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We studied in this work a competitive reaction model between monomers on a catalyst. The catalyst is repre-
sented by hypercubic latticesdh= 1, 2 and3 dimensions. The model is described by the following reactions:
A+ A — A; andA+ B — AB, whereA andB are two monomers that arrive at the surface with probabilities

ya andyg, respectively. The model is studied in the adsorption controlled limit where the reaction rate is
infinitely larger than the adsorption rate. We employ site and pair mean-field approximations as well as static
and dynamical Monte Carlo simulations. We show that, forlathe model exhibits a continuous phase transi-

tion between an active steady state and a B-absorbing state, when the pagamstearied through a critical

value. Monte Carlo simulations and finite-size scaling analysis near the critical point are used to determine the
static critical exponentg, v, and the dynamical critical exponentg, 6, n andz. The results found for this
competitive reaction model are in accordance with the conjecture of Grassberger, which states that any system
undergoing a continuous phase transition from an active steady state to a single absorbing state, exhibits the
same critical behavior of the directed percolation universality class.

| Introduction correlations are established inside the system and a set of
critical exponents can be defined to describe the critical be-
In the course of the last decade the statistical mechanicshavior of some thermodynamic properties. The renormal-
community has made great progress in the study of nonequidzation group theory [12] is a well known theory that allows
librium phenomena. Until now, we do not have a complete the calculation of these critical exponents.
theory accounting for the nonequilibrium systems. The fun- We can also consider external constraints for the
damental concept of a Gibbsian distribution of states in equi- nonequilibrium systems that can drive the dynamical be-
librium has no counterpart in the nonequilibrium situation. havior of the system. The nature of the external parame-
This happens because many of these systems do not presemdr depends on the nature of the system. For instance, in
even an hamiltonian function and, if it is possible to define an epidemic model for the spread of a disease, the exter-
an hamiltonian, the detailed balance would be violated. nal parameter to be considered is the rate of change of the
Examples of recent problems on nonequilibrium pro- healthly individuals into unhealthly ones. In a catalytic reac-
cesses include markets [1, 2], rain precipitation [3], sand- tion model, the external parameter can be the rate of change
piles [4] and conserved contact process [5]. There is alsoof the concentration of reactants. These, and many other ex-
a great interest in modeling interface growth [6, 7], traf- amples of nonequilibrium systems display dynamical phase
fic flow [8], temperature dependent catalytic reactions [9], transitions. A comprehensive survey on the dynamic phase
etc. Nonequilibrium magnetic systems, with a well de- transitions can be found in the books of Marro and Dickman
fined hamiltonian, have been also studied in the context of[13] and Privman [14].
nonequilibrium processes [10, 11] as well. Catalytic reaction models are a class of nonequilibrium
For the equilibrium systems we can induce phase tran-systems that show phase transitions among its stationary
sitions by changing some external parameters. Usually, thestates. Particularly, these are irreversible phase transitions
temperature is the selected control parameter to study phas@PR). Since the pioneering work of Séigl [15] and Ziff,
transitions between equilibrium states. In the case of con-Gulari and Barshad [16], many other catalytic reaction mod-
tinuous phase transitions, at the critical point, long range els appeared in literature [17].
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Recently, we have proposed a reaction model betweengated and we calculated the dynamical critical expon&nts
monomers on a catalytic surface [18, 19] that can be viewedr and z, which control the asymptotic behavior of the sur-

as a mixture of two other models: the+ A — A, auto- vival probability, the number of empty sites (the order pa-
catalytic reaction model and thé + B — AB monomer- rameter of the model) and the mean square displacement o
monomer reaction model. vacancies from the origin, respectively. For the calculation

The monomer-monomer reaction model [20, 21] is the of the dynamical critical exponents, the simulations started
simplest catalytic reaction model, described by the reactionwith the lattice covered by monomers of the tyBeexcept
A+ B — AB, whereA and B are two monomers that ar- in a central site, that is left empty. Thus, the configuration of
rive on a surface with probabilitiegs andys = 1 — ya, the system in the beginning of the simulations is very close
respectively. This model was studied in the reaction con- to the absorbing state. That study was made by employ-
trolled limit as well as in the adsorption controlled limit. In ing an epidemic analysis [29-31]. The dynamical critical
both cases, ifj4 > 0.5, the surface becomes saturated by exponents of the model are the same as those of Directec
monomersA, and the system always enters into an absorb- Percolation.
ing state. On the other hand, gf; < 0.5, the absorbing The DP universality class is the paradigm to describe
state is one in which the lattice is completely covered by the nonequilibrium phase transitions of a variety of mod-
monomers of the typ&. However, ify4 = 0.5, the surface  els. However, the experimental determination of the crit-
still saturates but with a much slower rate, and there is noical exponents is too hard. In real systems, a perfect ab-
preferred species to saturate the catalyst. The mapping ontgorbing state is not easily realized because there are alway:
the kinetic Ising model [22] showed that the time for the small fluctuations, for instance, due to thermal desorption
system to enter the absorbing state, at the particular valueof the elements. The presence of impurities, inactive sites
ya = 0.5 and, in the reaction controlled limit, grows with and other inhomogeneities on the catalyst also difficult the
the system size. Studies including monomers with different measurements of the critical exponents. A full account on
sizes [23], substrate viewed as a complete graph [24], in-the possible experimental realizations of Direct Percolation
troduction of a repulsive interaction between like monomers can be found in the review work of Hinrichsen [32] and the
[25], the increase in the number of degrees of freedom for references therein.
the reaction [26], are some examples of the research con-  |n the present work our main task is to extend the results
cerning the monomer-monomer reaction model carried outfound in two dimensions for the competitive reaction model
in the last decade. to one and three dimensions. We present results obtained b

On the other hand, the autocatalytic model [27] can be employing mean field approximations, as well as static and
described by the reactiof+ A — A,. This modelwas also  dynamic Monte Carlo simulations. The model also exhibits
considered by Aukrust, Browne and Webman [28], where continuous phase transition into an absorbing state, and the
they introduced a probability reaction between two adsorbedfinite-size scaling arguments show that the model belongs
A monomers that occupy nearest neighbor sites on the latto the same universality class of the Directed Percolation in
tice. Their model presents a continuous phase transitiong|| the dimensions considered in this work. This paper is
from a reactive steady state into an absorbing state, anthrganized as follows: in the next section we describe the
the critical behavior of the model is in the same universal- model and we present the results obtained through the site
ity class of the Directed Percolation. Through Monte Carlo and pair mean-field approximations in one, two, and three
simulations and finite size scaling analysis, they were abledimensions. In section Ill the model is studied by using
to find the static critical exponents of the model. static Monte Carlo simulations and finite-size scaling argu-

In our model, the catalyst was represented by a hyper-ments. Section IV is dedicated to the study of the dynamical

cubic Iattice, and it is in contact with an infinite reservoir of critical behavior of the model. In the last section we present
monomersA and B in their gaseous phases. The monomers gur main conclusions.

A and B arrive at the surface with probabilitiegss and
yp = 1 —ya, respectively. These probabilities are related to

the partial pressures of the gasésind B inside the reser- I Model and mean-field approxima-
voir. The model was investigated by effective field approxi- .
mations, as well as through static and dynamic Monte Carlo tions

simulations ind = 1, 2 and3 dimensions. The static criti-

cal behavior exhibited by the model in two dimensions [18] We consider a catalytic surface in contact with an infinite
put it in the same universality class of the Directed Perco- reservoir of monomers, labeled by and B. The catalyst
lation (DP). This was indeed expected, because the modeWill be represented by a linear chain, as well as by square
presents a single continuous transition from a reactive sta-and cubic lattices. These monomers can be adsorbed ontc
tionary state into an absorbing state, and the rate equationghe lattice, and they can react according to the following
that describe the evolution of the system can be mapped ont$teps:

those of the contact process. The dynamical critical behav-

ior of the model in two dimensions [19] was also investi- (i) A +v — A,
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(i) Bg) +v — B, the probability isyz. These parameters are related to the
ratio of the partial pressures of the gageand B inside the
(i) Ay + Ay = Az, reservoir. Due to the fact that the partial pressures are nor-
(V) Ag) + By — AB(y). malized, we havg sy + yp = 1. Thus, the model has only
a single independent parametgy,. The dynamics of the
The first two steps describe the adsorption of the speciesmodel can be thought @ the transport of monomers to the
and the other two, the possible reactions between adsorbegubstratep) adsorption of the monomers onto the catalytic
monomers that occupy nearest neighbor sites. Herdgthe surfacec) surface reaction between adsorbed mononagrs,
and the(a) labels denote a monomer in the gaseous and indesorption of the products (the dimers) ajdransport of
the adsorbed phases, respectively. The symliodicates a  the products away the catalytic surface. Because we as-
vacant site. The rule§) — (iv) can also describe a lattice sumed an infinite reservoir of monomers, the stapand
model for the birth and death of vacancies, resembling to €) occur instantaneously. In our modeling, we also consider
the contact process. For instance, the proceg$esd (i) that the step®) andd) are irreversible, and it is also sup-
account for the annihilation of a vacancy due to the adsorp-posed that the adsorbed monomers cannot diffuse on the lat-
tion of a particle, while the processg@s:) and(iv) give the tice. We studied the model in the adsorption controlled limit,
birth of a vacancy due to the reaction step. For these reacwhere the rate for the reactions is much larger than the rate
tions to occur, we need to have at least one vacant site, whiclor the adsorption.
is nearest neighbor of an adsorbed monomer. After the re-
action, a pair of nearest-neighbor vacant sites is generated
on the surface. In this way, we could resume the four steps
above by a simple birth-death process for vacanaies: ()
andv — 2v. Then, we expect that our model is in the same

universality class of the contact process [13], which belongsA' Site approximation

to the universality class of the DP. In the site mean field approximation we neglect the cor-
It is convenient to introduce the following variables to relations between neighboring sites, and we take all of them
describe the probabilities of the reactions: as being statistically independent. We consider that the sys-

tem is translationally invariant. In this way, we define the

N Np densitiesp; = N;/N as being the number of sites occupied

IMaa (1) by the species divided by the total numbelN of sites in
the lattice. The label stands for thed and B monomers, as

If a monomer of the typel adsorbs on an empty site sur- well as for the vacant sites in the lattice. The densities

rounded byN 4, monomers of the typd and Nz monomers  are normalized,

of the typeB, it will react with anyone of thed monomers

with the probabilityll, 4. In other words,Il44 gives the pAa+DpPB+p,=1. (2)

probability of the occurrence of thé + A reaction in the

presence o3 monomers [33]. We must also introduce the

quantityy 4, which gives the probability that the next arriv-

ing monomer to be of thel species. For thé3 monomers

;o 1as

~ Nai+Np T Nat N

Now, we need to calculate the transition probabilities de-
scribing the step§i) to (iv) presented before. In the table |
we show the balance of the vacant sites.

Table I. Steps describing the procesggdo (iv) in the site mean field approximation.
1LA+v— Augs. | 2A40v—> A3 T42v | 3.A4+v—> AB T +2v H
4. B+4+v— Bygs. | 5.B+v— AB 1 +2v

For instance, for the process 1, anmonomer in the 1. The rate for this process can be given by
gaseous phase arrives at an empty site and sticks there if all
its neighboring sites are empty. On the other hand, for the Ty = yap® Tt ©)

process 2, adl monomer in the gaseous phase arrives at an

empty site and finds at least osdemonomer adsorbed in  wherec is the coordination number of the lattice.

its neighborhood. Then, they react instantaneously, forming 2. To calculate the rate for this process we must consider
the dimerA,, that immediately leaves the catalyst, and two all the possible configurations around the empty site where
new vacant sites are left on the surface. The time evolutionthe A monomer arrives. The table Il lists all the combina-
of the densities is described by a set of differential equationstions of A and B monomers.

that takes into account the five processes considered in the The rate for this process can be written in the following
table I: form
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o a—j ) a a—] . ) L .
Ty = yaps Y ] Coj Camji Py P P37 (zij) 7 fa = yab. ; ; Cou Comai Va0 <z iJ)
j=11=0 (4) . - (5)
whereC,, ; stands for the combinatorics. 4. In this case the rate is
3. Analogously to the previous case, the rate for this

: Ty = yppo (P + )" . (6)
process Is

Table 1I. Possible distributions ot and B monomers around an empty site where there istamonomer arriving. The
configurations listed in each column give the nhumberdomonomers and the possible distributionsi®fmonomers in a
lattice of coordination number.

0B 0B
1B 1B
14 2B 2 A 2B '~f(aUA_{OB } A
. . 1B
(a—1)B (e —2)B
5. The rate for this process can be given by
Ts = yspo 1 — (po +pB)7] - @)

With these rates we can write the gain and loss equations for the densities. For the density of the empty sites we hav

dgt” = T +To+T3—Ty+Ts
= yBPv — 2UBPy (Po +1B)" +yapy (Sa — DY) ®)
where
a a—j '
S, = E:I Z% Caj Ca—jipy ™™ (piA 10?3 + 7 p%) (Zij) ) 9)
i

After some algebraic manipulations we gt = 1—p<.

The Eqg. (8) can be written as 1 \*®
q() pv:<_2) s (12)
YA
dpy which gives the valud /2 for the critical value of the pa-

i [1—2ys (pB +pu)” — 2yapy] . (10)

rametery 4. For values ofy4 that are less than the critical,
the system always evolves toRrpoisoned state whatever
the initial condition we consider. The transition between the
B-poisoned state and the active steady state is described b
1 —2yp (po +pB)" — 2yapy =0 . (11)  acontinuous phase transition, whose order parameter is the
fraction of empty sitesy(,), and the associated critical ex-

ponents is defined by the equation

This equation presents two stationary solutigns= 0 and

The solutionp,, = 0 indicates that the system evolves to
a B-poisoned state, because fBe- B reaction is forbidden.
The other solution, Eq. (11), accounts for the reactive steady 3
state, for whichp, # 0. Therefore, there must be a critical po~ (ya—ya)" - (13)
value of the parametey4, for which the system changes This mean-field approximation, at the site level, giykes-
from a reactive steady state to an absorbing one. Let us supi/a.
pose that the system is poisoned, and it is in the vicinity of
the critical valuey4_. By slightly changing the parameter
y4 across the transition point, we allow for the appearance In the pair mean-field approximation we introduce the
of some vacant sites. In this case, we can approximate Eqcorrelation between two nearest neighbor sites of the lat-
(2) byp, + pp =~ 1 and the Eq. (11) furnishes tice by defining the conditional probabilit} (i | j), which

B. Pair approximation
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is the probability that a given site to be of typegiven that
one of its nearest neighbors is of typeWe define the pair
probabilityp;; = p; P (i j), that a randomly chosen nearest
neighbor pair of sites are occupied by thend;j monomers

491

For instance, the transitidhi means that the central pair
is in the configuration — v (both sites are empty) and there
is anA monomer arriving at the right site of the central pair
v — v, changing its configuration to — A. The transition

or they are vacant. The dynamics of the model is given probability for this event is the same as that for the transi-
by the rate of change of these pair probabilities, which aretionv — v — A — v, since the pairsA — v andv — A
evaluated by counting the changes in the number of nearesbccur with the same probability. To calculate the transition
neighbor pairs in a neighborhood of sites centered on, andprobabilities we proceed in a manner similar to that used in
including, the center pair— j. the site mean-field approximation, but now they are more
We need to consider only the pair probabilities, p, 4, involved. Examples of the application of this pair approx-
pe5 andppp to describe this model, since the pairs- j imation can be found in the references [34] and [35]. In
andj — 4, although physically distinct, they contribute with ~particular, in the appendix B of the reference [34], a detailed
the same weight to the equations of motion. The pair prob- description of the method used here is given, with emphasis
abilities are related to the densities of monomers and to theto the NO + CO reaction model. The reaction probabil-

fraction of vacant sites by the relatipn = > . p;;. We may
write the following relations

ity IT4 4 was defined as being the probability of an arriving
A monomer to react with anyone of its nearest neighthor
on the lattice, in the presence of tilemonomers. Now, it
must be replaced by the probability of reacting with another
selected4A monomer, in the presence of tti# monomers.

pA PuA (14)

15 Then,Tl'AA:HAA/NA:HAB/NB:1/(NA+NB). In
PB PvB T PBB (15) this caserra 4 = 74, and the reaction probabilities are the
Dv = DvA+PuB + Pov - (16) same. Thus, the transition probability for the proc&sss

Because of the relation given by Eq. (2) we can also

write

Puvv + PBB + 2 (p'uA +po) =1. (17)

In this pair mean-field approximation we also suppose
that these pair probabilities are all statistically independent

and that the system is translationally invariant. The table Il
show all the possible transitions among the pairs.

Table Ill. Possible transitions among different configura-
tions of pairs of nearest neighbors in the lattice.

very simple and it is given by

P a—1
T, = YAPwvv (W) s
Dov

while, for the processls, the calculation is more in-
volved. In this case, we have to consider two possible paths:
monomerA(B) arriving at the vacant site of the central pair
or arriving in a nearest neighbor site of tHemonomer of

the central pair. In each case, all the possible distributions of
A and B monomers in the neighborhood of the central pair
must be taken into account. For this rate it is not trivial to
write a single expression valid for any value of the coordi-
nation numbery. The rateT; is given by

(18)

From— v—v|v—A|v—-—B | B-B TSZPUA(l‘i‘pw‘i‘prUB) ) (19)
7T0l Pv v
v—0 X T3 Ty X for the linear chain, and
v—A T X X X
v— B T2 X X TG
B—-B X X Ts X
]
[(pvv>3 3po (pvv>2 (pUB>2 2o 1 (po>3
T3 = 4yapva || —— 5 +| = + = +
Do 2 pu Po Po Po 4\ py

poa |1 (P>, 2puBD 1 (pos\’ poa\’ (1p Ip
{2 )2 (22 () (2 2

Pv |2\ Do 3 pv Do 4\ pu Pov 3 Py 4 p,

p pos\’ | 3pua (P pos\ | (Poa)’ (P P 1 (poa)’
4pr'uA ( Vv + 'uB) 9 Pv ( vv + UB) +< v ) ( Vv + vB> +< v > 7

Dov Dov 2 py Do Dv Do Do Do 4\ py

(20)
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for the square lattice. For the case of the cubic lattice it becomes

T3 =6 (151 + Ts2) (21)
where
Pov\°  Bpus (oot 10 (p p 10 (p P
T31 = YaPoa < m;> + 2 vB ( m)) 4= ( UB) ( m)) Y ( 'UB) < m;) +
Do 2 py \po 3\ Do 4 \ pv p
YADvA <po>4 2o _"_1 <p’UB>5 +5p1JA 1 (pqw>4 é (pm;)S § ( ) <pm;)2 4
Po 2 6 Do |2 \ Do 3p p 4
3 2 2
vA 1 vu 3 PvB Pov 3 DPov PvB 1 PvB
omn (%) |5 (5) + 352 () 5 (52) 5
Do 3 4 py \ Po S pu \ Do 6
v 4 VU 3 1 v 4
5yapaa ot |22 ( ) < (p B) : (22)
v |5 pe \ Do 6\ pv
and
5 4 2 3
Vv + v 5 v vU + v 10 v vU + v
Tar = yppos (p pB> L 5pua (p pB) +(p A) (p pB) N
Do 2 py Do 3 \ Do Do
3 2 4 5
10 v vU + v v VU + v 1 v
YBPuA (pA) (pp B) +(“) Pov TPvB +<“> (23)
4 \ po Do Do Do 6\ Do

For instance, the gain-loss equation for the andp,,.,
pair densities are given by

1(b) and 1(c) the critical point obtained in the pair approxi-
mation and through Monte Carlo simulations are almost the
same. However, the slope of the curves at the critical point
are rather different. The simulations will be detailed in the

dpy . o ;

% = L+Te—-Ty—T5 , (24) next section. Fog4 > y4, the system is in an active steady

dp state, while for valuegs < ya, the system is trapped into
d:” = 2(T3+Ty—Th —To) . (25) an absorbing state, where the surface is completely poisonec

by monomers of the speciés
The set of equations for the pair probabilities cannot be

solved analytically in any dimension. However, if we take,
as in the site approximatiop,, + pp = 1, the set of equa-
tions can be simplified near the critical point. Through the

[Il Static Monte Carlo simulations

Maple manipulations for the stationary staé’gtﬂ( = 0and
05 — () we found thap, ~ (y4 — ya.)” with 3 = Linall

In this section we give a brief description of the method we
used. The results of simulations were obtained through the

dlmensmns This was indeed expected since the model has &ollowing algorithm: we randomly choose a site from the

similar behavior as thd + A — A, autocatalytic model. In
that model, Aukrust, Browne and Webman [28] also found y 4, a monomerA to be adsorbed.
the same valug = 1 for the critical exponent of the order

list of empty sites of the lattice and select, with probability
If no one of the near-
est neighbor sites of the selected site are occupied hgr

parameter in the pair mean field approximation. We have B monomers, then this empty site becomes occupied by a

also found the critical value of the paramejgr. Its critical
value isya_(d = 1) = 0.5593, y4,.(d = 2) = 0.5182 and
ya,.(d = 3) = 0.5050.

monomerA and the number of empty sites is decreased by
one. Else, if there are some monomers in its neighborhood,
then a reactionq{ + A) or (A+ B) will take place with prob-

In Figs. 1(a), 1(b) and 1(c) we show the mean-field re- ability IT4 4 (IL45 ), and the list of empty sites is increased
sults along with the Monte Carlo simulations, for the order by one. On the other hand, with probabilifg =1 —y4, a
parametep, for the linear, square and cubic lattices. This B monomer is deposited on the empty site. Then, we search

figure clearly indicates that a close agreement between thdor A monomers in its neighborhood.

results of mean-field and Monte Carlo calculations is

served far away of the critical point. As we can see in Figs. act with B, leaving two empty sites after reaction.

If more than ate
ob- monomer is found, we randomly choose which one will re-
If no
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Figure 1. Fraction of empty sites as a function of the parameter

A monomer is found, the® remains adsorbed. In order to
improve the efficiency of the algorithm we use a continuous
time Monte Carlo procedure, where the time per event is no
longer constant. If at a given instant of time the number of
vacant sites igv,,, the selection from this list corresponds to

a time incrementV, . All the simulations started with an
empty lattice and the time required for a finite system to be-
come poisoned depends on the lattice size and on the value
of y4. For the lattice sizes we consider, we expect that, due
to the fluctuations, a surface fully covered will be observed
for any value ofy 4 for sufficiently long times. The absorb-

ing state is the only stable state. However, for larger

than the critical value, the system can be found in a reactive
steady state, until a large fluctuation drive it to a poisoned
state. This reactive steady state is indeed a metastable state.
For these metastable states we compute the order parameter
(fraction of vacant sites) which exhibits fluctuations around
the mean value. We performed simulations for the various
lattice sizes, and we considered detailed calculations near
the transition point. The simulations showed that the system
exhibits a continuous phase transition between an absorbing
state, which is poisoned by monomers of the tyfeand an
active steady state.

To obtain the critical exponents of the model we per-
formed a finite-size scaling analysis for the order parameter
py. We assume that it is a generalized homogeneous func-
tion of the variabled. and A = y4 — ya.. We suppose
[18, 28] that in the critical region, the order parameter be-
haves as

po ~ L/ ® (ALl/w) : (26)

where® is a scaling function with the properties that at the
critical point®(0) ~ 1, and that®(x) ~ 2, for z — oo.

The latter property recovers the power law behavior of Eq.
(13) which is valid for a system of infinite size near its crit-
ical point. The exponent, is the correlation length expo-
nent and measures the correlations of the order parameter
over the surface. At the critical point, a log-log plot jof
versusL must be a straight line with slopegs/v, . Figs.
2(a), 2(b) and 2(c) show the log-log plotspaf versusL, for

the linear, square and cubic lattices, respectively. The error
bar for each point is not included in these plots. The data
points give the valug 4 (d = 1) = 0.63743(7), ya_.(d =

2) = 0.5140(5) andy 4, (d = 3) = 0.5004(1) for the critical
value of the parameter, for the three lattices. The values
of the critical exponent ratio aré/v, = 0.25(1), 0.80(2)
and1.40(2), for the linear, square and cubic lattices, respec-
tively. These values were calculated by linear fittings to the
data points of the simulations including their error bars.

In order to carry out a finite-size scaling analysis for the
order parameter, a number of independent runs were done
near the transition point for each lattice size, anddfer 1,

2 and 3. Data obtained from the quasiequilibrium active

ya. The solid and dotted lines correspond to the mean field ap- Stéady states were then sampled. For instance, for the lat-
proximations. The symbols represent the results of Monte Carlo tice size. = 128 and for the square lattice, we determined

simulations for various lattice sizes. Linear lattice (a), square

lattice (b) and cubic lattice (c).

the averages and the corresponding fluctuations from a set
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rametery  (indicated in the figures), near the critical point, for (a) Figure 3. Collapse of the data points for the order parameter
linear chain, (b) square lattice, and (c) cubic lattice. From the slope for different lattice sized. for the linear chain (a), square (b) and

of the straight lines we found/v, = 0.25, 0.80 and1.40, for the

linear, square and cubic lattices, respectively.

cubic (c) lattices. The figure is a log-log plot pf L®/“+ versus
ALY":, The slope of the solid lines, which is the asymptotic be-
havior OfpuLﬂ/V*, givess = 0.27, 0.57 and0.80 for the linear,
square and cubic lattices, respectively.
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of 100 surviving samples. We have plotted, in Fig. 3, the plot of 7 versus the system sizZeis a straight line with the
quantity p, L/~ versusALY"+ in a log-log scale, for ~ slopez. This result is displayed in our Fig. 4 for the lin-
various lattice sizes and dimensions. Figs. 3(a), 3(b) andear chain (a), square (b) and cubic (c) lattices. From these
3(c) correspond to the simulations performed for the linear, figures we obtair: = 1.54(5) andys, = 0.6375(1) for
square and cubic lattices, respectively. As we can see, thdéhe linear chainz = 1.68(6) andy,, = 0.5142(2) for the
data for the different lattice sizes, in each plot, collapse very square lattice, and = 1.94(2) andya, = 0.5006(1) for
well, suggesting the correctness of the scaling form of Eq. the cubic lattice. Eq. (28) must be consistent with the def-
(26). Thus, for large values of the argument of the function inition of the ;| exponent: in the limit of a system with an

® in Eq. (26), the data should fall on a straight line with infinite lattice size L — oo) the characteristic time diverges

slopeg. as7 ~ (ya —ya.) . So, thez and they|, exponents are
The collapse of the data points was obtained with the related by = V| /vL.

following values of the parametersi = 0.27(2), v, = Another way to get information about the critical expo-

1.07(3) andya, = 0.6375(1) for the linear chain,3 = nents at the critical point, is to consider, for a fixed timall

0.58(3), v, = 0.72(5) and ya, = 0.5141(2) for the  the samples (the surviving ones and those which entered the

square lattice, an@ = 0.80(1), v, = 0.58(1) andys, = absorbing state). Definingjas the average of the order pa-

0.5004(1) for the cubic lattice. We_obs_erve that the ratios rameter over many samples, this quantity will depend only
B/v. are the same as those found in Fig. 2. The best valueson the system siz& and on time. For the long time behav-
of the static critical exponents of the Directed Percolation jor and for a large system size one can assume the following

[36] are listed in the table IV. scaling form
Table IV. Best values for the static critical exponents of the —8/v 5
directed percolation universality class. o~ L Y/l . (29)
We have plotted, in Fig. 5§L%/“+ versust/L* on
critical a log-log scale. The data points collapse very W_eII for
ex d=1 d=2 d=3 B/vy = 0.25(1), z = 1.55(2) andys, = 0.6375(1) in
ponent the linear chain case. The values used for the square lattice
A 0.276486(8) | 0.584(4) | 0.81(1) were/v, = 0.80(1), z = 1.66(7) andy4, = 0.5141(1).
L 1.096854(4) | 0.734(4) | 0.581(5) In the cubic lattice the collapse was obtained by choosing

B/v. = 1.40(1), z = 1.95(1) andya, = 0.5005(2). All
As we can see, there is a good agreement between théhese values are consistent with the previous ones we have
values we found in our static Monte Carlo simulations and found by employing the other manner of collapsing the or-
those of the DP. This is a good evidence that our catalytic der parameter data. As we can see from these figures, for
reaction model with competing reactions is in the same uni-t < L? the data points collapse onto a straight line with
versality class of the Directed Percolation. the slope—f3/v|| = —0.15(1), —0.48(2) and—0.71(4) for
the linear chain, square and cubic lattices, respectively. Fi-
nally, from these ratios, we can estimate the value of the
AV} Dynamic Monte Carlo simula- critical exponent. We found the values$.8(1) for the lin-
. ear chain,1.21(8) for the square lattice and13(8) for the
tions cubic lattice. In Fig. 5(c), the data fall on a straight line only
in a small region. This fact is due to small lattice sizes used
We also studied the dynamical critical behavior of the model in ¢ = 3.
by introducing a suitable time variable. It is defined as being Another way of studying the dynamical critical behav-
the mean time required for the system to become completelyior of the model is by employing an epidemic analysis
poisoned. Firstly, we define the time for a selected sample[29, 30, 31]. We measured the survival probabiltyt), the

to become poisoned, that is, number of empty sites, (¢), and the mean square displace-
ment from the origink? (¢), from an initial state containing
R 2t tp ) (27) only a single empty site at the center of the lattice. Then,
? > ¢ Do we followed the time evolution of many samples with this

initial condition until a maximum time,,,,,, = 10000 time

steps in the linear chain casg,,, = 2500 time steps for

the square lattice, ang,,, = 5000 time steps for the cu-

bic lattice. For the linear chain and square lattice, one time

step was defined b00 changes in the configuration of the

system, which could be an adsorption or a chemical reaction
; 1y event. For the cubic lattice, one time step was definetiby

T~ L% (AL L) : (28) changes in the configuration of the system. We have taken a

lattice of sizeL. = 5 x 10° for the linear chain, while for the
Albano and Marro [37] have proposed a phenomenolog- square and cubic lattices, we todk= 1000 and L = 50,

ical scaling approach for the poisoning time at the first order respectively. P () and R? (¢) are averaged only for those
transition of the monomer-dimer reaction model. In their configyrations that have not entered into the absorbing state
approach this time diverges logarithmically with the linear i the timet, andn, (¢) is averaged over all the samples

lattice size and algebraically with the distance to the coex- [13]. To get a good statistics we need to run at l@ask 106
istence point. In Eq. (28) the scaling functions assumed independent samples in all dimensions.

to behave ag(0) ~ 1 at the critical point, so that a log-log

This particular function depends on the linear sizef the
system and on the parametgr. Then, we take an average
over all the independent samples, getting the quantity

T =< T, >4, Which is assumed to have the scaling form
[18, 28]
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Figure 5. Collapse of the data points for the dynamical behavior of
the order parameter at the critical point. For the linear chain (a),
a good collapse was obtained withv, = 0.25, z = 1.55, and

ya, = 0.6375. The slope of the straight line j8/v = 0.15. A
good collapse is obtained for the square lattice (b), with the values
B/v. = 0.80, z = 1.66 andya, = 0.5141. The slope of the

rametery4 (indicated in the figures), near the critical point. In straight line gives3 /v = 0.48. In the case of cubic (c) lattice we
figure (a), for the linear chain, the slope of the straight line gives found /v, = 1.40, z = 1.95 andya. = 0.5005. The slope of

z = 1.54, while for the square (b) and cubic (c) latticesis 1.68

and1.94, respectively.

the straight line giveg /v = 0.71.
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From the scaling ansatz for the DP class and similar bottom correspond to the valugs = 0.5005, y4 = 0.5004
models [38, 39], the physical quantities of interest dependandy, = 0.5003 and the dynamical critical exponents are
on the relevant parameters, t andA = y4 — y4, only 6 =0.71(4), 7 = 0.09(7) and¢ = 1.03(1).
through the scaling variablest—¢ andAt¢!'/¥I1, times some
power ofr2, t or A. In the scaling regime, the local fraction €)
of empty sites, averaged over all trials, surviving or not, can
be written as

P (?,t) ~ {1=Cd2 (r2t—<,At1/VH) . (30)

and the survival probability is expected to behave as

P(t) ~ 1t (Atl/”n) , (31)

wherev) is the critical exponent associated with the diver- ook ‘ d
gence of the temporal correlation length. From equation Eq. =
(30) we can calculate the number of empty sites(t), and & 1000 -
the mean square spreading of the origid,(t),

100 = | | —

/ po (7.1)dtr (32) t
R(t) = % /r?pv (?,t)ddr. (33)

Ny (

T T T T
These equations can be cast in the following form c 001553\
0.00781— -

8 | | | |

Ny (t)

t

ne (1) ~ 10 (Atl/””) , (34)

n,(0

R2() ~ 0O (At”””) . (35)

Here,d, n and( are the dynamical critical exponents of the
model. The exponen{ is related to the critical exponent
z, that governs the divergence of the characteristic time, by
¢ = 2/z. Here,®, ¥ and®© are scaling functions with the =0
property that, at the critical point, they assume a constant
value, that is, they are nonsingular functions at the critical t
point. At the critical point, Egs. (31), (34) and (35) assume

asymptotic power laws (c)

1024

50

P (t) ~ t75 , (36) 0.01 -
ny (£) ~ 7, (37)
RY(t) ~ ¢ . (38)

P(t)

0.001— &

Log-log plots of these quantities, at the critical point,
must be straight lines with slopes giving the corresponding
critical exponents. These plots are shown in Figs. 6(a), 6(b)
and 6(c), for the linear chain, square and cubic lattices, re-
spectively. In each plot of Fig. 6(a) we have three curves.
Each curve, from top to bottom, is associated with the values
ya = 0.6376, y4 = 0.6375 andy 4 = 0.6374. The straight 100 .
line gives the critical valug 4 (d = 1) = 0.6375(1). From
each plot we obtaid = 0.160(3), n = 0.314(2) and 64 256 1024
¢ = 1.260(1). In each plot of Fig. 6(b) the curves were t
built with the valuegj4 = 0.5145, 0.5142 and0.5139. The Figure 6. Log-log plots for the quantitie (t), n. (t) and R (t)
critical value isy4, = 0.5142(3) and the dynamical critical  for the linear (a), square (b) and cubic (c) lattices. From these
exponents in two dimensions afe= 0.47(1), n = 0.23(1) figures we get the corresponding critical valugs (d = 1) =
and¢ = 1.12(1). For the Fig. 6(c) the curves, from top to  0.6375, ya.(d = 2) = 0.5142 andya, (d = 3) = 0.5004.

n,(t)

R(®)




498

It is also possible to find the values of the critical ex-
ponents by looking at the local slopes. Consider, for in-
stance, Eq. (31). By changing the scale of the time vari-
able by an integern we can write, at the critical point,
P (mt) = m™9P (t). From this, we have

_ log [P (mt) /P (t)]
logm

with similar expressions for the exponentand(. At large

times, the local slopé&(t) assumes the following asymptotic

behavior

=10 (39)

3

St)=64at™ 0 +bot=% ... | (40)

wheref and ¢ are corrections to scaling due to the finite
size of the lattice. We also estimated the critical exponents
by plotting the local slopes versugt and extrapolating to
1/t — 0. The plots for the local slopé&(t) are shown in
Fig. 7(a), for the linear chain, in Fig. 7(b), for the square
lattice and in Fig. 7(c) for the cubic lattice, where we used
m = 2. The curves in each plot correspond to different val-
ues of the parametery around the critical valug,4 ., which

is the central curve in the plot. From these figures we esti-
mate the values = 0.163(7), 0.46(1) and0.71(3) for the
linear chain, square and cubic lattices. We also plotted the
local sloper (t) versusl/t for the three lattices in the Figs.
8(a), 8(b) and 8(c). From these figurgel = 1) = 0.31(5),

n(d 2) 0.23(1) and n(d 3) = 0.12(4). Fi-
nally, in Fig. 9, we plotted the local slogg(t) versusl/t

for the linear chain 9(a), square 9(b) and cubic 9(c) lat-
tices. These plots give the valué&d = 1) 1.26(1),

¢(d =2) =1.13(2) and{(d = 3) = 1.03(1).

Our calculated dynamical critical exponents agree with
those found for the Directed Percolation in one, two and
three spatial dimensions. The best values of these critical
exponents [36] are listed in the table V.

Table V. Best values for the dynamic critical exponents of
the directed percolation universality class.

critical d—1 d—2 d—3
exponent
z 1.580745(10) | 1.76(3) 1.90(1)
4l 1.733847(6) | 1.295(6) | 1.105(5)
0 0.159464(6) 0.451 0.73
n 0.313686(8) 0.230 0.12
¢ 1.26523 1.13636 | 1.05263
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Figure 7. Local slopé (¢) for the linear chain (a), square (b)
and cubic (c) lattices. From these plots we estimate the value of
the critical exponend, whose values aré(d = 1) = 0.163(7),
6(d=2) =0.46(1) andd(d = 3) = 0.71(3).
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V Conclusions

(11]

E.C. da Costa and W. Figueiredo

M. Godoy, and W. Figueiredo, Phys. Rev. @5, 036131
(2002).

We have studied a competitive reaction model between ;o kenneth G. Wilson, Phys. Rev. 8 3174 (1971): Phys. Rev.
monomers on a catalytic surface. The model can be viewed

as being a mixture of the autocatalytic and the monomer-

monomer reaction models.

We have considered the site

[13]

and the pair mean-field approximations to obtain the steady

states and a qualitative picture of the critical behavior of the [14
model in one, two and three spatial dimensions. The model

|

displays a continuous phase transition into a single absorb-

ing state. The critical point obtained via pair approximation
agree very well with that found by Monte Carlo simulations

15]

in two and three dimensions. By employing finite-size scal- [16]

ing arguments, we determined the static and dynamic critical

exponents of the model. All the values we have found are [17]

in agreement with those of the Directed Percolation (DP) in
(d + 1) dimensions. This was indeed expected, since the

phase transition from the active to the single absorbing state

is one in which the concentration of vacancies goes con-
tinuously to zero. Although our model can not be mapped

onto the DP, they are equivalent concerning the static and
dynamic critical behavior. This is a strong evidence in favor [18]

of the universality: models with different dynamical rules

exhibit the same critical behavior. The essential characteris-{19]
tic shared by these models is a continuous phase transition

into an absorbing state. The DP conjecture asserts that modp0]
els with a continuous phase transition into an absorbing state[21]

belong generically to the DP universality class. In summary,
based on the values we have found for the static and dy-

(22]

namic critical exponents, and on the DP conjecture, we can[23]

conclude that our model belongs to the same universality

class of the DP.
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