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The Proton Momentum Distribution in Water and Ice
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Deep Inelastic Neutron Scattering (Neutron Compton Scattering), is used to measure the momentum distribu-
tion of the protons in water from temperatures slightly below freezing to the supercritical phase. The momentum
distribution is determined almost entirely by quantum localization effects, and hence is a sensitive probe of the
local environment of the proton. The distribution shows dramatic changes as the hydrogen bond network be-
comes more disordered. Within a single particle interpretation, the proton moves from an essentially harmonic
well in ice to a slightly anharmonic well in room temperature water, to a deeply anharmonic potential in the
supercritical phase that is best described by a double well potential with a separation of the wells along the bond
axis of about 0.3 Angstrom. Confining the supercritical water in the interstices of a C60 powder enhances this
anharmonicity and enhances the localization of the protons. The changes in the distribution are consistent with
gas phase formation at the hydrophobic boundaries and inconsistent with the formation of ice there.

1 Introduction

The development of pulsed neutron sources such as ISIS
at the Rutherford Laboratory in England have, for the first
time, made possible the measurement of proton momentum
distributions in solids and liquids. These measurements are
analogous to the measurement of electron momentum distri-
butions by Compton scattering[1] of light and measurement
of nucleon form factors by Deep Inelastic Electron Scatter-
ing [2]. The method is known as Neutron Compton Scat-
tering (NCS) or Deep Inelastic Neutron Scattering (DINS).
All three techniques rely upon the fact that if the momen-
tum transferred from the incident to target particle is suffi-
ciently large, the impulse approximation (IA) can be used to
interpret the data. In the IA, momentum andkinetic energy
are conserved. From a measurement of the momentum and
energy change of the neutron, the momentum of the target
nucleus before the collision can be determined. The valid-
ity of the impulse approximation is due to the fact that as
the momentum transfer increases, the characteristic time for
the scattering decreases, and the forces on the particle due
to its surroundings have less effect, until in the large q limit,
the particle behaves as though it is free for the duration of
the scattering event [3]. The scattering at these energies is
entirely incoherent, each particle scattering independently.
SM (~q, ω), the scattering function for a particle of mass M,

is related to the momentum distribution of the particlen(~p)
in this limit by the relation

SM (~q, ω) =
∫

n(~p)δ(ω − ~q2

2M
− ~p.~q

M
)d~p (1)

where~ω is the energy transfer, M is the mass of the pro-
ton, and q=|~q| is the magnitude of the wave-vector transfer.
The small mass of the proton leads to a broad distribution
in energy of the scattered neutrons, centered at~2q2

2M , that is
well separated from the scattering from the heavier ions such
as oxygen, which appear as nearly elastic contributions[4].
This, together with its large incoherent cross-section, make
hydrogen an ideal candidate for these measurements, al-
though they are feasible on other light ions as well.

2 Experimental Setup

The experiments are done on the electron volt spectrome-
ter, Vesuvio, at ISIS. This sort of source is needed to pro-
vide high energy neutrons(5-100 eV) for which the energy
transfer is sufficiently large compared to the characteristic
energies of the system that the scattering is given accurately
by the impulse[5] approximation limit. Vesuvio(formerly
EVS[6]) is a time-of -flight indirect geometry instrument in
which the final state energy of the scattered neutron is fixed
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by a resonance filter difference technique[7]. The water and
poly-crystalline ice data were taken in standard aluminum
sample holders, 10cm by 10cm by 1mm, thin enough to
lead to small multiple scattering, which was in all cases,
corrected for. A high pressure cell was designed specif-
ically for the high temperature measurements. The back-
ground from this ZrTi cell appears as inelastic scattering
and is readily subtracted[4]. It can take pressure up to 2000
bar and temperature up to450oC. The sample size in the
cell is 7 mm in diameter and 30 mm in height. The heaters
and temperature sensors were all inserted in the cell. A 1
mm steel pipe leads to an external water-pressurizer (i.e.
a pump) which provided the required pressure. The water
used as pressure transfer media and the sample volume was
distilled H2O.The smaller volume of water in the beam for
the high temperature measurements accounts largely for the
poorer statistics. The time scale for the measurements is
10−15 − 10−16 sec[3], much shorter than the time for the
dissolution of a particular hydrogen bond, so that the mo-
mentum distribution we measure can be thought of as re-
sulting from a static local structure.

3 Data Analysis

It is clear from Eq. 1 that the measurements do not give
directly the momentum distribution, but rather the Radon
transform of that distribution. Fortunately, no information is
lost from what appears at first sight to be an averaging pro-
cedure, and the transform is invertible to obtainn(~p). We

representSM (~q, ω) as M
q J(q̂, y) wherey = M

q (ω − ~q2

2M ).
When the sample is either poly-crystalline or a liquid, the
average momentum distribution has no angular dependence,
andJ(q̂, y) is independent of̂q. It is then straightforward to
show thatn(p) can be determined fromJ(y) as

n(p) =
−1
2πy

δJ(y)
δy

|y=p (2)

We will not use this, but fit the data with a series expansion
of the form

J(y) =
e
−y2

2σ2

√
2πσ

∑
n

an

22nn!
H2n(

y√
2σ

) (3)

where theHn(y) are Hermite polynomials.
This series is truncated at some order(2n = 14 in this

case). The coefficientsan then determine the measuredn(p)
directly as a series in Laguerre polynomials [4]:

n(p) =
e− p2

2σ2

(
√

2πσ)3
∑

n

an(−1)nL
1
2
n (

p2

2σ2
) (4)

A relation between the derivative of Hermite polynomials
and Laguerre polynomials[8] ensures that Eq. 2 is satisfied.

The procedure is a smoothing operation, which works
with noisy data, and which also allows for the inclusion

of small corrections to the impulse approximation[4, 9].
The leading term of the correction has the functional form
H3(y)/q. This is added to the expansion in Eq. 3 with an
undetermined coefficient The entire expression is then con-
volved with the instrumental resolution function and fit to
the data to determine the coefficients in the expansion. The
errors in the measuredn(~p) are determined by the uncer-
tainty in the the measured coefficients, through their corre-
lation matrix, which is calculated by the fitting program.The
uncertainty in the measurement ofn(~p) at some point~p is
due to the uncertainty in the measured coefficients. Denot-
ing an arbitrary coefficient byρi, we have

δn(~p) =
∑

i

δn(~p)
δρi

δρi (5)

The fitting program, after a minimum is obtained with
some set of coefficients, calculates the correlation matrix
< δρiδρj > [10]. Hence, the variance in the momentum
distribution is

< δn(~p)2 >=
∑

i,j

δn(~p)
δρi

δn(~p)
δρj

< δρiδρj > (6)

A further refinement is that we set the coefficienta1 to zero
in the expansion. This is necessary because the scale fac-
tor, σ, in Eq. 3 is undetermined. The expansion is true for
any value ofσ. As a consequence, the coefficienta1 and the
Gaussian scale factorσ in the expansion are strongly corre-
lated in the least squares fit, leading to indeterminacy in the
fits if botha1 andσ are varied. Settinga1 to zero has the fur-
ther benefit that the total kinetic energy is then determined
entirely byσ, even for strongly anharmonic momentum dis-
tributions [11]. In units in whichσ is measured in̊A−1,
and the energy is expressed in milli-electron volts, the total
kinetic energy(for a proton) is K.E.=6.2705σ2.

4 Experimental Results

When fit in the way described above, which we will call a
free fit,[10] since there is no model assumed, we find that
in fact there are at most two coefficients that are statistically
significant,a2 anda3, for all the data except the room tem-
perature water, wherea5 anda6 are significant(barely). We
will consider room temperature water in more detail below.
In order to make clear that the changes we see are not due
to differences in the fitting functions used, we will present
the results for all the fits with onlya2 anda3 included in the
expansion. It is these coefficients, together withσ, that we
present in the Table 1 to describen(p).
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Table 1. Parameters for Free Fit

Water Sample σ(Å−1) a4 a6

Ice -4C 4.579 0.060± 0.0014 −0.068± 0.016
Water 23C 4.841 0.185± 0.012 0.015± 0.015

T=400C, P=750bar 6.363 0.271± .022 0.157± 0.028
T=400C, P=750bar in C60 6.439 0.592± 0.054 0.007± 0.07

The values ofσ are not given error bars because in the
final fit, they are taken as scale parameters.

5 Interpretation of the Data

This representation should be regarded as the data forn(p)
determined by the measurement. We show in Fig. 1 a com-
parison of the free fits to the data for ice, water at room tem-
perature, supercritical water, and supercritical water con-
tained in the interstices of a C60 powder. The typical size
for the interstices is 100̊A. The quantity4πp2n(p), the ra-
dial momentum distribution is presented, in order to com-
pare quantities with the same normalization.
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Figure 1. Comparison of fits to the data of the radial momentum
distribution, 4πp2n(p) for a range of conditions from ice to su-
percritical water, to supercritical water in the interstices of a C60

poly-crystalline powder, corresponding to increasing disorder in
the hydrogen bond network. The 400oC data has been shifted up
for clarity.

The kinetic energy due to the temperature has a small ef-
fect on the momentum distribution. Even at the highest tem-
perature, the thermal kinetic energy corresponds to a mo-
mentum width of only about 3̊A−1. The corrections to the
momentum widths for the ice due to the finite temperature,
are negligible along the bond and only a few percent trans-
verse to the bond. What we are seeing is nearly entirely a
quantum effect, reflecting the local structure of the proton
environment. The structural changes in going from ice to
water are noticeable in the data. The tail of the distribution
is due to the momentum along the bond direction, since the
proton is most tightly bound in this direction, and it is clear

that this width has increased. The shift to a higher momen-
tum width along the bond axis can be interpreted as due to
the slight increase in the average hydrogen bond distance, so
that the proton becomes more tightly bound to its covalently
bonded oxygen. The change in the covalent bond length is
only about 4% but the measurements are clearly accurate
enough to see this shift. This interpretation can also be ap-
plied to the supercritical water data, where the density is
only 0.65 gr/cc, explaining the greatly increased momentum
width. However, the second peak in that data, is entirely un-
expected from this simple picture of the bond. One could
try to interpret the second peak as a small population of pro-
tons with unusually high momentum. However, this would
mean an rms energy of these protons of approximately 2.5
eV, and a localization length of about 0.05 Angstrom. We
know of no mechanism for producing such energetic pro-
tons, and will not consider this possibility further. We will
interpret the data in terms of a single particle in an effective
potential due to its neighbors. With this interpretation, the
second peak indicates that the proton is coherent over two
separated sites along the bond. This can be made clear by
fitting the data phenomenologically.

To a first approximation, since the proton is surrounded
by much heavier oxygen atoms, the proton momentum dis-
tribution can be thought of as arising from its confinement in
the potential well provided by the oxygens[12], which can
be regarded as fixed in position. The interaction with other
protons will modify this potential well. While their effect
cannot be truly regarded as arising from a static potential,
we will assume, in the spirit of a mean field approximation,
that they provide an effective potential for the protons. We
can then calculate the momentum distribution as though we
had a single particle in a fixed effective potential. In fact, we
will define the effective potential as the one that produces the
observed momentum distribution when interpreted this way.

We will assume a model, in which, in a frame of refer-
ence in which an individual bond is taken to lie along the
z axis, the motion transverse to the bond is harmonic and
along the bond given by a wavefunction that corresponds in
real space to two Gaussians separated by a distanced. We
will also assumeσx = σy. We have done fits with this con-
dition relaxed, and find that it is well satisfied. The parame-
terσz gives the width of the Gaussians in real space through
the uncertainty relation. In the case that d=0, we have an
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anisotropic Gaussian momentum distribution.

n(px, py, pz) =
2cos2(pzd

2~ )

1 + e
−d2σ2

z
2~2

∏

i

e
− p2

i
2σ2

i

(2πσi)
1
2

(7)

This Gaussian distribution is then averaged over all angles,
the correspondingJ(y) fit to the data, and the parameters
of the model determined. It is the case that an anisotropic
Gaussian, when spherically averaged, is not Gaussian, but
has an expansion in the form of Eq. 3, in whichσ2 =
(2σx

2+σz
2)/3 and the anharmonic terms are determined by

the difference between the momentum widths parallel and
perpendicular to the bond[13].

We show in Fig. 2 the fits to that model, and in Table 1
the parameters obtained for those fits. The ice data is very
accurately described by an anisotropic Gaussian. The pa-
rameters of the Gaussian correspond to vibrational energies
in the transverse and longitudinal directions of 105 meV and
332 meV respectively. The water data is also well described
this way, with a higher stretch frequency of367 meV and
no change in the transverse frequency, although there are
clearly additional anharmonicities that make small correc-

tions that are visible in the figure. These may be due to a
variation of the effective potential from site to site in the
water. Indeed, if the distribution were due entirely to a rota-
tionally averaged gaussian, the coefficient ofa3 would have
to be negative, and it is not[13]. It may be due as well, how-
ever, to an intrinsic anharmonicity in a single bond, perhaps
the precursor to the strong anharmonicity seen in the su-
percritical water data. Li et al[14] have measured the fre-
quency of vibration for hydrogen impurities in D2O ice,
which should be comparable to the frequencies we infer
from the anisotropic harmonic fit to our data. They find that
the two transverse vibrations are at 105 meV and 200 meV,
with the stretch mode at 405 meV. The additional contribu-
tions to the anharmonic coefficients may be responsible for
the discrepancy with Li et al’s results, since the difference in
the transverse mode frequencies we obtain by fitting is very
sensitive to the value ofa3.

The fits to the supercritical data require non zero values
for the parameter d giving the separation of minima in the
potential wells. That is the proton is coherent over sites sep-
arated by a distance of approximately 0.3 Angstrom that are
both local minima of the potential.

Table 2. Parameters for Model Fit

Water Sample σz(Å−1) σx(Å−1) d (Å)
Ice -4C 6.29± 0.51 3.53± 0.31 0

Water 23C 6.73± 0.08 3.51± 0.04 0
T=400C, P=750bar 8.40± 0.19 5.70± 0.16 0.316± 0.0045

T=400C, P=750bar in C60 9.47± 0.26 5.025± 0.11 0.274± 0.0043
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Figure 2. Comparison of radial momentum distribution, 4πp2n(p) with an effective one-particle model based on double wells along the
bond direction. (Eq.7). The additional peaks in the supercritical water data are attributed to coherence over wells separated by distances of
the order of 0.3 Angstrom in this model. There is only one well for the room temperature water and the ice data.
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We know of no prediction of such an effect. The dis-
order in the hydrogen bond network would lead to bifur-
cated bonds, double bonds, bent bonds and missing bonds.
It would seem that these would lead to tunnelling motions
transverse to the bond. In our experiment, however, the tun-
nelling, or more precisely, the coherence, shows up along
the axis with a high momentum width, which is surely the
axis of stretching of the covalent bond. To the extent that
there are linear bonds, this would be the bond axis. In fact,
it is reasonable to think that the supercritical water is made
up of small clusters that combine and break up on a time
scale much longer than our observation time, so we are see-
ing a snapshot average of the ground states for the proton
in these small clusters. It is possible then, that what we are
seeing is the effect of cooperative tunnelling between bifur-
cated bonds and single bonds, as observed in trimers and
small clusters [15]. Although the cooperative tunneling mo-
tion in these small clusters involves primarily the transverse
motion, this could be accompanied by changes in the length
of the covalent bond, which is what we see. It is also the
case that the temperature is higher than the tunnel splitting
in small clusters[15] so we would not expect to see the trans-
verse coherence even if the interference it produces occurred
at a sufficiently small momentum as to be observable.

The wells are sufficiently separated that the wave-
function actually becomes bimodal. We show in Fig. 3
the probability, (the wave-function squared) corresponding
to the fitted momentum distributions for the four measure-
ments, together with the potential that would produce that
wavefunction.
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Figure 3. Comparison of probability, based on an effective sin-
gle particle model, for finding proton at a position along the bond.
The zero position is unknown from our experiments, so that the
coordinate is relative to the most probable position. The ice and
room temperature results are Gaussian, corresponding to harmonic
wells. The high temperature wavefunctions are assumed to be the
sum of two Gaussians separated by some distance (Table 2), and
the potential is that which would produce those wavefunctions.

We note that the interpretation in terms of a single par-

ticle effective potential, although it describes the data well,
is not entirely consistent. The tunnel splitting in the two
high temperature effective potentials is about 35 meV. With
the temperature approximately 70 meV, the two lowest lev-
els would be nearly equally populated, and the coherence in
the ground state would not be observable. The effective po-
tential is then only a phenomenological representation of a
more complex many-body phenomenon.

For the water in the interstices of the powdered C60, one
can expect that the the hydrogen bond network will be even
more distorted than in the pure water, and we will be seeing
an average over bonds that are near the surface with those
that are relatively “in the bulk”. The size of the surface layer
at ordinary temperatures is in some dispute[16, 17], ranging
from 1.5-5nm and it seems certain that it would be signif-
icantly larger for the supercritical water. It is conceivable,
given the size of the interstices in the C60 poly-crystal, that
the entire volume of water would be strongly affected by the
contact with the surfaces. Consistent with this, we find that
the protons are more localized in the C60 interstices than
in the “free” supercritical water, with both the width of the
individual Gaussians in the spatial wave function and their
separation decreasing when the water is contained in the C60

interstices.

There is no sign of ice formation at the surfaces. This
might be regarded as not terribly surprising, given the tem-
perature, but the bond energies involved are still large com-
pared to the temperature, and it is conceivable that the pres-
ence of the repulsive surface would be sufficient to cause
the ice phase to form. We would expect then to see a nar-
rowing, rather than a broadening, of the distribution. In any
case, the results are consistent with the formation of the gas
phase there. Indeed the kinetic energy for the supercritical
water(25± 6 meV is slightly greater than that calculated for
the free water molecule (214 meV) at the same temperature
and pressure [18].

As is clear from Fig. 2, the room temperature water data
is not fit perfectly by the anisotropic Gaussian model. We
show in Table 3 a more refined fit of the data with coeffi-
cients up toa6 included, compared with the prediction from
the anisotropic Gaussian model. The deviations from this
model may have many sources. Additional averaging, over
and above the rotational averaging that has been used to gen-
erate the coefficients in the table, due to fluctuations in the
curvature of the potential from site to site, or intrinsic anhar-
monic terms in the potential, or many body effects not in-
cluded in our analysis, could lead to these deviations. There
is no way to separate these effects experimentally. The data
in Table 3 may prove useful, however, for comparing sim-
ulations of the momentum distribution based on model po-
tentials or ab-initio methods, should these become available.
In this regard, we point out that while classical simulations
of room temperature water or ice may be adequate for cal-
culating structure(spatial correlations) they are unlikely to
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give accurate results for supercritical water. At low tem-
peratures, when the potential is harmonic, the centroid of
the proton wavefunction is all that is needed to describe the
motion. That can be done classically, as there is no distor-
tion of the shape of the Gaussian wave packet as the proton
moves. However, the strong anharmonicity present in the
effective potential at high temperatures, whatever its origin,
would couple the centroid motion with changes in the shape
of the wave function, an effect that can not be included in a
classical calculation.

Table 3. Comparison of an extended fit of the data for room tem-
perature water with those derived from a rotationally averaged
anisotropic Gaussian model.

Coefficient Water Data23oC Model Prediction
σ 4.848Å−1 4.827Å−1

a2 0.205± 0.020 0.168
a3 0.053± 0.045 -0.044
a4 0 -0.061
a5 −0.099± 0.093 -0.034
a6 −0.094± 0.078 -0.032

6 Conclusions

In conclusion, the results shown here, in addition to provid-
ing a detailed picture of the dynamics of the proton in water,
show that the momentum distribution of the proton, which
is sensitive to the local structure of the proton, can be mea-
sured with sufficient accuracy to provide detailed informa-
tion about that structure, even in liquids or powder samples.
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