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We consider the gravitational fields generated by a cosmic string, a global monopole and a tubular matter with
interior magnetic field (Safko-Witten space-time), and examine some classical and quantum effects due to these
fields. We investigate the Aharonov-Bohm effect in the space-time of a cosmic string, using the loop variables.
In the space-time of a global monopole, we calculate the total energy radiated by a uniformly moving charged
scalar particle, for small solid angle deficit. We show that the radiated energy is proportional to the cube of the
velocity of the particle and to the cube of the Lorenz factor, in the non-relativistic and ultra-relativistic cases,
respectively. In the Safko-Witten space-time, we investigate the existence of an electrostatic self-force on a
charged particle. We also consider a hydrogen atom in the background space-time generated by a cosmic string
and we find the solutions of the corresponding Dirac equation and we determine the energy levels of the atom.
We investigate how the topological features of this space-time lead to shifts in the energy levels as compared
with the flat Minkowski space-time. We study the behavior of non-relativistic quantum particles interacting with
a Kratzer potential in the space-time generated by a global monopole and we find the energy spectrum in the
presence of this topological defect. In the Safko-Witten space-time, an investigation is also made concerning
the interaction of an harmonic oscillator with this background gravitational field.
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I. INTRODUCTION placed in a gravitational field is influenced by the background

space-time has to take into account the geometrical and topo-

The general theory of relativity, as a metric theory, pre_Iogical features of the spacg-time under conside_ration and i_n
' ’ this way we should emphasize that when a physical system is

dicts that gravitation is manifested as curvature of space-time, .. 10 0o ved space-time it is influenced by its geom-

which is characterized by the Rlemann tensor. On the Otheétry and topology.
hand, we know that there are connections between topolog- ) _ _

ical properties of the space and local physical laws in such According to standard quantum mechanics, the motion of a
a way that the local intrinsic geometry of the space is nopha_rged partlcle_can be mflu_encgd py electromagnetic fields in
sufficient to describe completely the physics of a given sysf€gions from which the particle is rigorously excluded[S]. In
tem. As an example of a gravitational effect of topologicalth'S region the electromagnetic field vanishes. This phenom-
origin, we can mention the fact that only when a particle is€non has come to be called Aharonov-Bohm effect[5]. The
transported around a cosmic string[1]-[3] along a closed curv@nalogue of the electromagnetic Aharonov-Bohm effect set
the string is noticed at all. This situation corresponds to theélP is the background space-time of a cosmic string[1]-[3] in
gravitational analogue[4] of the electromagnetic Aharonov-Which the geometry is flat everywhere apart from a symmetry
Bohm effect[5], in which electrons are beamed past a solenoi@Xis- In the space-time of a cosmic string we will investigate
containing a magnetic field. These effects are of topologicallis pPhenomenon using the loop variables.

origin rather than local. In fact, the nontrivial topology of In the framework of Quantum Electrodynamics, the
space-time, as well as its curvature, leads to a number of irBremsstrahlung process corresponds to the emission of radi-
teresting gravitational effects. Thus, it is also important toation by a charged particle when it changes its momentum in
investigate the role played by a nontrivial topology. As ex-collision with obstacles such as other particles or whenitis ac-
amples of these investigations we can mention the study afelerated due to the presence of electromagnetic fields. There-
some classical effects produced by the nontrivial topology ofore, in flat space-time particles moving freely do not radiate.
the cosmic string space-time as the gravitational lensing[3]On the other hand, in curved space-times the situation is quite
emission of radiation by a freely moving particle[6], electro- different, and in this case, a charged particle moving on geo-
static self-force[7, 8] on an electric charge at rest and the sadesic does radiate. This corresponds to the Bremsstrahlung
called gravitational Aharonov-Bohm effect[4] among other.process produced by gravitational fields and this may arises
As to the quantum effects, we can mention the topologicatlue to the curvature, topology or due to the combined effects
scattering [9], the interaction of a quantum system with con-of the geometric and topological features of the space-time.

ical singularities[10, 11] and with topological defects space- \ye will consider the problem concerning the emission of
times[12]. As a result of these investigations, we concludgagiation by a freely moving particle[13], caused by the com-
that it is important to take into account the topology of thepined effects of the geometrical and topological features of
background space-times in order to describe completely ange space-time generated by a point-like global monopole[14].
precisely the physical contents of a given system. The origin of this radiation is associated with the geomet-

Therefore, the problem of finding how a physical systemrical and topological features of the global monopole space-
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time which produces an effect proportional to the solid angleatom.
deficit. An atom placed in a gravitational field will be influenced

It is well known that a charged particle placed in a curvedby its interaction with the local curvature as well as with the
space-time, even at the rest, experiences a self-force due t@pology of the space-time. As a result of this interaction, an
the geometrical and topological features of the space-time. |abserver at rest with respect to the atom would see a change
particular, for a conical space-time, it is entirely due to thein its spectrum. This shift in the energy of each atomic level
nonlocal structure of the gravitational field[2, 8]. In this paperwould depend on the features of the space-time. The prob-
we will calculate the self-force on a charged particle at rest ilem of finding these shifts[20] in the energy levels under the
the space-time of Safko-Witten[15], and show that its origin isinfluence of a gravitational field is of considerable theoretical
exclusively due to the nontrivial topology of this space-time. interest as well as possible observational.

The study of quantum systems in curved space-times goes In the global monopole space-time, we will investigate the
back to the end of twenties and to the beginning of thir-interactions of a non-relativistic quantum particle with the
ties of the last century[16], when the generalization of theKratzer potential in this background space-time. In this case
Schivdinger and Dirac equations to curved spaces has bedie also determine the shifts in the energy levels. Other in-
discussed, motivated by the idea of constructing a theoryestigations concerning quantum systems in this background
which combines quantum physics and general relativity. ~ SPace-time were done recently [21,22]. We will also investi-

Spinor fields and particles interacting with gravitational 92t€ the quantum effects of gravitational fields in the frame-

fields has been the subject of many investigations. Along thi¥/0rk of the Safko-Witten space-time in which case we con-
line of research we can mention those concerning the detefider the harmonic oscillator and determine how the nontrivial

mination of the renormalized vacuum expectation value of thd®P0logy of this background space-time perturbs the energy

energy-momentum tensor and the problem of creation of paSPectrum. In this case, the influence of the conical geometry
ticles in expanding Universes[17], and those connected wit/®" the energy eigenvalues manifests as a kind of gravitational
quantum mechanics in different background space-times[1gjharonov-Bohm effect[4]. .

and, in particular, the ones which consider the hydrogen atom ThiS paper is organized as follows. In Section Il we present
in an arbitrary curved space-time[19, 20]. some classical effects, namely, the gravitational Aharonov-

It has been known that the energy levels of an atom pIaceﬁgr?rt? Zﬁﬁgteldur?wxir? CO;r?éfeSigltnhge’ ;hzc(zr_r:;rsns(laogf gf rli%I:I_
in a gravitational field will be shifted as a result of the inter- y y gp P Y

action of the atom with space-time curvature[19, 20] Thesénonopole, and the existence of a finite electrostatic self-force

shifts in the energy levels, which would depend on the fead" @ charged particle, at rest, in the space-time of Safko-

tures of the space-time, are different for each energy Ievevc\)/:tg;mmlstiﬁgognglr' Wih?frtisi?\nthzohmgrguggt;trgn?ﬁ?;ct;se’ da:i
and thus are distinguishable from the Doppler effect and fro Pie, 9y ydrog P

the gravitational and cosmological red-shifts, in which case E: grz\é':g'gfn:l f;er'l?clc()afiﬁ fhojn:gsztr?gg’c):‘r:ﬁemKorgltfzK;?tl?)?;n?:al
these shifts would be the same for all spectral lines. In fact, i P P P P

was already shown that in the Schwarzschild geometry, th&! the space-time of a global mon.opole., and Fhe modificatipns
shift in the energy level due to gravitational effects is dif- of energy spectrum of an harmonic oscillator in the space-time

ferent from the Stark and Zeeman effects, and therefore f Safko-Witten. Finally, in Section IV, we end up with some
. ) o ' = . Tinal remarks.
would be possible, in principle, to separate the shifts in th ' . . o . _
energy levels caused by electromagnetic and by gravitational Throughout this paper we will use units in whick= = 1
perturbations[20]. Thus, in these situations the energy spec-
trum carries unambiguous information about the local features
of the background space-time in which the atomic system is
located. . . . . :
In this paper in which concerns quantum effects due to The space-time produced by a static straight cosmic string

gravitational fields, we deal with the interesting problem re-can be obtained in the weak-field limit( valid @i << 1,

lated with the modifications of the energy levels of a quantumWhereu is the linear mass density of the string). In this ap-

system placed in the gravitational fields of a cosmic String,proxmatlon, we write
a global monopole and a tubular matter source with interior
magnetic field(Safko-Witten space-time). In order to investi-

gate this problem further, firstly, we determine the solutions G = M + Ny, (1)

of the corresponding Dirac equations and the energy levels Q/f/herenw = diag(1, —1, —1— 1) is the Minkowski metric and

a hydrogen atom under the influence of the gravitational fiel hw| << 1. Then, the solution of Einstein equations can be
of a cosmic string. To do these calculations we shall make,t into the form[1]

the following assumptions(i) The atomic nucleus is not af-

fected by the presence of the defe(t) The atomic nucleus ds? = dt?> —dp? — (1— 4Gm2p2d92 —dZ, 2)

is located on the defect. With these, to do our calculations

accordingly would have been possible and doing so it affordén a cylindrical coordinate systeift, p,$,z), with p > 0 and

an explicit demonstration of the effects of space-time topol0 < ¢ < 2The parameten = 1 — 4Gy runs in the inter-
ogy on the shifts in the atomic spectral lines of the hydrogerval (0,1], with u being the linear mass density of the cos-

A. Gravitational field of a cosmic string
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mic string. This is a Minkowski space-time with a wedge re-which will be used in what follows. Here € [0,], 6 €
moved. The metric can be transformed to a locally Minkowski[0, 17, ¢ € [0, 211.

form with 8 = (1—4Gp)6, but now0 < 6/ < 2r(1—4Gp). In This metric corresponds to a space-time with a solid angle
the coordinatest, p, 8/,z) geodesics are straight lines, but in deficit A = 32r°Gn?; test particles are deflected (topological
coordinategt, p, 8, z) they bend through an angleiGj. scattering) by an angIH% irrespective to their velocity and

The gravitational field of a cosmic string is quite remark- impact parameter. This metric represents a curved space-time

able; a particle placed at rest around a straight, infinite, stawhose curvature vanishes in the cise 1 (flat space-time).

tic string will not be attracted to it; there is no local grav- For@= 7, the metric (6) is exactly the same as that of a cosmic

ity. The space-time around a cosmic string is locally flat butstring, in which case the azimuthal andiéhas a deficia =

not globally. The external gravitational field due to a cos-2mr(1—b).

mic string may be approximately described by a commonly

called conical geometry. Due to this conical geometry a cos-

mic string can induce several effects like, for example, gravi- C. Safko-Witten space-time

tational leasing [3], electrostatic self-force[7, 8] on an electric

charge at rest, Bremsstrahlung process[6] and the so-called The gravitational field due to a tubular matter source with

gravitational Aharonov-Bohm effect[4]. an axial interior magnetic field and vanishing exterior mag-
netic field[15], which we are calling (Safko-Witten space-
time) is introduced in this subsection. This space-time corre-

B. Gravitational field of a global monopole sponds to a solution of the combined Einstein-Maxwell field

with cylindrical symmetry. The exterior space-time corre-

A global monopole is a heavy object formed in the phaséponding to this configuration of fields is locally flat, but glob-
transition of a system composed by a self-coupling iso-scalad!ly itis notflat. The geometry of the sectios- constantand
triplet ¢, whose originalO(3) symmetry is spontaneously 2= constants a cone. The line element corresponding to this
broken toU (1) [14]. case is[15]

Combining this matter field with the Einstein equations and
(r:T:)erE)i/dering the general form of the metric with spherical sym- d — B (dt2 _ dpz) — p?dd?—dZ @)

The paramete is given by

B—n (1+Hipd)* L _AHip1 (p2—py)
p? 1+Hipz (v+1)

ds? = B(r)dt? — A(r)dr? —r?(de? +sirfedd?),  (3)

the gravitational field is solved and gives the following
result[14]
and depends on the intensity of the interior magnetic field
M throughH; and on the mass. The quantitips and p, are
B=A1l=1-8m?-2—, (4) theinterior and exterior radii of the tube of matter and an
r arbitrary constant.
whereM ~ Mcore andn is the symmetry-breaking scale. It is _This space-time_ corre_sp_onds to a Minkowski space-time
worth noticing that far away from the global monopole coreMinus a wedge with deficit anglere * as we can see by
the main effects are produced by the solid angle deficit andefining the coordinatet, p', ¢’ by t' = °t, p’ = ép and
thus we can neglect the monopoie’s mass. Therefore, we of’ = € 9. In this space-time, any observer outside the tube

tain the metric of a point-like global monopole which can be0f matter would see a flat space. This local flatness means
written as[14] that there is no local gravity due to the tubular matter source

with interior magnetic field, however we have some very in-
teresting gravitational effects associated with the non-trivial

ds? = b?dt? — b~2dr? — r2(d@? + sirf 8d¢?), (5) topology of the space-like section.

where the parametdr is connected with the energy scale

of symmetry breaking) and is given by the relatioh? = Il CLASSICAL EFFECTS
1-8m?. For typical grand unified theory the parameter
n is of order 10%GeV and thus1 — b? = 8m? ~ 10°°. In this section, we will consider some gravitational effects

The space-time (5) is the solution of Einstein equations withat classical level, due to the gravitational fields generated by a
diagonal energy momentum tensor with componéfjls=  cosmic string, a global monopole and a tubular matter source
diag(2,2,1,1)(b* —1)/r2. with an interior magnetic field. The effects under considera-
Rescaling the time and radial coordinates by relations  tion will be the gravitational analogue of the electromagnetic
t/b? andr — r/b? we obtain the following form for the line Aharonov-Bohm effect, the emission of radiation by a freely
element moving particle and the electrostatic self-force on a charged
particle, in the cosmic string, global monopole and Safko-
ds? = dt? — dr? — b?r?(d@? + sirf 6d¢?) (6)  Witten space-times, respectively.
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A. Gravitational Aharonov-Bohm effect due to a cosmic string In this paper we shall use the following notation
. . . ZA
In the sixties and seventies of last century, it was dx#
proposed[23, 24] a new formalism for gravitation in which Une(C) = Pexp r“(x()‘))deA ' (12)

the fields depend on paths rather than space-time points. In B

this formalism several equations were established involvingNherer is the tetradic connection ardandB are the initial
u

these new variables(loop variables). The loop variables wer . . : :
also used to describe gravitation[25], and put into evidence thgnfii J:Tr]]a; %%ir:]tts Aotfotf;e p%zii:]rtléT\t]v?enﬁ:\?:O; 'gfg x:;gﬁg path

_equwalence b_etween_Emsteln equations and the correspongg; o, by Eq.(12) which, by construction, is a function of the
ing ones obtained using the loop variables. These variabl the trical obiect
were also computed[26] for the gravitational field correspond- amn’. as a geometrical Object. . .

In what follows we will compute the loop variables in the

ing to the Kerr metric. -Other investigations related to thetheory of gravity on the basis of a metric formalism, for dif-
use of loop variables in some gravitational fields were don(?erent curves in the cosmic string space-time. In order to do

re(_:l_imlil[ﬂ]' iables in the th ¢ . ____this, let us consider a coordinate systéte-t, x! = p, x*> = ¢,
e loop variables in the theory of gravity are matrices,s _ , -4 qefine the one-formsi(a— 0,1,2,3) as
representing parallel transport along curves in a space-time

with a given affine connection.They are connected with the o = dt (13)
holonomy transformation which contains important topolog- 1 ’ .

ical informations. These mathematical objects contain infor- wo= cpsd)dp—apsmq)dq), (14)
mation, for example, about how vectors change when paral- W = singd¢ +apcospds,

lel transported around a closed curve.They are defined as the W = dz (15)

limit of an ordered product of matrices of infinitesimal parallel
transport as Using the Cartan structure equatiothe? = —wﬁ/\wb =

N emdx"dw, we get the following result for the tetradic con-

U(Cypil) = _rl<68;,i —rf . )dXr,  (8)  nections
i=
—pdX =T dx = —(1—a)dd (16)
wherexo =X, Po =V, Xy =Y, PN = I, dX = (X —Xi—1) /€. . o
The pointsx; lie on an oriented cunv@yy with its beginning Let us consider a circl€ in the equato(dp = dt = d¢ =
at the pointx and its end at the point The parallel-transport  0), then the holonomy is given by
matrix U} is a functional of the curv€yy as a geometrical
object.

If we choose a tetrad frame, a ba{iq(f‘) (x)} and a loop

C such thatC(0) = C(1) = x, then in parallel transporting a
vector X* from C(A) to C(A + dA), the vector components

z 21 .
u(C) = exp( I'¢d¢> — g 8Tkh2
0

10 0 0
change by _ 0 coanT_ sin8rtﬂ_ 0 17)
XM = ME[x(A)] XVdA, 9) 8 asm&m %osam (i ’

e o gherl s he eerto of rotations about i
' P ¢ From the above result we see that when we parallel trans-

\L/Jaulge qf)\.TBenr,]n f°"°V.VS th%t the ?orlignlpmy transformation port a vector around the cosmic string at rest at the origin, this
v IS given by the matrix product of the linear maps vector acquires a phase that comes from the holonomy which
® 1 is given byexp(—8itquJ;2). If now we consider a segment in
Uy = lim I_l [&‘+ MY XN i |- (10)  the zdirection, translation in time, and radial segments, we
N=e N N conclude that in all these cases the holonomies vanish identi-
cally. Therefore, we can use these results, and write a general
One often writes the linear mag}’ given by Eq.(10) as expression fotJ (C). In the general casél(C) reads[28]

7z . Z
UC)=Pexp| M|, (12) U(C)=Pexp( —5 Mot |, (18)
c Cc

whereP means ordered product along a cuBréEquation(11)  where Jyp, are the generators of the Lorentz gro8@(3,1)
should be understood as an abbreviation of the right hand sicend Fﬁb are the appropriate tetradic connections. Therefore,
of Eq.(10). Note that iM} is independent of, then it folows ~ we can say that when we carry a vector along curves in this
from Eq.(10) that!' is given byM} = (expM)h. space-time, it acquires a phase that depenasony), which
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prevents it from being equal to the unit matrix. This effectwhere
is exclusively due to the non-trivial topology of the cosmic

string space-time. This is a gravitational analogue[4] of the D"d(x;X) = > [Dre‘(x X) — D2V(x; X) (25)
Aharonov-Bohm effect[5] but, in this case, purely at classical
level. is the radiative Green function.

In order to find the Green’s functions, let us first of all ob-
tain the complete set of eigenfunction of the Klein-Gordon
B. Emission of radiation by a particle in the gravitational field equation (19) which can be written as
of a global monopole
, , _ = {af—lzar(rzarwzlzﬁ}q::)\zqa, (26)
Now, let us consider a scalar particle with scalar charge r b

living in the space-time of a global monopole. The scalar and i 5 Ay
minimal coupling field corresponding to this particle obeys"ith €igenvalues\”. HereL" is the square of the angular mo-
the Klein-Gordon equation mentum operator. The complete set of solution of the eq. (26)

was considered in the context of quantum fields[29], and it has

O (x) = —4mj(x), (19)  the following form
with a scalar current i
z N P map(t,r,6,0) =e [ D3, (OY"(0.0),  @27)
=g &x—x1)—== _ . o :
v—9 wherel, (x) is the Bessel function of first kin{(6, ¢) is the
spherical functionl = 0,1,2,---, |m| <1)); p= VA2 + ¥
9 0(r—r(t)d(¢ — ¢(t))d(6 —6(t)) and
5 _ . (20)

u b2r2sir? 0 T

The trajectory of a freely moving particle in this space- VI = b2 4 (28)

time may be found in general form from the standard set of
equations of geodesic line. For S|mp||c|ty and due to Spheri_ Using this set of solutions the radiative Green function
cal symmetry we consider the trajectory of the particle in the'eads
planed = 7, assuming that at time= 0 the particle is in the

o+l
c_Iosest d?stancp from monopole’s core, which is by defini'— D (x;X) = ﬂi/ Z) z Y™(0,9)Y,™(6',9)
tion, the impact parameter. The trajectory has the following VI G
form
1w, m 1 Z e
24 v22 ¢ = —arctan—, 8= —, WO = - dow san(w)e@t- —t) 29
2
wherev is the constant velocity of the particle anflis the < dppd, (pr)d, (pr')3(p* - ).

zero component of the four velocity. o i i )

To find the total energy radiated by the particle during all  Taking into account this formula into Eq.(24), we obtain the
its history we adopt an approach already used[6]. Let us sunfollowing expression for the total energy
marize here its main aspects. The total energy radiated by a

particle is expressed in terms of the covariant divergence of N Z ’ym ‘ doo ||
the energy-momentum tensor as follows V2b2 Z)
z
E= TE/—g(x)d*x (22) Z,
v )
. dpp3(p? —?)[(w, pvp) P, (30)
where&H is the time-like Killing vector. Taking into account
the explicit form of the energy-momentum tensor where we have introduced the functigfi by the relation
1 1 a 2 i e ant b (Py/ P2+ V2H2)
Tw =7 (q’.uq’,v— ngq’,aq’ )’ (23) S (w, p,v;p) = ) dte' 1 arctaniy I(p2 R
(1)

the equation of motion for a minimally coupled scalar field
(19) and the explicit expression for the Killing vectét =
(1,0,0,0), one has the following expression for the total en- S(—w, p,v,p) = § ™(w, p,v.p). (32)
ergy radiated by the particle during all time

z Using this we may represent the total energy as an integral

0 d N A4y 4
E =4m aD""(xx’)( X) v/ —9(X)/—g(X)d*xd*X, Zo gE

(24) =0 e (33)

This function obeys the following symmetry relation
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where the spectral density is where
dE 21'[q o m
o~z 2 D 5 Prgof Igeover. @
The functionS™(w, w, v, p) given by Eq.(31) may be repre- Z _ooy (y—1 : Iy, (wp/Y? —1)
sented in a slightly different form, more suitable for analysis 3 (@V%P) = L dye"v y+1 (2 1)1/
(here we assum® > 0) as (36)
\[ .
S wvp)=—27 smé M sm (@v.p), Therefore we can express the spectral density of radiation

(35 by

dE 2 m( m 1
o= v2y2b2%Z ‘Y ‘ \S“va]smz {w 5 2]. (37)
Integrating over the frequenay, using formula 6.612(3) from Ref.[30], we find that the total energy is
i Z ‘Ym ‘ Smz ym L (38)
v3y2b2 b 2
fo dy (y-1\ B gy y-1\"5 / ho
< ra(m) T ) e e
\
HereQ, [¥] is the Legendre function of second kind; the prime of b for which total energy is identically zero.
means the derivative with respect to its argument, and Let us simplify our formulas for the global monopole space-
oo 2 time assuming that solid angle deficit is small. In this case we
coshy = YV -y —y*+2 can expand sine in the previous formulas in termi aé
2\/y2—-1/y2-1
2
Now, let us analyze the above expressions in the Minkowski it ™ |y m 1] 1 LT | 1(1+1) m 39
limit. In this case we have to piit= 1. Due to this, the ar- 21" 2 ~(1-Db) 4| +% B - (39)

gument of sine is; (I —m). Next we have to take into account

thatY,™(Z,0) =0, if (I +m) is odd. For this reason the argu-

ment of sine isf x (even number) which implies that the sine  Therefore up to(1 — b)? we may setb = 1 in the rest

of this quantity is zero and as a consequence the total energypgrt. Firstly, let us analyze the total energy given by Eq.(38).
zero, too, as it must be in Minkowski space-time. Differently The sum ovem can be made using the addition theorem for
from the cosmic string space-time there is no specific valuekegendre function of the first kind from[30] and results in

z

2 2Z o o o 3
_ ma-b2te dy P gy AT AT
E = Ao 1 Y11 y'2—1(y+y),; I+2 5 I+2 +16I+ (40)

+ 2 ((I + ;>2_ 411) g+ (I + ;) aé] R [cosB]Q] [coshol,

where Using now an integral representation for the Legendre func-

yy+1

(41)
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tion of the second kind as below we get, finally, the following expression for the total energy
z [ —(14+1/2) tdt
Qi[cosho] = (42) 2 272 2
2 cosh cosho’ ®= @ dyd
o £ - —(1- b YY Elsyy).  (44)

and the relation 2p 1 1 (Y+Y)
1 1

V2 \/cosh — coshB’

i & (11/2tp [coshp] (43)  where
|=

z
- 4 @dx o [ 1 1 6s°z7 15 2
E = 14y 102 252_163222 0 VXX Lﬁ{(x+1)3/2+(x+1)5/2Jr (x+1)7/2H

a1 fedd 1 } )
4 0 VXX [R¢ x VReVX+1]’
\
and we have introduced the following definitions In the non-relativistic case we may expand all integrand in
Eq.(45) over small values of the parametand calculate the
— yy +1 2 — 1 integrals. The main contribution, in this case, is proportional
! (y+y)?’ y+y’ to the cube of the velocity
R = (x+1)2+45°z(x+1)+4s'2,
2
with the parametes given bys = vy. E=(1- b)z%Vs- (46)

The formula obtained looks very awesome but it may be
analyzed without great problem for non-relativistic and ultra-
relativistic particles. The functio depends only onthe com-  The ultra-relativistic case is more complicate due to the last
binations= vy = v/v/1—V2. In the non- relativistic case the term in Eq.(45). There is no need, in fact, to calculate the
parametes — 0 and in the ultra-relativistic case— o, and  contribution from it. It is enough to find an upper bound for it.
therefore we have to analyze the functi®iin these two lim-  Let us analyze the contribution from this term which is given
its. by

LW E e dydy Zedxa [ 1 fe dX 1

W=—-(1-b — . 47
D e 1 Y o VRO VR « VR VR “n
First of all one represents the polynomiin the following form

Rq= (x+ 1+ 282 ) (x+ 1+ 282), (48)

whered? = 2(z + /22 — 23). Becausé? are positive we can write out the following inequalities
Fodd 1 fedd 1 _fe dx _, 49)

VR(VX+1~ 0o VReVX+17 o (x+1)3%2— 7
Using this upper bound we have
2722 0l o E(y/1-2) 2722 0l

4p 1 1 (y+y)? ap?
\

8p 1 1 (y+y)dap’

wherea = /149282, b= /1+ 282 and we used the fact that the upper bound for elliptic integral of second kiads
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/2. Now we change the variablgs— sy ¥ — sy and take p = po, & = mandz= 0 in the space-time under considera-
the ultra-relativistic limits — co. In the end we have the fol- tion, which is locally flat, but with a non-trivial conical topol-
lowing estimation ogy. As we will show, even with the curvature being zero in
all points, except in the localization of the tube of matter and
inside it, there is the interesting physical effect which corre-
sponds to the existence of a self-force.

TP

W| < (1—b)2 . 51

W< (1-b)2 50 (5)
The contribution of others terms in Eq. (45) is of order In order to obtain an expression for the self-force, we will

larger tharny®. Calculating the other integrals in Eq. (45) one determine the electrostatic potent\a(p, ¢,z) generated by

has that the total energy radiated in ultra-relativistic case ishe point test charge. To do this let us use the Maxwell equa-

given by tions in curved space-time which are given by
3P
E=(1-b)2=V. 52
A=) 5 (52)
C. Force on a charged particle at rest in the Safko-Witten ii (\/—gF“") = 21 iV (53)
space-time V—goxt €o
In this section we are interested in determining the electro-
static self-force on a point test chargdocated at the point where
|
Ohn dx

o(r—rp)

P=p=y M _5r-ry) and j'=y
n n

v —g®

g® being the determinant of the spatial metric tensor.
¢From Eq.(53) we obtain the equation for the electrostatic potential due to a point testaqharghe background metric
given by Eq.(7) we get the following potential equation

d?

v —g®

-2 B )
<epap (Pdp) + p—lzaqz, +a§> V(p,$,2) = — <8‘1> 3(p—po) 2((;1: ™ 3(2) 4

wheregg is the permittivity of free space.
Changing the variablp — e Pp’, we get

e 1 a) 3(p' —pp)8(¢—13(2)
<p,0pf (P'0p) + 2% +<’§> V(P02 = - (80> o (85)
where we used the propeidye P (p' — pp)] = €8 (p’ — pp) -
Equation (55) reduces to the usual potential equation, in the subset of Minkowski space-time covered by the coordinate syst
(t',0’,8,2), where® = eP¢, with the point charge located pt = p)), = e P andz= 0. In this case it can be written as

1 1 g\ o(p'—pp)0(6—1)d(z
The potentiaV (p’, 8,z) must satisfy the boundary conditions
V(p',0,2) = V(p',2me P 2)
a—v(p’707z) = ‘LV( ' 2me P 2). (57)

00 00
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Following the same procedure adopted by Linet[7] who used a result[31] on the electrostatics for a wedge formed from tw
semi-infinite conducting planes, we can write the solution of Eq.(56) as

q Zo sinh(&eP/2)
(4reo) 2me B (20/p}) 72 n \ cosh(EeP/2) +sin (BeF/2)

sinh(8eP/2) de
cosh(&e?/2) —sin(6€®/2) | (coskE — cosm)Y/?

V(pv e,Z) = (58)

wheren is defined bycostn = (p? +pZ +22) /20'pp, (N > 0).
Returning to coordinaté, which is related withd by 6 = e P$, we obtain the following expression for the electrostatic
potential

q Z o sinh(£€?) dg

59
(4meo) 2meP (20'pp) Y2 [cosh(&eP) + cosp] (coshE — coshn)Y/? (59)

V(p’,d),z) =

In the neighborhood of the point charge, we can separate the electrostatic potential (59) in two terms as follows

V(p/aq)vz):VM(p/’¢aZ)+H(p/7¢7Z) (60)

where the first termvy, is infinite at the position of the charge and corresponds to the Coulomb potential in Minkowski space-
time, andH is a regular solution of the homogeneous equation corresponding to Eq.(55).
Then, we have

/ q
V p 7¢7Z = : (61)
M) e (07 08+ 22— 20/ oos(e P (8- 10)] |2

Equation (61) reduces to the electrostatic potential due to a point charge in the flat space logategdiath = mandz=0
whenp is equal to zero.
In order to obtairH (p’, 9, 2) it is necessary to write Eq.(61) in integral form as

z

® sinh&dg
VM(p/aq)aZ) = a 1/2 172 (62)
(41eo) Tt (2p/p)) /" n {costE —cos[e P (¢ — )] | (cost —cosn)
Comparing Eq.(59) and (62), and using Eq.(61), we obtain the following expressibifar, z)
q
H(p' 9.2 =
(4meg) T1(20'pp) 1/2
. Z sinh(ePg) - sinhg 63)
n \ €8 [cosh(eBE) +cosp|  (coshE —cos[e? (¢ —m)])
S S, 64
(cost —cosn) /
\
As locally we are in the Minkowski space-time, we will ig- is located.
nore the infinite forces arising from the electrostatic potential .
Vi, and we will consideH (p’, ¢, z) as a kind ofexternalelec- From Egs. (64) and (65), we obtain
trostatic potential which exerts a force on the chayg€&hen,
we can compute the electrostatic force from the electrostatic 2
energy which is given by wo (Ls)_9a (66)
1 4t/ Ateopy
W = >aH (po, 1 0) (65)

at the poinp’ = pp, ¢ = mandz= 0, at which the point charge whereLg depends on the paramefeand is given by
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The generalized Dirac matriceg' (x) satisfies the anti-
7 _ commutation relations
@ sinh(é’s)  sinhg dg
o \eP[cosh(ePg)—1] coshE——1

Lg = .
sinh () 0.V (0} = 20" (%),
(67) and are defined by
Hence, from Eq.(66) the exerted force whose components
arefP = —aW/dp}, f® = —0W/d¢ and fZ = —AW/dz, is

Y (X) = ey (0@, (72)
2
P = (L‘;) e‘zﬁ% fo=f2=0. (68)  where e’(‘a> (x) obeys the relatiomabe*(‘m (X) eYb) (x) = g*;
TEoPp W v=0,12 3aretensorindicesaralb=0,1,2 3are tetrad
In the limit  — 0, we get the following result indices.
In this paper, the following explicit forms of the constant
5 Dirac matrices will be taken
°~ 0281 > |
0 . i
° \%0)(301);%')( Oi%>;i1,2,3, (73)
Therefore, in the space-time of a tubular matter source with —0

interior axial magnetic field there is a self-interaction between
a charged particle and this tube of matter induced by the nonyhereg' are the usual Pauli matrices.

trivial conical topology of this space-time. In order to write the Dirac equation in this space-time, let

us take the tetradg, (x) as
. QUANTUM EFFECTS

1 0 0 0
0 sinBcosp sinBsing coso
é(Ja) (X) = 0 cosfcosp cosfsing  sin@ . (74)
I r r
A. Relativistic hydrogen atom in the space-time of the cosmic e 0

string

In what follows we will consider the background space- 1NuS using (74), we obtain the following expressions for
time generated by a cosmic string and study the behavior df'€ 9eneralized Dirac matricgs(x)
a hydrogen atom placed in it[32]. The line element corre-

sponding to the cosmic string space-time is given, in spherical V(X = y<0>
coordinates, by 00 y“)’
X) = ,
ds’ = dt? — dr? — r?d6? — ar?sir’ 6d¢’. (69) 200 V@)
X) = —,
Let us consider the generally covariant form of the Dirac ' 0
equation which is given by V(X)) = W. 5 (75)
arsin

(V00 (Ou+Tu(x) +ieA) —WW(x) =0,  (70)  where

where is the mass of the particlédy, is an external elec- v i o ey
tromagnetic potential anid, (x) are the spinor affine connec- o cospsin®  singsind  cosp )

tions which can be expressed in terms of the set of tetrad fields v | = COSpcosH sinecosh —sing v .
et‘a)(x) and the standard flat space-tiy/® Dirac matrices as v —sing  cosp 0 v 76)

1 The covariant Dirac Eq. (70), written in the space-time of a
Mu= Zly<a>y(b)e‘(’a)(6ue(b>v — T Veb)o)- (71)  cosmic string is then given by[32]
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8 ®
{IE O+ r ae—HO(rsinea‘p
bt (o2 (zr+coteze)—eﬁo—y<o>u+E X(F)=0 (77)
2r a ’
{
wheres", 58 andy ® are defined by with ¥ = (', 28 39) YioMa and Ly is the general-

ized angular momentum operator[32] in the space-time of

[ i ich i IRVALC) _
ST = YOy, 5O = Oy SO\ Oe  (7g) the cosmic string, which is such thm(za)Yl(u) (8,0) =

Lo (@) +1) leg‘”, with le()“) (8,9 being the generalized

and we have chosé# (x) as spherical harmonics in the sense thgg; andl ) are not nec-
essarily integers. The parameteng,) andlq, are given, re-
. H — — _ 1
W(x) = e Ety (1), (79) spectively, bymq) = T andl(q) = n+mg =1 +|m| (3 — 1),

I =0,1,2,... n—1, | is the orbital angular momentum quan-

which comes from the fact that the space-time under consid™ numbermis the magnetic quantum number amé the
eration is static. principal quantum number.

We must now turn our attention to the solution of the equa- L€t us/choosg) the following two-dimensional representa-
tion for x(7). Then, let us assume that the solutions of Eq.ion for 3 andyt

(77) are of the form 0 i 10
—i
z;:(i 0);‘/0)_ 0 -1 (84)

Now, let us assume that the radial solution can be written as

x(F) =r2(1-3) (sing) 2(-3) RO (B) @ (¢). (80)
Thus, substituting Eq.(80) into (77), we obtain the follow- 1 i
ing radial equation R(r) =+ < - (r()r ) ) . @85)
!
(Cﬂ Pr +i%\/0)k(a) +efy+ HV(O)> R(r)=ER(r). (81) Then, Eq. (81) decomposes into the coupled equations

where

. 1 .1 1

are the eigenvalues of the generalized spin-orbit opekqtgr

in the_ space-time of a cosmic s_tring ang) corresponds to i {E+p+ ez} G(r) + dF(r) @F(r) —0, (87)
the eigenvalues of the generalized total angular momentum r dr r

operator. The operat® is given by

—i [E—u+ erz] F(r)+d§7(rr)+@6(r) =0, (86)

and

where we used the fact thAg = —e/r.
Lo The solutions of these equations are given in terms of the
YOK@ =3 Ly +1, (83)  confluent hypergeometric functidvi(a, b; x) as

J

Yia)—1+P -

(((2) +Q)) (Via) + P2 = 1;2D) |, (88)
a

and
efrD 1 5
G(r) = —— (D)™ [M(Y(a) = 1+P,2y(q) — 1;2D)

Yia)—1+P .

—(Eiz)+®) (Yia) + B, 2Yie) — 1;2D) |, (89)

[0}
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where T = pu— = u+E, D= /TQ= /I2—E2  aregivenby
=1+ ,/K a p=2a - T): =

Ve S (VT/Q-VQrT): @ -
T/Q++/Q ), with ~ T being the fine struc- E— u{1+6(2 (n+|k(u>] /1_5(2%2)) } . (92)

ture constant.
The solutions given by (88) and (89) are divergent, unless

the following condition is fulfilled This equation exhibits the angle deficit dependence of the en-
~ _ ergy levels. Itis helpful to introduce the quantum numigy
Yo —1+P=-nn=012., (90)  that corresponds to the principal quantum number of the non-

. relativistic theory whem = 1,
which means that y

<\/> \/7> —(N+Y@ —1). (91) N(a) =n+j<a)+%~ (93)

¢ From this equation we may infer that the energy eigenvaluegherefore, Eq. (92) may be cast in the form

Eng i = H{ 1+62 NS O A N SO T A o1
o =H) 1O N @ =5 ) e 3 ) {28 e 5 . (04)

This equation can be written in a way which is better suitedTherefore, the interaction with the topology(conical singular-
to physical interpretation. Thus, s« 1, we can expand Eq. ity) causes the energy levels to change. Note that the presence
(94) in a powers ofi, and as a result we get the following of the cosmic string destroys the degeneracy of all the levels,

leading terms corresponding td = 0 andl = 1, and destroys partially this
degeneracy for the other sub-levels. Therefore, as the occur-
a2 a* (3 N(a) rence of degeneracy can often be ascribed to some symmetry
By i@ = K= u2n(2 3 “2n21a) 4 ot (95)  property of the physical system, the fact that the presence of

the cosmic string destroys the degeneracy means that there is
iR break of the original symmetry. Observe thatdos 1, the

The first term corresponds to the rest energy of the electro
the second one gives the energy of the bound states in the nofsults reduce to the flat Minkowski space-time case as ex-

relativistic approximation and the third one corresponds to th&€cted:

relativistic correction. Note that these last two terms depend As a estimation of the effect of the cosmic string on the en-

on the angle deficit. The further terms can be neglected irrgy shift of the hydrogen atom, let us consides 1 —10°

comparison with these first three terms. which corresponds to GUT cosmic strings. Using this value
Now, let us consider the total shift in the energy betweerinto Eq. (96), we conclude that the presence of the cosmic

the states withj = n— % andj = %, for a givenn. This shift  string reduces the energy of the level of the stafs,(n= 2,

is given by =1, j=1-3=21 m=1) to aboutl0-*% in comparison
with the flat space-time value. This decrease is of the order of

AE, . = E N —1 the measurable Zeeman effect in carbon atomPostates
(a) ) (a) n(sa) 2 [n(a) +m(% _ 1)} 1+m(% — 1)] ' when submitted, for example, to an external magnetic field

with strength to about tens of Tesla. Therefore, this shift in
the energy levels produced by a cosmic string is measurable
f£s well.

(96)

One important characteristic of Eq. (94) is that it contains
dependence on, j anda. The dependence ancorresponds Finally, we can write down the general solution to Eq. (70)
to an analogue of the electromagnetic Aharonov-Bohm efeorresponding to a hydrogen atom placed in the background
fect for bound states, but now in the gravitational contextspace-time of a cosmic string. Thus, it reads the
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() = e Er 23 (sing)~2(+3)

i) +My o)+ 1 m( )71
\/ <O[)2|(m)(i)1 2Y|(a(; (8,9
X F(u) (r)

(@) J o =l(@)+ M)

@) =M+ M)+ 3 ' (97)
(@~Ma)+3 Mo+ 3
gt Vi (60
and
I )~j(a):|(q)f%.m(u)( ) = eilEtri%(li")(Sine)_%(l u)

() M)+ 3y M)~ 3
At M@ (69

*Ca (1) T mosd 7 (98)
Vo) M) +3 M) 2

whereF (r) andGq) (r) are given by Egs. (88) and (89), where[J2; is the Laplace-Beltrami operator, the covariant ver-
respectively, and the mdex\_/vas mtrod_uced to emphasize the gjgn of the Laplacian given biyg = g‘%ai (gij g%aj>, with
dependence of these functions on this parameter. . : )

Note that the solutions depend on the topological featurel | = 1,2,3,9= det(g” ); His the mass of the particle aiwd
of the space-time of a cosmic string whose influence appeal§ & external potential. , _ _
codified in the parameterassociated with the presence of the NOW; Iet us consider a particle placed in the space-time of

cosmic string and this is the point at issue here a global monopole, interacting with a Kratzer potential given
. by
B. Kratzer potential in the space-time of a global monopole >
A 1A
V(r)=-2D T2 ) (100)
In order to do these studies let us consider that a non- ' '

relativistic particle living in a curved space-time is described

L . . 'whereA andD are positive constants.
by the Schedinger equation which should take the form In order to determine the energy spectrum let us write

U 1 the Schédinger equation in the background space-time of a
iﬁ = *ﬁDEBUJ +Vu, (99) global monopole. Then, we get
|
- 2rb23+b2r2‘l2—L2—2D A_LN (r) = Ey(r) (101)
2ub?r2 or or2 ro2r2 W) = Ewn),

whereL is the usual orbital angular momentum operator. WeSubstituting Eq.(102) into Eq.(101), we get
begin by using the standard procedure for solving Eq. (101)
and assume that the eigenfunction can be written as

Wi (1) =R(1)Y"(6,9). (102)

ro2r2

2 2
—zludglrgr)—2D(A 1A> |(r)+Zlul(thzl)gl(r):Eg(r), (103)

whereg (r) = rRi (r). The solution of Eq.(103) can be written as

g(r)=r" e P (r) (104)
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where WE2UEP.02 =i Tu(tp.02, (111
11 I(1+1)
A= 5T 5\/114 2uDA? + 2 ; (105)  whereV (p,2) is the interaction potential corresponding to a
three-dimensional harmonic oscillator which is assumed to be
and 1 W (0P 2
— V(p,2) == +z). 112
B? = —2uE > 0. (106) (-2 M (p ) (112)
Substituting Eq. (104) into Eq. (103) and making use of We will now determine the eigenfunction of the Eq.(111),
Egs. (105) and (106) we obtain the equationF¢r) with the interaction potential given by Eq.(112), by searching
) for solutions of the form
d“F(2) dF(z) 2mAD
— >+ (2\ — —(MN———F(29= —
a4z (-2 dz ! B (2)=0 P(t,p,0,2) = ie"E“r'meR(p)Z(z). (113)
_ (107) ven
wherez = 2pr.

: . L _ Equation (111) leads to two ordinary differential equations
| The sglunon of th|sﬁequat|on_|s the_ confluent hypergeometfor R(p) andZ(z) which are given by
ric function{Fy ()\| AR ZBr), with y? = 2uDA?.
Therefore, the solution for the radial functigp(r) is given

2
by 171d R(ZP) 1 dRlp) 7”\2 +}uvv2p2=Q
_ ¥ B 2u |[R(p) dp Rp)p dp e Pp?]| 2 114)
a(r)=rMe PR <?\| - B‘A’Z)\I ; 2[3f> : (108) g
In order to makeg (r) vanishes for — o, the confluent 1 d’z(2 1 B
hypergeometric function may increase not faster than some 72HZ(Z) d2 T E“szz =& (115)

power ofr, that is, the function must be a polynomial. Hence
whereQ is a separation constant and such that

Y _ s

With this condition we find that the eigenvalues are givenby  Equation (115) is the Scbdinger equation for a particle
2 in the presence of one-dimensional harmonic oscillator poten-
1 /1 1(+1) n ) (110) tial and then we have the well-known results

1 (-
El,ﬁ:_m\/‘l (nr+2+ it

It is worth noticing from expression for the energy given
by Eqg. (110) that even in the case in which thecomponent
of the angular momentum vanishes the energy level is shiftewith
relative to the Minkowski case.

As an estimation of the effect of the global monopole on  7(z) — 7 (nzg)—% (ﬂv)
the energy spectrum, let us consider a stable global monopole n
configuration for whic = 0.19mp, wherem,, is the Planck W 11 is the Hermite Polynomial
mass. In this situation the shift in the energy spectrum be- Now ?ét us look for solutions of Ed (114). Its solution can
tween the first two levels in this space-time decreases of abo%te writi en as ' '
82%as compared with the Minkowski space-time. For sym-
metry breaking at grand unification scale, the typical value of T 2\ me®
8nGn? is around10-6 and in this case the energy shift de- R(p) = exp(—ép ) PR (), (119)
creases of about%.

1
SZ: <nz+ 2> W; nZ:O,l,Z,..., (117)

E

e 7%Hy, (iwg, (118)

wheret = mwand

C. Harmonic oscillator in the space-time of Safko-Witten F(p)=1F1 ( +—— =, =T

Let us consider the line element corresponding to Safko-

; - i m)
Witten space-time which is given by Eq.(7). The Sitinger 'S the degenerate hypergegmetnc function, \Nh 1+23_' )
equation in this space-time reads as In order to have normalizable wave-function, the series in

Eq. (120) must be a polynomial of degmgg and therefore

1 1 1

Lm0
2 2B 21 —Np; Ny =0,1,2,.... (121)
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With this condition, we obtain the following energy eigenval- whereN = 2n, 4-n,.
ues

m|
Q=w<1+e_2B+2np . (122)

If we substitute Egs. (122) and (117) into (116) we get, finally,
the energy eigenvalues

En=w (N + % + 2) , (123) Therefore, the complete eigenfunctions are then given by

_ —iEnt o 5p2 o|m]e?P 1 Im| _HQ Ao
qJ(tapv B,Z) CNme e 2 p I:l 2 + 2372[3 21 ) 2 P
1 w
«dm2% (1)~ (%V) Yo 27H,, (iwd), (124)

whereCym is a normalization constant. It is worth calling arises associated with the curvature and non-trivial topology
attention to the fact that the presence of the tubular mattenf the space-time of the global monopole, differently from the
source with an interior magnetic field breaks the degeneracgosmic string case in which the effect comes exclusively from
of the energy levels. the non-trivial topology of the space-time.

In the case under consideration the shift in the energy spec- If a charged particle is placed in the space-time of Safko-
trum between the first two levels in this background increaseyvitten, it experiences an electrostatic self-force associated
of about10-°% as compared with the flat Minkowski space- with the conical structure of the background space-time. This
time case. structure deforms the electrostatic field of the particle and this

deformation depends on the distance between the particles and
the tube and on the magnetic field in the interior of the tube,
IV. FINAL REMARKS in such a way that an electrostatic self-force appears.
The presence of a cosmic string changes the solution and

The loop variables in the space-time of a cosmic string ar&hifts the energy levels of a hydrogen atom as compared with
elements of the Lorentz group. Therefore, for a given curvdhe flat Minkowski space-time result. It is interesting to ob-
in this space-time, the phase shift acquired by a vector is af€rve that these shifts depend on the parameter that defines
element of the Lorentz group. When a particle is parallethe angle deficit and vanish when the angle deficit vanishes.
transported along a curve around a cosmic string, it acquireshese shifts arise from the topological features of the space-
a phase which is different from zero. This fact is a manifestalime generated by this defect.
tion of the phenomenon called gravitational Aharonov-Bohm The shifts in the energy is only two orders of magnitude less
effect, which in this case, differently from the electromagneticthan the ratio between the fine structure splitting and the en-
case, appears at purely classical level. ergy of the ground state of the non-relativistic hydrogen atom
The radiation emitted by a scalar particle moving along and is of the order of the Zeeman effect. Therefore, the mod-

geodesic line in the point-like global monopole space-timdfications in the spectra of the hydrogen atom due to the pres-
arises due to the geometric and topological features of thign.ce.of the gravitational field of a string are all measurable, in
space-time. Considering the case of a scalar field minimallyprinciple.
coupled with gravity and a specific situation in which the solid In the space-time of a global monopole the quantum dy-
angle deficit is small we find that the total energy radiated bynamics a particle interacting with a Kratzer potential depends
a particle along its trajectory is proportional to the cube of theon the geometric and topological features of this space-time.
velocity and to the cube of the Lorenz parameter in the nonThe presence of the defect shifts the energy levels as com-
relativistic and ultra-relativistic cases, respectively. pared to the flat Minkowski space-time one. It is interesting to
As a conclusion we can say that particles moving alongobserve that these shifts depend on the parameter that defines
geodesic lines in the space-time of a point-like global monothe solid angle deficit. Also the dynamics of a non-relativistic
pole will emit radiation in the same way as in case of an in-quantum oscillator depends on the topological features of this
finitely thin cosmic string space-time [6]. Analogously to the space-time through the angle deficit associated with its geom-
case of an infinitely thin cosmic string space-time, the energgtry.
emitted depends on the angle deficit and vanishes when this In the case of the harmonic oscillator in Safko-Witten
angle deficit vanishes, but in the present case, this radiatiogpace-time, the wavefunction as well as the energy levels are
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