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We studied in this work a competitive reaction model between monomers on a catalyst. The catalyst is repre-
sented by hypercubic lattices ind = 1, 2 and3 dimensions. The model is described by the following reactions:
A+A → A2 andA+B → AB, whereA andB are two monomers that arrive at the surface with probabilities
yA andyB , respectively. The model is studied in the adsorption controlled limit where the reaction rate is
infinitely larger than the adsorption rate. We employ site and pair mean-field approximations as well as static
and dynamical Monte Carlo simulations. We show that, for alld, the model exhibits a continuous phase transi-
tion between an active steady state and a B-absorbing state, when the parameteryA is varied through a critical
value. Monte Carlo simulations and finite-size scaling analysis near the critical point are used to determine the
static critical exponentsβ, ν⊥ and the dynamical critical exponentsν||, δ, η andz. The results found for this
competitive reaction model are in accordance with the conjecture of Grassberger, which states that any system
undergoing a continuous phase transition from an active steady state to a single absorbing state, exhibits the
same critical behavior of the directed percolation universality class.

I Introduction

In the course of the last decade the statistical mechanics
community has made great progress in the study of nonequi-
librium phenomena. Until now, we do not have a complete
theory accounting for the nonequilibrium systems. The fun-
damental concept of a Gibbsian distribution of states in equi-
librium has no counterpart in the nonequilibrium situation.
This happens because many of these systems do not present
even an hamiltonian function and, if it is possible to define
an hamiltonian, the detailed balance would be violated.

Examples of recent problems on nonequilibrium pro-
cesses include markets [1, 2], rain precipitation [3], sand-
piles [4] and conserved contact process [5]. There is also
a great interest in modeling interface growth [6, 7], traf-
fic flow [8], temperature dependent catalytic reactions [9],
etc. Nonequilibrium magnetic systems, with a well de-
fined hamiltonian, have been also studied in the context of
nonequilibrium processes [10, 11] as well.

For the equilibrium systems we can induce phase tran-
sitions by changing some external parameters. Usually, the
temperature is the selected control parameter to study phase
transitions between equilibrium states. In the case of con-
tinuous phase transitions, at the critical point, long range

correlations are established inside the system and a set of
critical exponents can be defined to describe the critical be-
havior of some thermodynamic properties. The renormal-
ization group theory [12] is a well known theory that allows
the calculation of these critical exponents.

We can also consider external constraints for the
nonequilibrium systems that can drive the dynamical be-
havior of the system. The nature of the external parame-
ter depends on the nature of the system. For instance, in
an epidemic model for the spread of a disease, the exter-
nal parameter to be considered is the rate of change of the
healthly individuals into unhealthly ones. In a catalytic reac-
tion model, the external parameter can be the rate of change
of the concentration of reactants. These, and many other ex-
amples of nonequilibrium systems display dynamical phase
transitions. A comprehensive survey on the dynamic phase
transitions can be found in the books of Marro and Dickman
[13] and Privman [14].

Catalytic reaction models are a class of nonequilibrium
systems that show phase transitions among its stationary
states. Particularly, these are irreversible phase transitions
(IPR). Since the pioneering work of Schlögl [15] and Ziff,
Gulari and Barshad [16], many other catalytic reaction mod-
els appeared in literature [17].
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Recently, we have proposed a reaction model between
monomers on a catalytic surface [18, 19] that can be viewed
as a mixture of two other models: theA + A → A2 auto-
catalytic reaction model and theA + B → AB monomer-
monomer reaction model.

The monomer-monomer reaction model [20, 21] is the
simplest catalytic reaction model, described by the reaction
A + B → AB, whereA andB are two monomers that ar-
rive on a surface with probabilitiesyA andyB = 1 − yA,
respectively. This model was studied in the reaction con-
trolled limit as well as in the adsorption controlled limit. In
both cases, ifyA > 0.5, the surface becomes saturated by
monomersA, and the system always enters into an absorb-
ing state. On the other hand, ifyA < 0.5, the absorbing
state is one in which the lattice is completely covered by
monomers of the typeB. However, ifyA = 0.5, the surface
still saturates but with a much slower rate, and there is no
preferred species to saturate the catalyst. The mapping onto
the kinetic Ising model [22] showed that the time for the
system to enter the absorbing state, at the particular value
yA = 0.5 and, in the reaction controlled limit, grows with
the system size. Studies including monomers with different
sizes [23], substrate viewed as a complete graph [24], in-
troduction of a repulsive interaction between like monomers
[25], the increase in the number of degrees of freedom for
the reaction [26], are some examples of the research con-
cerning the monomer-monomer reaction model carried out
in the last decade.

On the other hand, the autocatalytic model [27] can be
described by the reactionA+A → A2. This model was also
considered by Aukrust, Browne and Webman [28], where
they introduced a probability reaction between two adsorbed
A monomers that occupy nearest neighbor sites on the lat-
tice. Their model presents a continuous phase transition
from a reactive steady state into an absorbing state, and
the critical behavior of the model is in the same universal-
ity class of the Directed Percolation. Through Monte Carlo
simulations and finite size scaling analysis, they were able
to find the static critical exponents of the model.

In our model, the catalyst was represented by a hyper-
cubic lattice, and it is in contact with an infinite reservoir of
monomersA andB in their gaseous phases. The monomers
A and B arrive at the surface with probabilitiesyA and
yB = 1−yA, respectively. These probabilities are related to
the partial pressures of the gasesA andB inside the reser-
voir. The model was investigated by effective field approxi-
mations, as well as through static and dynamic Monte Carlo
simulations ind = 1, 2 and3 dimensions. The static criti-
cal behavior exhibited by the model in two dimensions [18]
put it in the same universality class of the Directed Perco-
lation (DP). This was indeed expected, because the model
presents a single continuous transition from a reactive sta-
tionary state into an absorbing state, and the rate equations
that describe the evolution of the system can be mapped onto
those of the contact process. The dynamical critical behav-
ior of the model in two dimensions [19] was also investi-

gated and we calculated the dynamical critical exponentsδ,
η andz, which control the asymptotic behavior of the sur-
vival probability, the number of empty sites (the order pa-
rameter of the model) and the mean square displacement of
vacancies from the origin, respectively. For the calculation
of the dynamical critical exponents, the simulations started
with the lattice covered by monomers of the typeB, except
in a central site, that is left empty. Thus, the configuration of
the system in the beginning of the simulations is very close
to the absorbing state. That study was made by employ-
ing an epidemic analysis [29-31]. The dynamical critical
exponents of the model are the same as those of Directed
Percolation.

The DP universality class is the paradigm to describe
the nonequilibrium phase transitions of a variety of mod-
els. However, the experimental determination of the crit-
ical exponents is too hard. In real systems, a perfect ab-
sorbing state is not easily realized because there are always
small fluctuations, for instance, due to thermal desorption
of the elements. The presence of impurities, inactive sites
and other inhomogeneities on the catalyst also difficult the
measurements of the critical exponents. A full account on
the possible experimental realizations of Direct Percolation
can be found in the review work of Hinrichsen [32] and the
references therein.

In the present work our main task is to extend the results
found in two dimensions for the competitive reaction model
to one and three dimensions. We present results obtained by
employing mean field approximations, as well as static and
dynamic Monte Carlo simulations. The model also exhibits
continuous phase transition into an absorbing state, and the
finite-size scaling arguments show that the model belongs
to the same universality class of the Directed Percolation in
all the dimensions considered in this work. This paper is
organized as follows: in the next section we describe the
model and we present the results obtained through the site
and pair mean-field approximations in one, two, and three
dimensions. In section III the model is studied by using
static Monte Carlo simulations and finite-size scaling argu-
ments. Section IV is dedicated to the study of the dynamical
critical behavior of the model. In the last section we present
our main conclusions.

II Model and mean-field approxima-
tions

We consider a catalytic surface in contact with an infinite
reservoir of monomers, labeled byA andB. The catalyst
will be represented by a linear chain, as well as by square
and cubic lattices. These monomers can be adsorbed onto
the lattice, and they can react according to the following
steps:

(i) A(g) + v → A(a),
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(ii) B(g) + v → B(a),

(iii) A(a) + A(a) → A2(g) ,

(iv) A(a) + B(a) → AB(g).

The first two steps describe the adsorption of the species,
and the other two, the possible reactions between adsorbed
monomers that occupy nearest neighbor sites. Here, the(g)
and the(a) labels denote a monomer in the gaseous and in
the adsorbed phases, respectively. The symbolv indicates a
vacant site. The rules(i) − (iv) can also describe a lattice
model for the birth and death of vacancies, resembling to
the contact process. For instance, the processes(i) and(ii)
account for the annihilation of a vacancy due to the adsorp-
tion of a particle, while the processes(iii) and(iv) give the
birth of a vacancy due to the reaction step. For these reac-
tions to occur, we need to have at least one vacant site, which
is nearest neighbor of an adsorbed monomer. After the re-
action, a pair of nearest-neighbor vacant sites is generated
on the surface. In this way, we could resume the four steps
above by a simple birth-death process for vacancies:v → ∅
andv → 2v. Then, we expect that our model is in the same
universality class of the contact process [13], which belongs
to the universality class of the DP.

It is convenient to introduce the following variables to
describe the probabilities of the reactions:

ΠAA =
NA

NA + NB
; ΠAB =

NB

NA + NB
. (1)

If a monomer of the typeA adsorbs on an empty site sur-
rounded byNA monomers of the typeA andNB monomers
of the typeB, it will react with anyone of theA monomers
with the probabilityΠAA. In other words,ΠAA gives the
probability of the occurrence of theA + A reaction in the
presence ofB monomers [33]. We must also introduce the
quantityyA, which gives the probability that the next arriv-
ing monomer to be of theA species. For theB monomers

the probability isyB . These parameters are related to the
ratio of the partial pressures of the gasesA andB inside the
reservoir. Due to the fact that the partial pressures are nor-
malized, we haveyA + yB = 1. Thus, the model has only
a single independent parameter,yA. The dynamics of the
model can be thought asa) the transport of monomers to the
substrate,b) adsorption of the monomers onto the catalytic
surface,c) surface reaction between adsorbed monomers,d)
desorption of the products (the dimers) ande) transport of
the products away the catalytic surface. Because we as-
sumed an infinite reservoir of monomers, the stepsa) and
e) occur instantaneously. In our modeling, we also consider
that the stepsb) andd) are irreversible, and it is also sup-
posed that the adsorbed monomers cannot diffuse on the lat-
tice. We studied the model in the adsorption controlled limit,
where the rate for the reactions is much larger than the rate
for the adsorption.

A. Site approximation

In the site mean field approximation we neglect the cor-
relations between neighboring sites, and we take all of them
as being statistically independent. We consider that the sys-
tem is translationally invariant. In this way, we define the
densitiespi = Ni/N as being the number of sites occupied
by the speciesi divided by the total numberN of sites in
the lattice. The labeli stands for theA andB monomers, as
well as for the vacant (v) sites in the lattice. The densities
are normalized,

pA + pB + pv = 1 . (2)

Now, we need to calculate the transition probabilities de-
scribing the steps(i) to (iv) presented before. In the table I
we show the balance of the vacant sites.

Table I. Steps describing the processes(i) to (iv) in the site mean field approximation.
1. A + v → Aads. 2. A + v → A2 ↑ +2v 3. A + v → AB ↑ +2v
4. B + v → Bads. 5. B + v → AB ↑ +2v

For instance, for the process 1, anA monomer in the
gaseous phase arrives at an empty site and sticks there if all
its neighboring sites are empty. On the other hand, for the
process 2, anA monomer in the gaseous phase arrives at an
empty site and finds at least oneA monomer adsorbed in
its neighborhood. Then, they react instantaneously, forming
the dimerA2, that immediately leaves the catalyst, and two
new vacant sites are left on the surface. The time evolution
of the densities is described by a set of differential equations
that takes into account the five processes considered in the
table I:

1. The rate for this process can be given by

T1 = yApα+1
v , (3)

whereα is the coordination number of the lattice.
2. To calculate the rate for this process we must consider

all the possible configurations around the empty site where
theA monomer arrives. The table II lists all the combina-
tions ofA andB monomers.

The rate for this process can be written in the following
form
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T2 = yApv

α∑

j=1

α−j∑

i=0

Cα,j Cα−j,i pj
A pi

B pα−i−j
v

(
j

i + j

)
,

(4)
whereCα,j stands for the combinatorics.

3. Analogously to the previous case, the rate for this
process is

T3 = yApv

α∑

j=1

α−j∑

i=0

Cα,j Cα−j,i pi
A pj

B pα−i−j
v

(
j

i + j

)
.

(5)
4. In this case the rate is

T4 = yBpv (pv + pB)α
. (6)

Table II. Possible distributions ofA andB monomers around an empty site where there is anA monomer arriving. The
configurations listed in each column give the number ofA monomers and the possible distributions ofB monomers in a
lattice of coordination numberα.

1 A





0 B
1 B
2 B

...
(α− 1) B





2 A





0 B
1 B
2 B

...
(α− 2) B





· · · ... (α− 1) A

{
0 B
1 B

}
αA

5. The rate for this process can be given by

T5 = yBpv [1− (pv + pB)α] . (7)

With these rates we can write the gain and loss equations for the densities. For the density of the empty sites we have

dpv

dt
= −T1 + T2 + T3 − T4 + T5

= yBpv − 2yBpv (pv + pB)α + yApv (Sα − pα
v ) , (8)

where

Sα =
α∑

j=1

α−j∑

i=0

Cα,j Cα−j,i pα−i−j
v

(
pi

A pj
B + pj

A pi
B

) (
j

i + j

)
. (9)

After some algebraic manipulations we getSα = 1−pα
v .

The Eq. (8) can be written as

dpv

dt
= pv [1− 2yB (pB + pv)α − 2yApα

v ] . (10)

This equation presents two stationary solutions,pv = 0 and

1− 2yB (pv + pB)α − 2yApα
v = 0 . (11)

The solutionpv = 0 indicates that the system evolves to
aB-poisoned state, because theB−B reaction is forbidden.
The other solution, Eq. (11), accounts for the reactive steady
state, for whichpv 6= 0. Therefore, there must be a critical
value of the parameteryA, for which the system changes
from a reactive steady state to an absorbing one. Let us sup-
pose that the system is poisoned, and it is in the vicinity of
the critical valueyAc . By slightly changing the parameter
yA across the transition point, we allow for the appearance
of some vacant sites. In this case, we can approximate Eq.
(2) bypv + pB ≈ 1 and the Eq. (11) furnishes

pv =
(

1− 1
2yA

) 1
α

, (12)

which gives the value1/2 for the critical value of the pa-
rameteryA. For values ofyA that are less than the critical,
the system always evolves to aB-poisoned state whatever
the initial condition we consider. The transition between the
B-poisoned state and the active steady state is described by
a continuous phase transition, whose order parameter is the
fraction of empty sites (pv), and the associated critical ex-
ponentβ is defined by the equation

pv ∼ (yA − yAc)
β

. (13)

This mean-field approximation, at the site level, givesβ =
1/α.

B. Pair approximation

In the pair mean-field approximation we introduce the
correlation between two nearest neighbor sites of the lat-
tice by defining the conditional probabilityP (i | j), which
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is the probability that a given site to be of typei, given that
one of its nearest neighbors is of typej. We define the pair
probabilitypij = pjP (i | j), that a randomly chosen nearest
neighbor pair of sites are occupied by thei andj monomers
or they are vacant. The dynamics of the model is given
by the rate of change of these pair probabilities, which are
evaluated by counting the changes in the number of nearest
neighbor pairs in a neighborhood of sites centered on, and
including, the center pairi− j.

We need to consider only the pair probabilitiespvv, pvA,
pvB andpBB to describe this model, since the pairsi − j
andj − i, although physically distinct, they contribute with
the same weight to the equations of motion. The pair prob-
abilities are related to the densities of monomers and to the
fraction of vacant sites by the relationpj =

∑
i pij . We may

write the following relations

pA = pvA , (14)

pB = pvB + pBB , (15)

pv = pvA + pvB + pvv . (16)

Because of the relation given by Eq. (2) we can also
write

pvv + pBB + 2 (pvA + pvB) = 1 . (17)

In this pair mean-field approximation we also suppose
that these pair probabilities are all statistically independent
and that the system is translationally invariant. The table III
show all the possible transitions among the pairs.

Table III. Possible transitions among different configura-
tions of pairs of nearest neighbors in the lattice.

From→
To ↓

v − v v −A v −B B −B

v − v × T3 T4 ×
v −A T1 × × ×
v −B T2 × × T6

B −B × × T5 ×

For instance, the transitionT1 means that the central pair
is in the configurationv− v (both sites are empty) and there
is anA monomer arriving at the right site of the central pair
v − v, changing its configuration tov − A. The transition
probability for this event is the same as that for the transi-
tion v − v → A − v, since the pairsA − v and v − A
occur with the same probability. To calculate the transition
probabilities we proceed in a manner similar to that used in
the site mean-field approximation, but now they are more
involved. Examples of the application of this pair approx-
imation can be found in the references [34] and [35]. In
particular, in the appendix B of the reference [34], a detailed
description of the method used here is given, with emphasis
to theNO + CO reaction model. The reaction probabil-
ity ΠAA was defined as being the probability of an arriving
A monomer to react with anyone of its nearest neighborA
on the lattice, in the presence of theB monomers. Now, it
must be replaced by the probability of reacting with another
selectedA monomer, in the presence of theB monomers.
Then,πAA = ΠAA/NA = ΠAB/NB = 1/(NA + NB). In
this case,πAA = πAB , and the reaction probabilities are the
same. Thus, the transition probability for the processT1 is
very simple and it is given by

T1 = yApvv

(
pvv

pv

)α−1

, (18)

while, for the processT3, the calculation is more in-
volved. In this case, we have to consider two possible paths:
monomerA(B) arriving at the vacant site of the central pair
or arriving in a nearest neighbor site of theA monomer of
the central pair. In each case, all the possible distributions of
A andB monomers in the neighborhood of the central pair
must be taken into account. For this rate it is not trivial to
write a single expression valid for any value of the coordi-
nation numberα. The rateT3 is given by

T3 = pvA

(
1 +

pvv

pv
+ yB

pvB

pv

)
, (19)

for the linear chain, and

c

T3 = 4yApvA

[(
pvv

pv

)3

+
3
2

pvB

pv

(
pvv

pv

)2

+
(

pvB

pv

)2
pvv

pv
+

1
4

(
pvB

pv

)3
]

+

12yApvA

{
pvA

pv

[
1
2

(
pvv

pv

)2

+
2
3

pvB

pv

pvv

pv
+

1
4

(
pvB

pv

)2
]

+
(

pvA

pv

)2 (
1
3

pvv

pv
+

1
4

pvB

pv

)}
+

4yBpvA

[(
pvv

pv
+

pvB

pv

)3

+
3
2

pvA

pv

(
pvv

pv
+

pvB

pv

)2

+
(

pvA

pv

)2 (
pvv

pv
+

pvB

pv

)
+

1
4

(
pvA

pv

)3
]

,

(20)
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for the square lattice. For the case of the cubic lattice it becomes

T3 = 6 (T31 + T32) , (21)

where

T31 = yApvA

[(
pvv

pv

)5

+
5
2

pvB

pv

(
pvv

pv

)4

+
10
3

(
pvB

pv

)2 (
pvv

pv

)3

+
10
4

(
pvB

pv

)3 (
pvv

pv

)2
]

+

yApvA

{[(
pvB

pv

)4
pvv

pv
+

1
6

(
pvB

pv

)5
]

+ 5
pvA

pv

[
1
2

(
pvv

pv

)4

+
4
3

pvB

pv

(
pvv

pv

)3

+
6
4

(
pvB

pv

)2 (
pvv

pv

)2
]}

+

10yApvA

(
pvA

pv

)2
[

1
3

(
pvv

pv

)3

+
3
4

pvB

pv

(
pvv

pv

)2

+
3
5

pvv

pv

(
pvB

pv

)2

+
1
6

(
pvB

pv

)3
]

+

5yApvA
pvA

pv

[
4
5

pvv

pv

(
pvB

pv

)3

+
1
6

(
pvB

pv

)4
]

, (22)

and

T32 = yBpvA

[(
pvv + pvB

pv

)5

+
5
2

pvA

pv

(
pvv + pvB

pv

)4

+
10
3

(
pvA

pv

)2 (
pvv + pvB

pv

)3
]

+

yBpvA

[
10
4

(
pvA

pv

)3 (
pvv + pvB

pv

)2

+
(

pvA

pv

)4
pvv + pvB

pv
+

1
6

(
pvA

pv

)5
]

. (23)

d

For instance, the gain-loss equation for thepvB andpvv

pair densities are given by

dpvB

dt
= T2 + T6 − T4 − T5 , (24)

dpvv

dt
= 2 (T3 + T4 − T1 − T2) . (25)

The set of equations for the pair probabilities cannot be
solved analytically in any dimension. However, if we take,
as in the site approximation,pv + pB

∼= 1, the set of equa-
tions can be simplified near the critical point. Through the
Maple manipulations for the stationary state (dpv

dt = 0 and
dpB

dt = 0) we found thatpv ∼ (yA − yAc)
β with β = 1 in all

dimensions. This was indeed expected since the model has a
similar behavior as theA+A → A2 autocatalytic model. In
that model, Aukrust, Browne and Webman [28] also found
the same valueβ = 1 for the critical exponent of the order
parameter in the pair mean field approximation. We have
also found the critical value of the parameteryA. Its critical
value isyAc(d = 1) = 0.5593, yAc(d = 2) = 0.5182 and
yAc(d = 3) = 0.5050.

In Figs. 1(a), 1(b) and 1(c) we show the mean-field re-
sults along with the Monte Carlo simulations, for the order
parameterpv for the linear, square and cubic lattices. This
figure clearly indicates that a close agreement between the
results of mean-field and Monte Carlo calculations is ob-
served far away of the critical point. As we can see in Figs.

1(b) and 1(c) the critical point obtained in the pair approxi-
mation and through Monte Carlo simulations are almost the
same. However, the slope of the curves at the critical point
are rather different. The simulations will be detailed in the
next section. ForyA > yAc the system is in an active steady
state, while for valuesyA < yAc the system is trapped into
an absorbing state, where the surface is completely poisoned
by monomers of the speciesB.

III Static Monte Carlo simulations

In this section we give a brief description of the method we
used. The results of simulations were obtained through the
following algorithm: we randomly choose a site from the
list of empty sites of the lattice and select, with probability
yA, a monomerA to be adsorbed. If no one of the near-
est neighbor sites of the selected site are occupied byA nor
B monomers, then this empty site becomes occupied by a
monomerA and the number of empty sites is decreased by
one. Else, if there are some monomers in its neighborhood,
then a reaction (A+A) or (A+B) will take place with prob-
ability ΠAA (ΠAB ), and the list of empty sites is increased
by one. On the other hand, with probabilityyB = 1− yA, a
B monomer is deposited on the empty site. Then, we search
for A monomers in its neighborhood. If more than oneA
monomer is found, we randomly choose which one will re-
act withB, leaving two empty sites after reaction. If no
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Figure 1. Fraction of empty sites as a function of the parameter
yA. The solid and dotted lines correspond to the mean field ap-
proximations. The symbols represent the results of Monte Carlo
simulations for various lattice sizesL. Linear lattice (a), square
lattice (b) and cubic lattice (c).

A monomer is found, thenB remains adsorbed. In order to
improve the efficiency of the algorithm we use a continuous
time Monte Carlo procedure, where the time per event is no
longer constant. If at a given instant of time the number of
vacant sites isNv, the selection from this list corresponds to
a time incrementN−1

v . All the simulations started with an
empty lattice and the time required for a finite system to be-
come poisoned depends on the lattice size and on the value
of yA. For the lattice sizes we consider, we expect that, due
to the fluctuations, a surface fully covered will be observed
for any value ofyA for sufficiently long times. The absorb-
ing state is the only stable state. However, foryA larger
than the critical value, the system can be found in a reactive
steady state, until a large fluctuation drive it to a poisoned
state. This reactive steady state is indeed a metastable state.
For these metastable states we compute the order parameter
(fraction of vacant sites) which exhibits fluctuations around
the mean value. We performed simulations for the various
lattice sizes, and we considered detailed calculations near
the transition point. The simulations showed that the system
exhibits a continuous phase transition between an absorbing
state, which is poisoned by monomers of the typeB, and an
active steady state.

To obtain the critical exponents of the model we per-
formed a finite-size scaling analysis for the order parameter
pv. We assume that it is a generalized homogeneous func-
tion of the variablesL and∆ = yA − yAc. We suppose
[18, 28] that in the critical region, the order parameter be-
haves as

pv ∼ L−β/ν⊥Φ
(
∆L1/ν⊥

)
, (26)

whereΦ is a scaling function with the properties that at the
critical pointΦ(0) ∼ 1, and thatΦ(x) ∼ xβ , for x → ∞.
The latter property recovers the power law behavior of Eq.
(13) which is valid for a system of infinite size near its crit-
ical point. The exponentν⊥ is the correlation length expo-
nent and measures the correlations of the order parameter
over the surface. At the critical point, a log-log plot ofpv

versusL must be a straight line with slope−β/ν⊥. Figs.
2(a), 2(b) and 2(c) show the log-log plots ofpv versusL, for
the linear, square and cubic lattices, respectively. The error
bar for each point is not included in these plots. The data
points give the valueyAc(d = 1) = 0.63743(7), yAc(d =
2) = 0.5140(5) andyAc(d = 3) = 0.5004(1) for the critical
value of the parameteryA for the three lattices. The values
of the critical exponent ratio areβ/ν⊥ = 0.25(1), 0.80(2)
and1.40(2), for the linear, square and cubic lattices, respec-
tively. These values were calculated by linear fittings to the
data points of the simulations including their error bars.

In order to carry out a finite-size scaling analysis for the
order parameter, a number of independent runs were done
near the transition point for each lattice size, and ford = 1,
2 and 3. Data obtained from the quasiequilibrium active
steady states were then sampled. For instance, for the lat-
tice sizeL = 128 and for the square lattice, we determined
the averages and the corresponding fluctuations from a set
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Figure 2. Log-log plots ofpv versusL for some values of the pa-
rameteryA (indicated in the figures), near the critical point, for (a)
linear chain, (b) square lattice, and (c) cubic lattice. From the slope
of the straight lines we foundβ/ν⊥ = 0.25, 0.80 and1.40, for the
linear, square and cubic lattices, respectively.
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Figure 3. Collapse of the data points for the order parameterpv

for different lattice sizesL for the linear chain (a), square (b) and
cubic (c) lattices. The figure is a log-log plot ofpvLβ/ν⊥ versus
∆L1/ν⊥ . The slope of the solid lines, which is the asymptotic be-
havior ofpvLβ/ν⊥ , givesβ = 0.27, 0.57 and0.80 for the linear,
square and cubic lattices, respectively.
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of 100 surviving samples. We have plotted, in Fig. 3, the
quantity pvLβ/ν⊥ versus∆L1/ν⊥ in a log-log scale, for
various lattice sizes and dimensions. Figs. 3(a), 3(b) and
3(c) correspond to the simulations performed for the linear,
square and cubic lattices, respectively. As we can see, the
data for the different lattice sizes, in each plot, collapse very
well, suggesting the correctness of the scaling form of Eq.
(26). Thus, for large values of the argument of the function
Φ in Eq. (26), the data should fall on a straight line with
slopeβ.

The collapse of the data points was obtained with the
following values of the parameters:β = 0.27(2), ν⊥ =
1.07(3) and yAc = 0.6375(1) for the linear chain,β =
0.58(3), ν⊥ = 0.72(5) and yAc = 0.5141(2) for the
square lattice, andβ = 0.80(1), ν⊥ = 0.58(1) andyAc

=
0.5004(1) for the cubic lattice. We observe that the ratios
β/ν⊥ are the same as those found in Fig. 2. The best values
of the static critical exponents of the Directed Percolation
[36] are listed in the table IV.

Table IV. Best values for the static critical exponents of the
directed percolation universality class.

critical
exponent

d = 1 d = 2 d = 3

β 0.276486(8) 0.584(4) 0.81(1)
ν⊥ 1.096854(4) 0.734(4) 0.581(5)

As we can see, there is a good agreement between the
values we found in our static Monte Carlo simulations and
those of the DP. This is a good evidence that our catalytic
reaction model with competing reactions is in the same uni-
versality class of the Directed Percolation.

IV Dynamic Monte Carlo simula-
tions

We also studied the dynamical critical behavior of the model
by introducing a suitable time variable. It is defined as being
the mean time required for the system to become completely
poisoned. Firstly, we define the time for a selected sample
to become poisoned, that is,

τs =
∑

t tpv∑
t pv

. (27)

This particular function depends on the linear sizeL of the
system and on the parameteryA. Then, we take an average
over all the independent samples, getting the quantity
τ =< τs >s, which is assumed to have the scaling form
[18, 28]

τ ∼ Lzφ
(
∆L1/ν⊥

)
. (28)

Albano and Marro [37] have proposed a phenomenolog-
ical scaling approach for the poisoning time at the first order
transition of the monomer-dimer reaction model. In their
approach this time diverges logarithmically with the linear
lattice size and algebraically with the distance to the coex-
istence point. In Eq. (28) the scaling functionφ is assumed
to behave asφ(0) ∼ 1 at the critical point, so that a log-log

plot of τ versus the system sizeL is a straight line with the
slopez. This result is displayed in our Fig. 4 for the lin-
ear chain (a), square (b) and cubic (c) lattices. From these
figures we obtainz = 1.54(5) andyAc

= 0.6375(1) for
the linear chain,z = 1.68(6) andyAc = 0.5142(2) for the
square lattice, andz = 1.94(2) andyAc = 0.5006(1) for
the cubic lattice. Eq. (28) must be consistent with the def-
inition of theν|| exponent: in the limit of a system with an
infinite lattice size (L →∞) the characteristic time diverges
asτ ∼ (yA − yAc

)−ν|| . So, thez and theν|| exponents are
related byz = ν||/ν⊥.

Another way to get information about the critical expo-
nents at the critical point, is to consider, for a fixed timet, all
the samples (the surviving ones and those which entered the
absorbing state). Definingδ as the average of the order pa-
rameter over many samples, this quantity will depend only
on the system sizeL and on time. For the long time behav-
ior and for a large system size one can assume the following
scaling form

δ ∼ L−β/ν⊥ψ (t/Lz) . (29)

We have plotted, in Fig. 5,δLβ/ν⊥ versust/Lz on
a log-log scale. The data points collapse very well for
β/ν⊥ = 0.25(1), z = 1.55(2) and yAc

= 0.6375(1) in
the linear chain case. The values used for the square lattice
wereβ/ν⊥ = 0.80(1), z = 1.66(7) andyAc = 0.5141(1).
In the cubic lattice the collapse was obtained by choosing
β/ν⊥ = 1.40(1), z = 1.95(1) andyAc = 0.5005(2). All
these values are consistent with the previous ones we have
found by employing the other manner of collapsing the or-
der parameter data. As we can see from these figures, for
t < Lz the data points collapse onto a straight line with
the slope−β/ν|| = −0.15(1), −0.48(2) and−0.71(4) for
the linear chain, square and cubic lattices, respectively. Fi-
nally, from these ratios, we can estimate the value of the
critical exponentν||. We found the values1.8(1) for the lin-
ear chain,1.21(8) for the square lattice and1.13(8) for the
cubic lattice. In Fig. 5(c), the data fall on a straight line only
in a small region. This fact is due to small lattice sizes used
in d = 3.

Another way of studying the dynamical critical behav-
ior of the model is by employing an epidemic analysis
[29, 30, 31]. We measured the survival probabilityP (t), the
number of empty sitesnv (t), and the mean square displace-
ment from the originR2 (t), from an initial state containing
only a single empty site at the center of the lattice. Then,
we followed the time evolution of many samples with this
initial condition until a maximum timetmax = 10000 time
steps in the linear chain case,tmax = 2500 time steps for
the square lattice, andtmax = 5000 time steps for the cu-
bic lattice. For the linear chain and square lattice, one time
step was defined by100 changes in the configuration of the
system, which could be an adsorption or a chemical reaction
event. For the cubic lattice, one time step was defined by10
changes in the configuration of the system. We have taken a
lattice of sizeL = 5× 105 for the linear chain, while for the
square and cubic lattices, we tookL = 1000 andL = 50,
respectively.P (t) andR2 (t) are averaged only for those
configurations that have not entered into the absorbing state
until the timet, andnv (t) is averaged over all the samples
[13]. To get a good statistics we need to run at least2.5×106

independent samples in all dimensions.
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Figure 4. Log-log plots ofτ versusL for some values of the pa-
rameteryA (indicated in the figures), near the critical point. In
figure (a), for the linear chain, the slope of the straight line gives
z = 1.54, while for the square (b) and cubic (c) lattices,z is 1.68
and1.94, respectively.
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Figure 5. Collapse of the data points for the dynamical behavior of
the order parameter at the critical point. For the linear chain (a),
a good collapse was obtained withβ/ν⊥ = 0.25, z = 1.55, and
yAc = 0.6375. The slope of the straight line isβ/ν|| = 0.15. A
good collapse is obtained for the square lattice (b), with the values
β/ν⊥ = 0.80, z = 1.66 andyAc = 0.5141. The slope of the
straight line givesβ/ν|| = 0.48. In the case of cubic (c) lattice we
foundβ/ν⊥ = 1.40, z = 1.95 andyAc = 0.5005. The slope of
the straight line givesβ/ν|| = 0.71.
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From the scaling ansatz for the DP class and similar
models [38, 39], the physical quantities of interest depend
on the relevant parameters

→
r , t and∆ = yA − yAc

, only
through the scaling variablesr2t−ζ and∆t1/ν|| , times some
power ofr2, t or ∆. In the scaling regime, the local fraction
of empty sites, averaged over all trials, surviving or not, can
be written as

pv

(→
r , t

)
∼ tη−ζd/2F

(
r2t−ζ , ∆t1/ν||

)
, (30)

and the survival probability is expected to behave as

P (t) ∼ t−δΦ
(
∆t1/ν||

)
, (31)

whereν|| is the critical exponent associated with the diver-
gence of the temporal correlation length. From equation Eq.
(30) we can calculate the number of empty sites,nv (t), and
the mean square spreading of the origin,R2 (t),

nv (t) =
∫

pv

(→
r , t

)
ddr , (32)

R2 (t) =
1

nv (t)

∫
r2pv

(→
r , t

)
ddr . (33)

These equations can be cast in the following form

nv (t) ∼ tηΨ
(
∆t1/ν||

)
, (34)

R2 (t) ∼ tζΘ
(
∆t1/ν||

)
. (35)

Here,δ, η andζ are the dynamical critical exponents of the
model. The exponentζ is related to the critical exponent
z, that governs the divergence of the characteristic time, by
ζ = 2/z. Here,Φ, Ψ andΘ are scaling functions with the
property that, at the critical point, they assume a constant
value, that is, they are nonsingular functions at the critical
point. At the critical point, Eqs. (31), (34) and (35) assume
asymptotic power laws

P (t) ∼ t−δ , (36)

nv (t) ∼ tη , (37)

R2 (t) ∼ tζ . (38)

Log-log plots of these quantities, at the critical point,
must be straight lines with slopes giving the corresponding
critical exponents. These plots are shown in Figs. 6(a), 6(b)
and 6(c), for the linear chain, square and cubic lattices, re-
spectively. In each plot of Fig. 6(a) we have three curves.
Each curve, from top to bottom, is associated with the values
yA = 0.6376, yA = 0.6375 andyA = 0.6374. The straight
line gives the critical valueyAc(d = 1) = 0.6375(1). From
each plot we obtainδ = 0.160(3), η = 0.314(2) and
ζ = 1.260(1). In each plot of Fig. 6(b) the curves were
built with the valuesyA = 0.5145, 0.5142 and0.5139. The
critical value isyAc = 0.5142(3) and the dynamical critical
exponents in two dimensions areδ = 0.47(1), η = 0.23(1)
andζ = 1.12(1). For the Fig. 6(c) the curves, from top to

bottom correspond to the valuesyA = 0.5005, yA = 0.5004
andyA = 0.5003 and the dynamical critical exponents are
δ = 0.71(4), η = 0.09(7) andζ = 1.03(1).
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Figure 6. Log-log plots for the quantitiesP (t), nv (t) andR2 (t)
for the linear (a), square (b) and cubic (c) lattices. From these
figures we get the corresponding critical valuesyAc(d = 1) =
0.6375, yAc(d = 2) = 0.5142 andyAc(d = 3) = 0.5004.
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It is also possible to find the values of the critical ex-
ponents by looking at the local slopes. Consider, for in-
stance, Eq. (31). By changing the scale of the time vari-
able by an integerm we can write, at the critical point,
P (mt) = m−δP (t). From this, we have

−δ (t) =
log [P (mt) /P (t)]

log m
, (39)

with similar expressions for the exponentsη andζ. At large
times, the local slopeδ (t) assumes the following asymptotic
behavior

δ (t) = δ + at−θ + bt−φ + · · · , (40)

whereθ and φ are corrections to scaling due to the finite
size of the lattice. We also estimated the critical exponents
by plotting the local slopes versus1/t and extrapolating to
1/t → 0. The plots for the local slopeδ (t) are shown in
Fig. 7(a), for the linear chain, in Fig. 7(b), for the square
lattice and in Fig. 7(c) for the cubic lattice, where we used
m = 2. The curves in each plot correspond to different val-
ues of the parameteryA around the critical valueyAc

, which
is the central curve in the plot. From these figures we esti-
mate the valuesδ = 0.163(7), 0.46(1) and0.71(3) for the
linear chain, square and cubic lattices. We also plotted the
local slopeη (t) versus1/t for the three lattices in the Figs.
8(a), 8(b) and 8(c). From these figuresη(d = 1) = 0.31(5),
η(d = 2) = 0.23(1) and η(d = 3) = 0.12(4). Fi-
nally, in Fig. 9, we plotted the local slopeζ (t) versus1/t
for the linear chain 9(a), square 9(b) and cubic 9(c) lat-
tices. These plots give the valuesζ(d = 1) = 1.26(1),
ζ(d = 2) = 1.13(2) andζ(d = 3) = 1.03(1).

Our calculated dynamical critical exponents agree with
those found for the Directed Percolation in one, two and
three spatial dimensions. The best values of these critical
exponents [36] are listed in the table V.

Table V. Best values for the dynamic critical exponents of
the directed percolation universality class.

critical
exponent

d = 1 d = 2 d = 3

z 1.580745(10) 1.76(3) 1.90(1)
ν|| 1.733847(6) 1.295(6) 1.105(5)
δ 0.159464(6) 0.451 0.73
η 0.313686(8) 0.230 0.12
ζ 1.26523 1.13636 1.05263
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Figure 7. Local slopeδ (t) for the linear chain (a), square (b)
and cubic (c) lattices. From these plots we estimate the value of
the critical exponentδ, whose values areδ(d = 1) = 0.163(7),
δ(d = 2) = 0.46(1) andδ(d = 3) = 0.71(3).
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Figure 8. Local slopeη (t) for the linear chain (a), square (b)
and cubic (c) lattices. From these plots we estimate the value of
the critical exponentη, whose values areη(d = 1) = 0.31(5),
η(d = 2) = 0.23(1) andη(d = 3) = 0.23(12).
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Figure 9. Local slopeζ (t) for the linear chain (a), square (b)
and cubic (c) lattices. From these plots we estimate the value of
the critical exponentζ, whose values areζ(d = 1) = 1.26(1),
ζ(d = 2) = 1.13(2) andζ(d = 3) = 1.03(1).
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V Conclusions

We have studied a competitive reaction model between
monomers on a catalytic surface. The model can be viewed
as being a mixture of the autocatalytic and the monomer-
monomer reaction models. We have considered the site
and the pair mean-field approximations to obtain the steady
states and a qualitative picture of the critical behavior of the
model in one, two and three spatial dimensions. The model
displays a continuous phase transition into a single absorb-
ing state. The critical point obtained via pair approximation
agree very well with that found by Monte Carlo simulations
in two and three dimensions. By employing finite-size scal-
ing arguments, we determined the static and dynamic critical
exponents of the model. All the values we have found are
in agreement with those of the Directed Percolation (DP) in
(d + 1) dimensions. This was indeed expected, since the
phase transition from the active to the single absorbing state
is one in which the concentration of vacancies goes con-
tinuously to zero. Although our model can not be mapped
onto the DP, they are equivalent concerning the static and
dynamic critical behavior. This is a strong evidence in favor
of the universality: models with different dynamical rules
exhibit the same critical behavior. The essential characteris-
tic shared by these models is a continuous phase transition
into an absorbing state. The DP conjecture asserts that mod-
els with a continuous phase transition into an absorbing state
belong generically to the DP universality class. In summary,
based on the values we have found for the static and dy-
namic critical exponents, and on the DP conjecture, we can
conclude that our model belongs to the same universality
class of the DP.
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