a particle is
transported around a cosmic string[1]-[3] along a closed curve
the string is noticed at all. This situation corresponds to the
gravitational analogue[4] of the electromagnetic Aharonov-
Bohm effect[5], in which electrons are beamed past a solenoid
containing a magnetic field. These effects are of topological
origin rather than local. In fact, the nontrivial topology of
space-time, as well as its curvature, leads to a number of in-
teresting gravitational effects. Thus, it is also important to
investigate the role played by a nontrivial topology. As ex-
amples of these investigations we can mention the study of
some classical effects produced by the nontrivial topology of
the cosmic string space-time as the gravitational lensing[3],
emission of radiation by a freely moving particle[6], electro-
static self-force[7, 8] on an electric charge at rest and the so-
called gravitational Aharonov-Bohm effect[4] among other.
As to the quantum effects, we can mention the topological
scattering [9], the interaction of a quantum system with con-
ical singularities[10, 11] and with topological defects space-
times[12]. As a result of these investigations, we conclude
that it is important to take into account the topology of the
background space-times in order to describe completely and
precisely the physical contents of a given system.

Therefore, the problem of finding how a physical system

placed in a gravitational field is influenced by the background
space-time has to take into account the geometrical and topo-
logical features of the space-time under consideration and in
this way we should emphasize that when a physical system is
embedded in a curved space-time it is influenced by its geom-
etry and topology.

According to standard quantum mechanics, the motion of a
charged particle can be influenced by electromagnetic fields in
regions from which the particle is rigorously excluded[5]. In
this region the electromagnetic field vanishes. This phenom-
enon has come to be called Aharonov-Bohm effect[5]. The
analogue of the electromagnetic Aharonov-Bohm effect set
up is the background space-time of a cosmic string[1]-[3] in
which the geometry is flat everywhere apart from a symmetry
axis. In the space-time of a cosmic string we will investigate
this phenomenon using the loop variables.

In the framework of Quantum Electrodynamics, the
Bremsstrahlung process corresponds to the emission of radi-
ation by a charged particle when it changes its momentum in
collision with obstacles such as other particles or when it is ac-
celerated due to the presence of electromagnetic fields. There-
fore, in flat space-time particles moving freely do not radiate.
On the other hand, in curved space-times the situation is quite
different, and in this case, a charged particle moving on geo-
desic does radiate. This corresponds to the Bremsstrahlung
process produced by gravitational fields and this may arises
due to the curvature, topology or due to the combined effects
of the geometric and topological features of the space-time.

We will consider the problem concerning the emission of
radiation by a freely moving particle[13], caused by the com-
bined effects of the geometrical and topological features of
the space-time generated by a point-like global monopole[14].
The origin of this radiation is associated with the geomet-
rical and topological features of the global monopole space-
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time which produces an effect proportional to the solid angle
deficit.

It is well known that a charged particle placed in a curved
space-time, even at the rest, experiences a self-force due to
the geometrical and topological features of the space-time. In
particular, for a conical space-time, it is entirely due to the
nonlocal structure of the gravitational field[2, 8]. In this paper
we will calculate the self-force on a charged particle at rest in
the space-time of Safko-Witten[15], and show that its origin is
exclusively due to the nontrivial topology of this space-time.

The study of quantum systems in curved space-times goes
back to the end of twenties and to the beginning of thir-
ties of the last century[16], when the generalization of the
Schr̈odinger and Dirac equations to curved spaces has been
discussed, motivated by the idea of constructing a theory
which combines quantum physics and general relativity.

Spinor fields and particles interacting with gravitational
fields has been the subject of many investigations. Along this
line of research we can mention those concerning the deter-
mination of the renormalized vacuum expectation value of the
energy-momentum tensor and the problem of creation of par-
ticles in expanding Universes[17], and those connected with
quantum mechanics in different background space-times[18]
and, in particular, the ones which consider the hydrogen atom
in an arbitrary curved space-time[19, 20].

It has been known that the energy levels of an atom placed
in a gravitational field will be shifted as a result of the inter-
action of the atom with space-time curvature[19, 20]. These
shifts in the energy levels, which would depend on the fea-
tures of the space-time, are different for each energy level,
and thus are distinguishable from the Doppler effect and from
the gravitational and cosmological red-shifts, in which cases
these shifts would be the same for all spectral lines. In fact, it
was already shown that in the Schwarzschild geometry, the
shift in the energy level due to gravitational effects is dif-
ferent from the Stark and Zeeman effects, and therefore, it
would be possible, in principle, to separate the shifts in the
energy levels caused by electromagnetic and by gravitational
perturbations[20]. Thus, in these situations the energy spec-
trum carries unambiguous information about the local features
of the background space-time in which the atomic system is
located.

In this paper in which concerns quantum effects due to
gravitational fields, we deal with the interesting problem re-
lated with the modifications of the energy levels of a quantum
system placed in the gravitational fields of a cosmic string,
a global monopole and a tubular matter source with interior
magnetic field(Safko-Witten space-time). In order to investi-
gate this problem further, firstly, we determine the solutions
of the corresponding Dirac equations and the energy levels of
a hydrogen atom under the influence of the gravitational field
of a cosmic string. To do these calculations we shall make
the following assumptions:(i) The atomic nucleus is not af-
fected by the presence of the defect.(ii) The atomic nucleus
is located on the defect. With these, to do our calculations
accordingly would have been possible and doing so it affords
an explicit demonstration of the effects of space-time topol-
ogy on the shifts in the atomic spectral lines of the hydrogen

atom.
An atom placed in a gravitational field will be influenced

by its interaction with the local curvature as well as with the
topology of the space-time. As a result of this interaction, an
observer at rest with respect to the atom would see a change
in its spectrum. This shift in the energy of each atomic level
would depend on the features of the space-time. The prob-
lem of finding these shifts[20] in the energy levels under the
influence of a gravitational field is of considerable theoretical
interest as well as possible observational.

In the global monopole space-time, we will investigate the
interactions of a non-relativistic quantum particle with the
Kratzer potential in this background space-time. In this case
we also determine the shifts in the energy levels. Other in-
vestigations concerning quantum systems in this background
space-time were done recently [21,22]. We will also investi-
gate the quantum effects of gravitational fields in the frame-
work of the Safko-Witten space-time in which case we con-
sider the harmonic oscillator and determine how the nontrivial
topology of this background space-time perturbs the energy
spectrum. In this case, the influence of the conical geometry
on the energy eigenvalues manifests as a kind of gravitational
Aharonov-Bohm effect[4].

This paper is organized as follows. In Section II we present
some classical effects, namely, the gravitational Aharonov-
Bohm effect due to a cosmic string, the emission of radia-
tion by a freely moving particle in the space-time of a global
monopole, and the existence of a finite electrostatic self-force
on a charged particle, at rest, in the space-time of Safko-
Witten. In Section III, we present some quantum effects, as
for example, the energy shifts in the hydrogen atom placed in
the gravitational field of a cosmic string, the modifications of
the spectra of a particle in the presence of the Kratzer potential
in the space-time of a global monopole, and the modifications
of energy spectrum of an harmonic oscillator in the space-time
of Safko-Witten. Finally, in Section IV, we end up with some
final remarks.

Throughout this paper we will use units in whichc= ~= 1

A. Gravitational field of a cosmic string

The space-time produced by a static straight cosmic string
can be obtained in the weak-field limit( valid forGµ̄ << 1,
whereµ̄ is the linear mass density of the string). In this ap-
proximation, we write

gµν = ηµν +hµν, (1)

whereηµν = diag(1,−1,−1−1) is the Minkowski metric and
|hµν| << 1. Then, the solution of Einstein equations can be
put into the form[1]

ds2 = dt2−dρ2− (1−4Gµ̄)2ρ2dθ2−dz2, (2)

in a cylindrical coordinate system(t,ρ,ϕ,z), with ρ ≥ 0 and
0 ≤ ϕ ≤ 2π.The parameterα = 1− 4Gµ̄ runs in the inter-
val (0,1], with µ̄ being the linear mass density of the cos-
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mic string. This is a Minkowski space-time with a wedge re-
moved. The metric can be transformed to a locally Minkowski
form with θ′ = (1−4Gµ̄)θ, but now0≤ θ′ ≤ 2π(1−4Gµ̄). In
the coordinates(t,ρ,θ′,z) geodesics are straight lines, but in
coordinates(t,ρ,θ,z) they bend through an angle4πGµ̄.

The gravitational field of a cosmic string is quite remark-
able; a particle placed at rest around a straight, infinite, sta-
tic string will not be attracted to it; there is no local grav-
ity. The space-time around a cosmic string is locally flat but
not globally. The external gravitational field due to a cos-
mic string may be approximately described by a commonly
called conical geometry. Due to this conical geometry a cos-
mic string can induce several effects like, for example, gravi-
tational leasing [3], electrostatic self-force[7, 8] on an electric
charge at rest, Bremsstrahlung process[6] and the so-called
gravitational Aharonov-Bohm effect[4].

B. Gravitational field of a global monopole

A global monopole is a heavy object formed in the phase
transition of a system composed by a self-coupling iso-scalar
triplet φa, whose originalO(3) symmetry is spontaneously
broken toU(1) [14].

Combining this matter field with the Einstein equations and
considering the general form of the metric with spherical sym-
metry

ds2 = B(r)dt2−A(r)dr2− r2(dθ2 +sin2 θdϕ2), (3)

the gravitational field is solved and gives the following
result[14]

B = A−1 = 1−8πη2−2
M
r

, (4)

whereM ∼Mcore andη is the symmetry-breaking scale. It is
worth noticing that far away from the global monopole core
the main effects are produced by the solid angle deficit and
thus we can neglect the monopole’s mass. Therefore, we ob-
tain the metric of a point-like global monopole which can be
written as[14]

ds2 = b2dt2−b−2dr2− r2(dθ2 +sin2 θdϕ2), (5)

where the parameterb is connected with the energy scale
of symmetry breakingη and is given by the relationb2 =
1− 8πη2. For typical grand unified theory the parameter
η is of order 1016GeV and thus1− b2 = 8πη2 ∼ 10−5.
The space-time (5) is the solution of Einstein equations with
diagonal energy momentum tensor with componentsTµ

ν =
diag(2,2,1,1)(b2−1)/r2.

Rescaling the time and radial coordinates by relationst →
t/b2 andr → r/b2 we obtain the following form for the line
element

ds2 = dt2−dr2−b2r2(dθ2 +sin2 θdϕ2) (6)

which will be used in what follows. Herer ∈ [0,∞], θ ∈
[0,π], ϕ ∈ [0,2π].

This metric corresponds to a space-time with a solid angle
deficit ∆ = 32π2Gη2; test particles are deflected (topological
scattering) by an angleπ ∆

2 irrespective to their velocity and
impact parameter. This metric represents a curved space-time
whose curvature vanishes in the caseb = 1 (flat space-time).
Forθ = π

2 , the metric (6) is exactly the same as that of a cosmic
string, in which case the azimuthal angleϕ has a deficit∆ =
2π(1−b).

C. Safko-Witten space-time

The gravitational field due to a tubular matter source with
an axial interior magnetic field and vanishing exterior mag-
netic field[15], which we are calling (Safko-Witten space-
time) is introduced in this subsection. This space-time corre-
sponds to a solution of the combined Einstein-Maxwell field
with cylindrical symmetry. The exterior space-time corre-
sponding to this configuration of fields is locally flat, but glob-
ally it is not flat. The geometry of the sectiont = constantand
z= constantis a cone. The line element corresponding to this
case is[15]

ds2 = e2β (
dt2−dρ2)−ρ2dϕ2−dz2 (7)

The parameterβ is given by

β = ln

((
1+Hiρ2

1

)2

ρ2

)
+

4Hiρ1

1+Hiρ2
1

(ρ2−ρ1)
(γ+1)

and depends on the intensity of the interior magnetic field
throughHi and on the mass. The quantitiesρ1 and ρ2 are
the interior and exterior radii of the tube of matter andγ is an
arbitrary constant.

This space-time corresponds to a Minkowski space-time
minus a wedge with deficit angle2πe−β as we can see by
defining the coordinatest ′, ρ′, ϕ′ by t ′ = eβt, ρ′ = eβρ and
ϕ′ = e−βϕ. In this space-time, any observer outside the tube
of matter would see a flat space. This local flatness means
that there is no local gravity due to the tubular matter source
with interior magnetic field, however we have some very in-
teresting gravitational effects associated with the non-trivial
topology of the space-like section.

II. CLASSICAL EFFECTS

In this section, we will consider some gravitational effects
at classical level, due to the gravitational fields generated by a
cosmic string, a global monopole and a tubular matter source
with an interior magnetic field. The effects under considera-
tion will be the gravitational analogue of the electromagnetic
Aharonov-Bohm effect, the emission of radiation by a freely
moving particle and the electrostatic self-force on a charged
particle, in the cosmic string, global monopole and Safko-
Witten space-times, respectively.
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A. Gravitational Aharonov-Bohm effect due to a cosmic string

In the sixties and seventies of last century, it was
proposed[23, 24] a new formalism for gravitation in which
the fields depend on paths rather than space-time points. In
this formalism several equations were established involving
these new variables(loop variables). The loop variables were
also used to describe gravitation[25], and put into evidence the
equivalence between Einstein equations and the correspond-
ing ones obtained using the loop variables. These variables
were also computed[26] for the gravitational field correspond-
ing to the Kerr metric. Other investigations related to the
use of loop variables in some gravitational fields were done
recently[27].

The loop variables in the theory of gravity are matrices
representing parallel transport along curves in a space-time
with a given affine connection.They are connected with the
holonomy transformation which contains important topolog-
ical informations. These mathematical objects contain infor-
mation, for example, about how vectors change when paral-
lel transported around a closed curve.They are defined as the
limit of an ordered product of matrices of infinitesimal parallel
transport as

Uµ
ν (Cyx;Γ)≡

N

∏
i=1

(δρi
ρ1−i −Γρi

λiρ1−i
(xi))dxλi

i , (8)

wherex0 = x, ρo = ν, xN = y, ρN = µ, dxi = (xi −xi−1)/ε.
The pointsxi lie on an oriented curveCyx with its beginning

at the pointx and its end at the pointy. The parallel-transport
matrix Uµ

ν is a functional of the curveCyx as a geometrical
object.

If we choose a tetrad frame, a basis
{

e(a)
µ (x)

}
and a loop

C such thatC(0) = C(1) = x, then in parallel transporting a
vector Xα from C(λ) to C(λ + dλ), the vector components
change by

δXµ = Mµ
ν [x(λ)]Xνdλ, (9)

whereM µ
ν is an infinitesimal linear map which depends on the

tetrads, on the affine connection of the space-time and on the
value ofλ.Then, it follows that the holonomy transformation
Uµ

ν is given by the matrix product of theN linear maps

Uµ
ν = lim

N→∞

∞

∏
i=1

[
δµ

ν +
1
N

Mµ
ν [x(λ)] |λ= i

N

]
. (10)

One often writes the linear mapUµ
ν given by Eq.(10) as

U(C) = Pexp



Z

C

M


 , (11)

wherePmeans ordered product along a curveC. Equation(11)
should be understood as an abbreviation of the right hand side
of Eq.(10). Note that ifMµ

ν is independent ofλ, then it follows
from Eq.(10) thatMµ

ν is given byMµ
ν = (expM)µ

ν.

In this paper we shall use the following notation

UAB(C) = Pexp




AZ

B

Γµ(x(λ))
dxµ

dλ
dλ


 , (12)

whereΓµ is the tetradic connection andA andB are the initial
and final points of the path. Then, associated with every path
C from a pointA to a pointB, we have a loop variableUAB
given by Eq.(12) which, by construction, is a function of the
pathC as a geometrical object.

In what follows we will compute the loop variables in the
theory of gravity on the basis of a metric formalism, for dif-
ferent curves in the cosmic string space-time. In order to do
this, let us consider a coordinate systemx0 = t, x1 = ρ, x2 = ϕ,
x3 = z and define the one-formsωa(a = 0,1,2,3) as

ω0 = dt, (13)

ω1 = cosϕdρ−αρsinϕdϕ, (14)

ω2 = sinϕdϕ+αρcosϕdϕ,

ω3 = dz (15)

Using the Cartan structure equationsdωa = −ωa
b∧ωb =

e(a)
µ‖νdxνdxµ, we get the following result for the tetradic con-

nections

−Γ1
µ2dxµ = Γ2

µ1dxµ =−(1−α)dϕ (16)

Let us consider a circleC in the equator(dρ = dt = dϕ =
0), then the holonomy is given by

U(C) = exp

(Z 2π

0
Γϕdϕ

)
= e−8πiµ̄J12

=




1 0 0 0
0 cos8πµ̄ sin8πµ̄ 0
0 −sin8πµ̄ cos8πµ̄ 0
0 0 0 1


 , (17)

whereJ12 is the generator of rotations about thez-axis.
¿From the above result we see that when we parallel trans-

port a vector around the cosmic string at rest at the origin, this
vector acquires a phase that comes from the holonomy which
is given byexp(−8iπµ̄J12). If now we consider a segment in
the z-direction, translation in time, and radial segments, we
conclude that in all these cases the holonomies vanish identi-
cally. Therefore, we can use these results, and write a general
expression forU(C). In the general case,U(C) reads[28]

U(C) = Pexp


− i

2

Z

C

Γab
µ Jabdxµ


 , (18)

whereJab are the generators of the Lorentz groupSO(3,1)
andΓab

µ are the appropriate tetradic connections. Therefore,
we can say that when we carry a vector along curves in this
space-time, it acquires a phase that depends onα(or µ̄), which
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prevents it from being equal to the unit matrix. This effect
is exclusively due to the non-trivial topology of the cosmic
string space-time. This is a gravitational analogue[4] of the
Aharonov-Bohm effect[5] but, in this case, purely at classical
level.

B. Emission of radiation by a particle in the gravitational field
of a global monopole

Now, let us consider a scalar particle with scalar chargeq
living in the space-time of a global monopole. The scalar and
minimal coupling field corresponding to this particle obeys
the Klein-Gordon equation

Φ(x) =−4π j(x), (19)

with a scalar current

j(x) = q
Z

δ4(x−x(τ))
dτ√−g

=

q
u0

δ(r− r(t))δ(ϕ−ϕ(t))δ(θ−θ(t))
b2r2sin2 θ

. (20)

The trajectory of a freely moving particle in this space-
time may be found in general form from the standard set of
equations of geodesic line. For simplicity and due to spheri-
cal symmetry we consider the trajectory of the particle in the
planeθ = π

2 , assuming that at timet = 0 the particle is in the
closest distanceρ from monopole’s core, which is by defini-
tion, the impact parameter. The trajectory has the following
form

r =
√

ρ2 +v2t2, ϕ =
1
b

arctan
vt
ρ

, θ =
π
2
, u0 ≡ γ =

1√
1−v2

,

(21)
wherev is the constant velocity of the particle andu0 is the
zero component of the four velocity.

To find the total energy radiated by the particle during all
its history we adopt an approach already used[6]. Let us sum-
marize here its main aspects. The total energy radiated by a
particle is expressed in terms of the covariant divergence of
the energy-momentum tensor as follows

E =
Z

Tν
µ;νξµ

√
−g(x)d4x, (22)

whereξµ is the time-like Killing vector. Taking into account
the explicit form of the energy-momentum tensor

Tµν =
1
4π

(
Φ,µΦ,ν− 1

2
gµνΦ,αΦ,α

)
, (23)

the equation of motion for a minimally coupled scalar field
(19) and the explicit expression for the Killing vectorξµ =
(1,0,0,0), one has the following expression for the total en-
ergy radiated by the particle during all time

E = 4π
Z ∂

∂t
Drad(x;x′) j(x) j(x′)

√
−g(x)

√
−g(x′)d4xd4x′,

(24)

where

Drad(x;x′) =
1
2

[
Dret(x;x′)−Dadv(x;x′)

]
(25)

is the radiative Green function.
In order to find the Green’s functions, let us first of all ob-

tain the complete set of eigenfunction of the Klein-Gordon
equation (19) which can be written as

Φ =
{

∂2
t −

1
r2 ∂r(r2∂r)+

1
b2r2 L̂2

}
Φ = λ2Φ, (26)

with eigenvaluesλ2. HereL̂2 is the square of the angular mo-
mentum operator. The complete set of solution of the eq. (26)
was considered in the context of quantum fields[29], and it has
the following form

Φl ,m,ω,p(t, r,θ,ϕ) = e−iωt

√
p

2πb2r
Jνl (pr)Ym

l (θ,ϕ), (27)

whereJν(x) is the Bessel function of first kind;Ym
l (θ,ϕ) is the

spherical function(l = 0,1,2, · · · , |m| ≤ l)); p =
√

λ2 +ω2

and

νl =

√
l(l +1)

b2 − 1
4
. (28)

Using this set of solutions the radiative Green function
reads

Drad(x;x′) =
i

2b2

1√
rr ′

∞

∑
l=0

+l

∑
m=−l

Ym
l (θ,ϕ)Ym∗

l (θ′,ϕ′)

Z +∞

−∞
dω sgn(ω)e−iω(t−t ′) (29)

×
Z ∞

0
dppJνl (pr)Jνl (pr′)δ(p2−ω2).

Taking into account this formula into Eq.(24), we obtain the
following expression for the total energy

E =
2πq2

γ2b2

∞

∑
l=0

+l

∑
m=−l

∣∣∣Ym
l (

π
2
,0)

∣∣∣
2Z +∞

−∞
dω |ω|

Z ∞

0
dppδ(p2−ω2) |Sm

l (ω, p,v,ρ)|2 , (30)

where we have introduced the functionSm
l by the relation

Sm
l (ω, p,v,ρ) =

Z +∞

−∞
dteiωt−i m

b arctanvt
ρ

Jνl (p
√

ρ2 +v2t2)
(ρ2 +v2t2)1/4

.

(31)
This function obeys the following symmetry relation

Sm
l (−ω, p,v,ρ) = S−m

l (ω, p,v,ρ). (32)

Using this we may represent the total energy as an integral

E =
Z ∞

0
dω

dE
dω

, (33)
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where the spectral density is

dE
dω

= ω
2πq2

γ2b2

∞

∑
l=0

+l

∑
m=−l

∣∣∣Ym
l (

π
2
,0)

∣∣∣
2
|Sm

l (ω,ω,v,ρ)|2 . (34)

The functionSm
l (ω,ω,v,ρ) given by Eq.(31) may be repre-

sented in a slightly different form, more suitable for analysis
(here we assumeω > 0) as

Sm
l (ω,ω,v,ρ) =−2

√ρ
v

sin
π
2

[
νl − m

b
− 1

2

]
S̃m

l (ω,v,ρ),

(35)

where

S̃m
l (ω,v,ρ) =

Z ∞

1
dye−

ωρ
v y

(
y−1
y+1

)− m
2b Iνl (ωρ

√
y2−1)

(y2−1)1/4
.

(36)

Therefore we can express the spectral density of radiation
by

dE
dω

= ωρ
8πq2

v2γ2b2

∞

∑
l=0

+l

∑
m=−l

∣∣∣Ym
l (

π
2
,0)

∣∣∣
2 ∣∣S̃m

l (ω,v,ρ)
∣∣2sin2 π

2

[
νl − m

b
− 1

2

]
. (37)

Integrating over the frequencyω, using formula 6.612(3) from Ref.[30], we find that the total energy is

E = − 8q2

v3γ2b2ρ

∞

∑
l=0

+l

∑
m=−l

∣∣∣Ym
l (

π
2
,0)

∣∣∣
2
sin2 π

2

[
νl − m

b
− 1

2

]
(38)

×
Z ∞

1

dy
y2−1

(
y−1
y+1

)− m
2b
Z ∞

1

dy′

y′2−1

(
y′−1
y′+1

)− m
2b

(y+y′)Q′
νl− 1

2
[coshσ].

HereQν[x] is the Legendre function of second kind; the prime
means the derivative with respect to its argument, and

coshσ =
(y+y′)2v−2−y2−y′2 +2

2
√

y2−1
√

y′2−1
.

Now, let us analyze the above expressions in the Minkowski
limit. In this case we have to putb = 1. Due to this, the ar-
gument of sine isπ2(l −m). Next we have to take into account
thatYm

l (π
2 ,0) = 0, if (l +m) is odd. For this reason the argu-

ment of sine isπ
2× (even number) which implies that the sine

of this quantity is zero and as a consequence the total energy is
zero, too, as it must be in Minkowski space-time. Differently
from the cosmic string space-time there is no specific values

of b for which total energy is identically zero.

Let us simplify our formulas for the global monopole space-
time assuming that solid angle deficit is small. In this case we
can expand sine in the previous formulas in terms ofb as

sin2 π
2

[
νl − m

b
− 1

2

]
≈ (1−b)2 π2

4

[
l(l +1)
l + 1

2

−m

]2

. (39)

Therefore up to(1− b)2 we may setb = 1 in the rest
part. Firstly, let us analyze the total energy given by Eq.(38).
The sum overm can be made using the addition theorem for
Legendre function of the first kind from[30] and results in

E = −πq2(1−b)2

v3γ2ρ

Z ∞

1

dy
y2−1

Z ∞

1

dy′

y′2−1
(y+y′)

∞

∑
l=0

[(
l +

1
2

)3

− 1
2

(
l +

1
2

)
+

1
16

1

l + 1
2

(40)

+ 2

((
l +

1
2

)2

− 1
4

)
∂β +

(
l +

1
2

)
∂2

β

]
Pl [coshβ]Q′

l [coshσ],

where

coshβ =
yy′+1√

y2−1
√

y′2−1
. (41)

Using now an integral representation for the Legendre func-
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tion of the second kind as below

Ql [coshσ] =
1√
2

Z ∞

σ

e−(l+1/2)tdt√
cosht−coshσ

, (42)

and the relation

∞

∑
l=0

e−(l+1/2)tPl [coshβ] =
1√
2

1√
cosht−coshβ

, (43)

we get, finally, the following expression for the total energy

E =−(1−b)2 πq2vγ2

2ρ

Z ∞

1

Z ∞

1

dydy′

(y+y′)3 E(s,y,y′), (44)

where

E = 1−48s2z1−192s4z2
2−16s2z2

Z ∞

0

dx√
x

∂
∂x

[
1√
Rx

{
1

(x+1)3/2
+

6s2z1

(x+1)5/2
+

15
2

s4z2
2

(x+1)7/2

}]

+
1
4

Z ∞

0

dx√
x

∂
∂x

[
1√
Rx

Z ∞

x

dx′√
Rx′

1√
x′+1

]
, (45)

and we have introduced the following definitions

z1 =
yy′+1

(y+y′)2 , z2 =
1

y+y′
,

Rx = (x+1)2 +4s2z1(x+1)+4s4z2
2,

with the parametersgiven bys= vγ.
The formula obtained looks very awesome but it may be

analyzed without great problem for non-relativistic and ultra-
relativistic particles. The functionE depends only on the com-
binations= vγ = v/

√
1−v2. In the non- relativistic case the

parameters→ 0 and in the ultra-relativistic cases→ ∞, and
therefore we have to analyze the functionE in these two lim-
its.

In the non-relativistic case we may expand all integrand in
Eq.(45) over small values of the parametersand calculate the
integrals. The main contribution, in this case, is proportional
to the cube of the velocity

E = (1−b)2 πq2

2ρ
v3. (46)

The ultra-relativistic case is more complicate due to the last
term in Eq.(45). There is no need, in fact, to calculate the
contribution from it. It is enough to find an upper bound for it.
Let us analyze the contribution from this term which is given
by

W =−(1−b)2 πq2vγ2

8ρ

Z ∞

1

Z ∞

1

dydy′

(y+y′)3

Z ∞

0

dx√
x

∂
∂x

[
1√
Rx

Z ∞

x

dx′√
Rx′

1√
x′+1

]
. (47)

First of all one represents the polynomialR in the following form

Rx = (x+1+s2δ2
+)(x+1+s2δ2

−), (48)

whereδ2± = 2(z1±
√

z2
1−z2

2). Becauseδ2± are positive we can write out the following inequalities

Z ∞

x

dx′√
Rx′

1√
x′+1

≤
Z ∞

0

dx′√
Rx′

1√
x′+1

≤
Z ∞

0

dx′

(x+1)3/2
≤ 2. (49)

Using this upper bound we have

|W| ≤ (1−b)2 πq2vγ2

4ρ

Z ∞

1

Z ∞

1

dydy′

(y+y′)3

E(
√

1− b2

a2 )

ab2 ≤ (1−b)2 π2q2vγ2

8ρ

Z ∞

1

Z ∞

1

dydy′

(y+y′)3

1
ab2 , (50)

wherea =
√

1+s2δ2
+, b =

√
1+s2δ2− and we used the fact that the upper bound for elliptic integral of second kindE is
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π/2. Now we change the variablesy→ sy, y′→ sy′ and take
the ultra-relativistic limits→ ∞. In the end we have the fol-
lowing estimation

|W| ≤ (1−b)2 π3q2

32ρ
. (51)

The contribution of others terms in Eq. (45) is of order
larger thanγ3. Calculating the other integrals in Eq. (45) one
has that the total energy radiated in ultra-relativistic case is
given by

E = (1−b)2 3π3q2

32ρ
γ3. (52)

C. Force on a charged particle at rest in the Safko-Witten
space-time

In this section we are interested in determining the electro-
static self-force on a point test chargeq located at the point

ρ = ρ0, ϕ = π andz = 0 in the space-time under considera-
tion, which is locally flat, but with a non-trivial conical topol-
ogy. As we will show, even with the curvature being zero in
all points, except in the localization of the tube of matter and
inside it, there is the interesting physical effect which corre-
sponds to the existence of a self-force.

In order to obtain an expression for the self-force, we will
determine the electrostatic potentialV(ρ,ϕ,z) generated by
the point test charge. To do this let us use the Maxwell equa-
tions in curved space-time which are given by

1√−g
∂

∂xµ

(√−gFµν) =− 1
ε0

jν (53)

where

j0 = ρ = ∑
n

qn√
−g(3)

δ(r − rn) and j i = ∑
n

qn√
−g(3)

δ(r − rn)
dxi

dz0

g(3) being the determinant of the spatial metric tensor.
¿From Eq.(53) we obtain the equation for the electrostatic potential due to a point test chargeq. In the background metric

given by Eq.(7) we get the following potential equation

(
e−2β

ρ
∂ρ

(
ρ∂ρ

)
+

1
ρ2 ∂2

ϕ +∂2
z

)
V(ρ,ϕ,z) =−

(
q
ε0

)
δ(ρ−ρ0)δ(ϕ−π)δ(z)

ρeβ (54)

whereε0 is the permittivity of free space.
Changing the variableρ→ e−βρ′, we get

(
e−2β

ρ′
∂ρ′

(
ρ′∂ρ′

)
+

1
ρ′2

∂2
ϕ +∂2

z

)
V(ρ′,ϕ,z) =−

(
q
ε0

)
δ(ρ′−ρ′0)δ(ϕ−π)δ(z)

ρ′eβ (55)

where we used the propertyδ
[
e−β (ρ′−ρ′0)

]
= eβδ(ρ′−ρ′0) .

Equation (55) reduces to the usual potential equation, in the subset of Minkowski space-time covered by the coordinate system
(t ′,ρ′,θ,z), whereθ = e−βϕ, with the point charge located atρ′ = ρ′0, θ = πe−β andz= 0. In this case it can be written as

(
1
ρ′

∂ρ′
(
ρ′∂ρ′

)
+

1
ρ′2

∂2
θ +∂2

z

)
V(ρ′,θ,z) =−

(
q
ε0

)
δ(ρ′−ρ′0)δ(θ−π)δ(z)

ρ′
. (56)

The potentialV(ρ′,θ,z) must satisfy the boundary conditions

V(ρ′,0,z) = V(ρ′,2πe−β,z)
∂V
∂θ

(ρ′,0,z) =
∂V
∂θ

(ρ′,2πe−β,z). (57)
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Following the same procedure adopted by Linet[7] who used a result[31] on the electrostatics for a wedge formed from two
semi-infinite conducting planes, we can write the solution of Eq.(56) as

V(ρ,θ,z) =
q

(4πε0)2πe−β
(
2ρ′ρ′0

)1/2

Z ∞

η

(
sinh

(
ξeβ/2

)

cosh
(
ξeβ/2

)
+sin

(
θeβ/2

) (58)

+
sinh

(
ξeβ/2

)

cosh
(
ξeβ/2

)−sin
(
θeβ/2

)
)

dξ
(coshξ−coshη)1/2

whereη is defined bycoshη =
(
ρ′2 +ρ′20 +z2

)
/2ρ′ρ′0, (η≥ 0).

Returning to coordinateϕ, which is related withθ by θ = e−βϕ, we obtain the following expression for the electrostatic
potential

V(ρ′,ϕ,z) =
q

(4πε0)2πe−β
(
2ρ′ρ′0

)1/2

Z ∞

η

sinh
(
ξeβ)dξ[

cosh
(
ξeβ

)
+cosϕ

]
(coshξ−coshη)1/2

(59)

In the neighborhood of the point charge, we can separate the electrostatic potential (59) in two terms as follows

V(ρ′,ϕ,z) = VM(ρ′,ϕ,z)+H(ρ′,ϕ,z) (60)

where the first term,VM, is infinite at the position of the charge and corresponds to the Coulomb potential in Minkowski space-
time, andH is a regular solution of the homogeneous equation corresponding to Eq.(55).

Then, we have

VM(ρ′,ϕ,z) =
q

4πε0
{

ρ′2 +ρ′20 +z2−2ρ′ρ′0
[
cos

(
e−β (ϕ−π)

)]}1/2
. (61)

Equation (61) reduces to the electrostatic potential due to a point charge in the flat space located atρ′ = ρ′0, ϕ = π andz= 0
whenβ is equal to zero.

In order to obtainH(ρ′,ϕ,z) it is necessary to write Eq.(61) in integral form as

VM(ρ′,ϕ,z) =
q

(4πε0)π
(
2ρ′ρ′0

)1/2

Z ∞

η

sinhξdξ{
coshξ−cos

[
e−β (ϕ−π)

]}
(cosξ−cosη)1/2

. (62)

Comparing Eq.(59) and (62), and using Eq.(61), we obtain the following expression forH(ρ′,ϕ,z)

H(ρ′,ϕ,z) =
q

(4πε0)π
(
2ρ′ρ′0

)1/2

×
Z ∞

η

(
sinh

(
eβξ

)

eβ
[
cosh

(
eβξ

)
+cosϕ

] − sinhξ(
coshξ−cos

[
eβ (ϕ−π)

])
)

(63)

× dξ
(cosξ−cosη)1/2

. (64)

As locally we are in the Minkowski space-time, we will ig-
nore the infinite forces arising from the electrostatic potential
VM, and we will considerH(ρ′,ϕ,z) as a kind ofexternalelec-
trostatic potential which exerts a force on the chargeq. Then,
we can compute the electrostatic force from the electrostatic
energy which is given by

W =
1
2

qH
(
ρ′0,π,0

)
(65)

at the pointρ′ = ρ′0, ϕ = π andz= 0, at which the point charge

is located.

From Eqs. (64) and (65), we obtain

W =
(

LB

4π

)
q2

4πε0ρ′0
(66)

whereLB depends on the parameterβ and is given by
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LB =
Z ∞

0

(
sinh

(
eβξ

)

e−β
[
cosh

(
eβξ

)−1
] − sinhξ

coshξ−−1

)
dξ

sinh
(

ξ
2

) .

(67)
Hence, from Eq.(66) the exerted force whose components

are f ρ =−∂W/∂ρ′0, f ϕ =−∂W/∂ϕ and f z =−∂W/∂z, is

f ρ =
(

LB

4π

)
e−2β q2

4πε0ρ2
0

f ϕ = f z = 0. (68)

In the limit β→ 0, we get the following result

f ρ ∼ 0.2β
q2

4πε0ρ2
0

.

Therefore, in the space-time of a tubular matter source with
interior axial magnetic field there is a self-interaction between
a charged particle and this tube of matter induced by the non-
trivial conical topology of this space-time.

III. QUANTUM EFFECTS

A. Relativistic hydrogen atom in the space-time of the cosmic
string

In what follows we will consider the background space-
time generated by a cosmic string and study the behavior of
a hydrogen atom placed in it[32]. The line element corre-
sponding to the cosmic string space-time is given, in spherical
coordinates, by

ds2 = dt2−dr2− r2dθ2−α2r2sin2 θdφ2. (69)

Let us consider the generally covariant form of the Dirac
equation which is given by

[iγµ(x)(∂µ+Γµ(x)+ ieAµ)−µ]Ψ(x) = 0, (70)

whereµ is the mass of the particle,Aµ is an external elec-
tromagnetic potential andΓµ(x) are the spinor affine connec-
tions which can be expressed in terms of the set of tetrad fields
eµ
(a)(x) and the standard flat space-timeγ(a) Dirac matrices as

Γµ =
1
4

γ(a)γ(b)eν
(a)(∂µe(b)ν−Γσ

µνe(b)σ). (71)

The generalized Dirac matricesγµ(x) satisfies the anti-
commutation relations

{γµ(x) ,γν (x)}= 2gµν (x) ,
and are defined by

γµ(x) = eµ
(a) (x)γ(a), (72)

where eµ
(a) (x) obeys the relationηabeµ

(a) (x)eν
(b) (x) = gµν;

µ, ν = 0,1,2,3 are tensor indices anda, b= 0,1,2,3 are tetrad
indices.

In this paper, the following explicit forms of the constant
Dirac matrices will be taken

γ(0) =
(

1 0
0 −1

)
; γ(i) =

(
0 σi

−σi 0

)
; i = 1,2,3, (73)

whereσi are the usual Pauli matrices.

In order to write the Dirac equation in this space-time, let
us take the tetradseµ

(a)(x) as

eµ
(a)(x) =




1 0 0 0
0 sinθcosφ sinθsinφ cosθ
0 cosθcosφ

r
cosθsinφ

r − sinθ
r

0 − sinφ
αr sinθ

cosφ
αr sinθ 0


 . (74)

Thus using (74), we obtain the following expressions for
the generalized Dirac matricesγµ(x)

γ0 (x) = γ(0),

γ1 (x) = γ(r),

γ2 (x) =
γ(θ)

r
,

γ3 (x) =
γ(φ)

αr sinθ
, (75)

where




γ(r)

γ(θ)

γ(φ)


 =




cosφsinθ sinφsinθ cosφ
cosφcosθ sinφcosθ −sinφ
−sinφ cosφ 0







γ(1)

γ(2)

γ(3)


 .

(76)

The covariant Dirac Eq. (70), written in the space-time of a
cosmic string is then given by[32]
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[
i ∑r ∂r + i

∑ θ

r
∂θ + i

∑ φ

αr sinθ
∂φ

+i
1
2r

(
1− 1

α

)(
∑r +cotθ∑θ

)
−eA0− γ(0)µ+E

]
χ(~r) = 0, (77)

where∑r , ∑θ and∑φ are defined by

∑r ≡ γ(0)γ(r); ∑θ ≡ γ(0)γ(θ); ∑ φ ≡ γ(0)γ(φ), (78)

and we have chosenΨ(x) as

Ψ(x) = e−iEtχ(~r) , (79)

which comes from the fact that the space-time under consid-
eration is static.

We must now turn our attention to the solution of the equa-
tion for χ(~r). Then, let us assume that the solutions of Eq.
(77) are of the form

χ(~r) = r−
1
2(1− 1

α ) (sinθ)−
1
2(1− 1

α ) R(r)Θ(θ)Φ(φ) . (80)

Thus, substituting Eq.(80) into (77), we obtain the follow-
ing radial equation

(
c∑′

r pr + i
∑ ′

r

r
γ(0)k(α) +eA0 +µγ(0)

)
R(r) = ER(r) . (81)

where

k(α) =±
(

j(α) +
1
2

)
=±

[
j +

1
2

+m

(
1
α
−1

)]
(82)

are the eigenvalues of the generalized spin-orbit operatorK(α)
in the space-time of a cosmic string andj(α) corresponds to
the eigenvalues of the generalized total angular momentum
operator. The operatorKα is given by

γ(0)K(α) = ~∑ ·~L(α) +1, (83)

with ~Σ = (Σr , Σθ, Σφ) Y1αmα and ~L(α) is the general-
ized angular momentum operator[32] in the space-time of
the cosmic string, which is such that~L2

(α)Y
m(α)
l(α)

(θ,φ) =

l(α)
(
l(α) +1

)
Y

m(α)
l(α)

, with Y
m(α)
l(α)

(θ,φ) being the generalized

spherical harmonics in the sense thatm(α) andl(α) are not nec-
essarily integers. The parametersm(α) and l(α) are given, re-
spectively, bym(α) ≡ m

α andl(α) ≡ n+m(α) = l + |m|( 1
α −1

)
,

l = 0,1,2, ... n−1, l is the orbital angular momentum quan-
tum number,m is the magnetic quantum number andn is the
principal quantum number.

Let us choose the following two-dimensional representa-
tion for ∑′

r andγ(0)

∑′
r ≡

(
0 −i
i 0

)
; γ(0) ≡

(
1 0
0 −1

)
. (84)

Now, let us assume that the radial solution can be written as

R(r) =
1
r

( −iF (r)
G(r)

)
. (85)

Then, Eq. (81) decomposes into the coupled equations

−i

[
E−µ+

e2

r

]
F(r)+

dG(r)
dr

+
k(α)

r
G(r) = 0, (86)

and

−i

[
E +µ+

e2

r

]
G(r)+

dF(r)
dr

− k(α)

r
F(r) = 0, (87)

where we used the fact thatA0 =−e/r.
The solutions of these equations are given in terms of the

confluent hypergeometric functionM(a,b;x) as

F(r) = −i

√
Q
T

e−rD

2
(rD)γ(α)−1[

M
(
γ(α)−1+ P̃,2γ(α)−1;2rD

)

+

(
γ(α)−1+ P̃

)
(
k(α) + Q̃

) M
(
γ(α) + P̃,2γ(α)−1;2rD

)
]

, (88)

and

G(r) =
e−rD

2
(rD)γ(α)−1[

M
(
γ(α)−1+ P̃,2γ(α)−1;2rD

)

−
(
γ(α)−1+ P̃

)
(
k(α) + Q̃

) M
(
γ(α) + P̃,2γ(α)−1;2rD

)
]

, (89)
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where T = µ−E; Q = µ+E, D =
√

TQ =
√

µ2−E2;

γ(α) = 1 +
√

k2
(α)− α̃2; P̃ ≡ α̃

2

(√
T/Q−

√
Q/T

)
; Q̃ ≡

α̃
2

(√
T/Q+

√
Q/T

)
, with α̃ =≈ 1

137 being the fine struc-
ture constant.

The solutions given by (88) and (89) are divergent, unless
the following condition is fulfilled

γ(α)−1+ P̃ =−n; n = 0,1,2..., (90)

which means that

1
2

α̃

(√
T
Q
−

√
Q
T

)
=−(

n+ γ(α)−1
)
. (91)

¿From this equation we may infer that the energy eigenvalues

are given by

E = µ

[
1+ α̃2

(
n+

∣∣k(α)
∣∣
√

1− α̃2k−2
(α)

)−2
]− 1

2

. (92)

This equation exhibits the angle deficit dependence of the en-
ergy levels. It is helpful to introduce the quantum numbern(α)
that corresponds to the principal quantum number of the non-
relativistic theory whenα = 1,

n(α) = n+ j(α) +
1
2
. (93)

Therefore, Eq. (92) may be cast in the form

En(α), j(α) = µ





1+ α̃2



(

n(α)− j(α)−
1
2

)
+

(
j(α) +

1
2

)√
1− α̃2

(
j(α) +

1
2

)−2


−2





− 1
2

. (94)

This equation can be written in a way which is better suited
to physical interpretation. Thus, asα̃¿ 1, we can expand Eq.
(94) in a powers of̃α, and as a result we get the following
leading terms

En(α), j(α) = µ−µ
α̃2

2n2
(α)

+µ
α̃4

2n4
(α)

(
3
4
− n(α)

j(α) + 1
2

)
. (95)

The first term corresponds to the rest energy of the electron;
the second one gives the energy of the bound states in the non-
relativistic approximation and the third one corresponds to the
relativistic correction. Note that these last two terms depend
on the angle deficit. The further terms can be neglected in
comparison with these first three terms.

Now, let us consider the total shift in the energy between
the states withj = n− 1

2, and j = 1
2, for a givenn. This shift

is given by

∆En(α), j(α) =
µe8

n3
(α)

(
n(α)−1

2
[
n(α) +m

(
1
α −1

)][
1+m

(
1
α −1

)]
)

.

(96)

One important characteristic of Eq. (94) is that it contains a
dependence onn, j andα. The dependence onα corresponds
to an analogue of the electromagnetic Aharonov-Bohm ef-
fect for bound states, but now in the gravitational context.

Therefore, the interaction with the topology(conical singular-
ity) causes the energy levels to change. Note that the presence
of the cosmic string destroys the degeneracy of all the levels,
corresponding tol = 0 and l = 1, and destroys partially this
degeneracy for the other sub-levels. Therefore, as the occur-
rence of degeneracy can often be ascribed to some symmetry
property of the physical system, the fact that the presence of
the cosmic string destroys the degeneracy means that there is
a break of the original symmetry. Observe that forα = 1, the
results reduce to the flat Minkowski space-time case as ex-
pected.

As a estimation of the effect of the cosmic string on the en-
ergy shift of the hydrogen atom, let us considerα = 1−10−6

which corresponds to GUT cosmic strings. Using this value
into Eq. (96), we conclude that the presence of the cosmic
string reduces the energy of the level of the states2P1/2(n= 2,
l = 1, j = l − 1

2 = 1
2, m= 1) to about10−4% in comparison

with the flat space-time value. This decrease is of the order of
the measurable Zeeman effect in carbon atoms for2P states
when submitted, for example, to an external magnetic field
with strength to about tens of Tesla. Therefore, this shift in
the energy levels produced by a cosmic string is measurable
as well.

Finally, we can write down the general solution to Eq. (70)
corresponding to a hydrogen atom placed in the background
space-time of a cosmic string. Thus, it reads the
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Ψl(α), j(α)=l(α)+
1
2 ,m(α)

(x) = e−iEt r−
1
2(1− 1

α ) (sinθ)−
1
2(1− 1

α )

×F(α) (r)




√
l(α)+m(α)+

1
2

2l(α)+1 Y
m(α)− 1

2
l(α) (θ,φ)

√
l(α)−m(α)+

1
2

2l(α)+1 Y
m(α)+

1
2

l(α) (θ,φ)


 , (97)

and

Ψl(α), j(α)=l(α)− 1
2 ,m(α)

(x) = e−iEt r−
1
2(1− 1

α ) (sinθ)−
1
2(1− 1

α )

×G(α) (r)



−

√
l(α)−m(α)+

1
2

2l(α)+1 Y
m(α)− 1

2
l(α) (θ,φ)

√
l(α)+m(α)+

1
2

2l(α)+1 Y
m(α)+

1
2

l(α) (θ,φ)


 , (98)

whereF(α) (r) andG(α) (r) are given by Eqs. (88) and (89),
respectively, and the indexα was introduced to emphasize the
dependence of these functions on this parameter.

Note that the solutions depend on the topological features
of the space-time of a cosmic string whose influence appears
codified in the parameterα associated with the presence of the
cosmic string and this is the point at issue here.

B. Kratzer potential in the space-time of a global monopole

In order to do these studies let us consider that a non-
relativistic particle living in a curved space-time is described
by the Schr̈odinger equation which should take the form

i
∂ψ
∂t

=− 1
2µ

∇2
LBψ+Vψ, (99)

where∇2
LB is the Laplace-Beltrami operator, the covariant ver-

sion of the Laplacian given by∇2
LB = g−

1
2 ∂i

(
gi j g

1
2 ∂ j

)
, with

i, j = 1,2,3; g = det(gi j ) ; µ is the mass of the particle andV
is an external potential.

Now, let us consider a particle placed in the space-time of
a global monopole, interacting with a Kratzer potential given
by

V(r) =−2D

(
A
r
− 1

2
A2

r2

)
, (100)

whereA andD are positive constants.
In order to determine the energy spectrum let us write

the Schr̈odinger equation in the background space-time of a
global monopole. Then, we get

− 1
2µb2r2

[
2rb2 ∂

∂r
+b2r2 ∂2

∂r2 −L2−2D

(
A
r
− 1

2
A2

r2

)]
ψ(r) = Eψ(r), (101)

whereL is the usual orbital angular momentum operator. We
begin by using the standard procedure for solving Eq. (101)
and assume that the eigenfunction can be written as

ψm,l (r) = Rl (r)Ym
l (θ,ϕ). (102)

Substituting Eq.(102) into Eq.(101), we get

− 1
2µ

d2gl (r)
dr2 −2D

(
A
r
− 1

2
A2

r2

)
gl (r)+

1
2µ

l(l +1)
b2r2 gl (r) = Egl (r), (103)

wheregl (r) = rRl (r). The solution of Eq.(103) can be written as

gl (r) = rλl e−β̄rFl (r) (104)
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where

λl =
1
2

+
1
2

√
1+4

(
2µDA2 +

l (l +1)
b2

))
, (105)

and

β̄2 =−2µE > 0. (106)

Substituting Eq. (104) into Eq. (103) and making use of
Eqs. (105 ) and (106) we obtain the equation forF(z)

z
d2F(z)

dz2 +(2λl −z)
dF(z)

dz
−

(
λl − 2mAD

β̄

)
F(z) = 0,

(107)
wherez= 2β̄r.

The solution of this equation is the confluent hypergeomet-

ric function1F1

(
λl − γ2

β̄A
,2λl ; 2β̄r

)
, with γ2 = 2µDA2.

Therefore, the solution for the radial functiongl (r) is given
by

gl (r) = rλl e−β̄r
1F1

(
λl − γ2

β̄A
,2λl ; 2β̄r

)
. (108)

In order to makegl (r) vanishes forr → ∞, the confluent
hypergeometric function may increase not faster than some
power ofr, that is, the function must be a polynomial. Hence

λl − γ2

β̄A
=−n̄r , n̄r = 0,1,2, ... . (109)

With this condition we find that the eigenvalues are given by

El ,n̄r =− 1
2µA2 γ4

(
n̄r +

1
2

+

√
1
4

+
l (l +1)

b2 + γ2

)−2

(110)

It is worth noticing from expression for the energy given
by Eq. (110) that even in the case in which thez−component
of the angular momentum vanishes the energy level is shifted
relative to the Minkowski case.

As an estimation of the effect of the global monopole on
the energy spectrum, let us consider a stable global monopole
configuration for whichη = 0.19mp, wheremp is the Planck
mass. In this situation the shift in the energy spectrum be-
tween the first two levels in this space-time decreases of about
82%as compared with the Minkowski space-time. For sym-
metry breaking at grand unification scale, the typical value of
8πGη2 is around10−6 and in this case the energy shift de-
creases of about1%.

C. Harmonic oscillator in the space-time of Safko-Witten

Let us consider the line element corresponding to Safko-
Witten space-time which is given by Eq.(7). The Schrödinger
equation in this space-time reads as

− 1
2µ

[
∂2

ρ +
1
ρ

∂ρ +
1

e−2βρ2
∂2

θ +∂2
z

]
ψ(t,ρ,θ,z)

+V(ρ,z)ψ(t,ρ,θ,z) = i
∂
∂t

ψ(t,ρ,θ,z), (111)

whereV(ρ,z) is the interaction potential corresponding to a
three-dimensional harmonic oscillator which is assumed to be

V(ρ,z) =
1
2

µw2(
ρ2 +z2) . (112)

We will now determine the eigenfunction of the Eq.(111),
with the interaction potential given by Eq.(112), by searching
for solutions of the form

ψ(t,ρ,θ,z) =
1√
2π

e−iEt+imθR(ρ)Z(z). (113)

Equation (111) leads to two ordinary differential equations
for R(ρ) andZ(z) which are given by

− 1
2µ

[
1

R(ρ)
d2R(ρ)

dρ2 +
1

R(ρ)ρ
dR(ρ)

dρ
− m2

e−2βρ2

]
+

1
2

µw2ρ2 = Ω

(114)
and

− 1
2µZ(z)

d2Z(z)
dz2 +

1
2

µw2z2 = εz, (115)

whereΩ is a separation constant and such that

Ω+ εz = E. (116)

Equation (115) is the Schrödinger equation for a particle
in the presence of one-dimensional harmonic oscillator poten-
tial, and then we have the well-known results

εz =
(

nz+
1
2

)
w; nz = 0,1,2, ..., (117)

with

Z(z) = 2−
nz
2 (nz!)

− 1
2

(µw
π

) 1
4

e−
µw
2 z2

Hnz (
√

µwz) , (118)

whereHnz is the Hermite Polynomial.
Now, let us look for solutions of Eq. (114). Its solution can

be written as

R(ρ) = exp
(
− τ

2
ρ2

)
ρ|m|e

2β
F(ρ), (119)

whereτ = mwand

F(ρ) =1 F1

(
1
2

+
|m|

2e−β −
µΩ
2τ

,
A
2

;τρ2
)

(120)

is the degenerate hypergeometric function, withA= 1+2 |m|
e−β .

In order to have normalizable wave-function, the series in
Eq. (120) must be a polynomial of degreenρ, and therefore

1
2

+
|m|

2e−2β −
µΩ
2τ

=−nρ; nρ = 0,1,2, .... (121)
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With this condition, we obtain the following energy eigenval-
ues

Ω = w

(
1+

|m|
e−2β +2nρ

)
. (122)

If we substitute Eqs. (122) and (117) into (116) we get, finally,
the energy eigenvalues

EN = w

(
N+

|m|
e−2β +

3
2

)
, (123)

whereN = 2nρ +nz.

Therefore, the complete eigenfunctions are then given by

ψ(t,ρ,θ,z) = CNme−iENte−
τ
2ρ2

ρ|m|e
2β

F1

(
1
2

+
|m|

2e−2β −
µΩ
2τ

,
A
2

;τρ2
)

×eimθ2−
nz
2 (nz!)

− 1
2

(µw
π

) 1
4

e−
µw
2 z2

Hnz (
√

µwz) , (124)

whereCNm is a normalization constant. It is worth calling
attention to the fact that the presence of the tubular matter
source with an interior magnetic field breaks the degeneracy
of the energy levels.

In the case under consideration the shift in the energy spec-
trum between the first two levels in this background increases
of about10−5% as compared with the flat Minkowski space-
time case.

IV. FINAL REMARKS

The loop variables in the space-time of a cosmic string are
elements of the Lorentz group. Therefore, for a given curve
in this space-time, the phase shift acquired by a vector is an
element of the Lorentz group. When a particle is parallel
transported along a curve around a cosmic string, it acquires
a phase which is different from zero. This fact is a manifesta-
tion of the phenomenon called gravitational Aharonov-Bohm
effect, which in this case, differently from the electromagnetic
case, appears at purely classical level.

The radiation emitted by a scalar particle moving along a
geodesic line in the point-like global monopole space-time
arises due to the geometric and topological features of this
space-time. Considering the case of a scalar field minimally
coupled with gravity and a specific situation in which the solid
angle deficit is small we find that the total energy radiated by
a particle along its trajectory is proportional to the cube of the
velocity and to the cube of the Lorenz parameter in the non-
relativistic and ultra-relativistic cases, respectively.

As a conclusion we can say that particles moving along
geodesic lines in the space-time of a point-like global mono-
pole will emit radiation in the same way as in case of an in-
finitely thin cosmic string space-time [6]. Analogously to the
case of an infinitely thin cosmic string space-time, the energy
emitted depends on the angle deficit and vanishes when this
angle deficit vanishes, but in the present case, this radiation

arises associated with the curvature and non-trivial topology
of the space-time of the global monopole, differently from the
cosmic string case in which the effect comes exclusively from
the non-trivial topology of the space-time.

If a charged particle is placed in the space-time of Safko-
Witten, it experiences an electrostatic self-force associated
with the conical structure of the background space-time. This
structure deforms the electrostatic field of the particle and this
deformation depends on the distance between the particles and
the tube and on the magnetic field in the interior of the tube,
in such a way that an electrostatic self-force appears.

The presence of a cosmic string changes the solution and
shifts the energy levels of a hydrogen atom as compared with
the flat Minkowski space-time result. It is interesting to ob-
serve that these shifts depend on the parameter that defines
the angle deficit and vanish when the angle deficit vanishes.
These shifts arise from the topological features of the space-
time generated by this defect.

The shifts in the energy is only two orders of magnitude less
than the ratio between the fine structure splitting and the en-
ergy of the ground state of the non-relativistic hydrogen atom
and is of the order of the Zeeman effect. Therefore, the mod-
ifications in the spectra of the hydrogen atom due to the pres-
ence of the gravitational field of a string are all measurable, in
principle.

In the space-time of a global monopole the quantum dy-
namics a particle interacting with a Kratzer potential depends
on the geometric and topological features of this space-time.
The presence of the defect shifts the energy levels as com-
pared to the flat Minkowski space-time one. It is interesting to
observe that these shifts depend on the parameter that defines
the solid angle deficit. Also the dynamics of a non-relativistic
quantum oscillator depends on the topological features of this
space-time through the angle deficit associated with its geom-
etry.

In the case of the harmonic oscillator in Safko-Witten
space-time, the wavefunction as well as the energy levels are
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modified by the conical structure associated with this space-
time, which is due to the combined effect of the distribution
of matter and the interior magnetic field.

The obtained results show how the geometry and a nontriv-
ial topology influences the energy spectrum as compared with
the flat space-time case and show how these quantities depend
on the surroundings and their characteristics.

Therefore, the problem of finding how the energy spectrum
of an atom placed in a gravitational field is perturbed by this
background has to take into account not only the geometrical,
but also the topological features of the space-times under con-
sideration. In other words, the behavior of an atomic system
is determined not only by the curvature at the position of the
atom, but also by the topology of the background space-time.
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