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We consider Uncertainty Principles which take into account the role of gravity and the possible existence of
extra spatial dimensions. Explicit expressions for such Generalized Uncertainty Principles in 4+ n dimensions
are given and their holographic properties investigated. In particular, we show that the predicted number of
degrees of freedom enclosed in a given spatial volume matches the holographic counting only for one of the
available generalizations and without extra dimensions.

1 Introduction

During the last years many efforts have been devoted to clar-
ifying the role played by the existence of extra spatial dimen-
sions in the theory of gravity [1, 2]. One of the most interest-
ing predictions drawn from the theory is that there should be
measurable deviations from the 1/r2 law of Newtonian grav-
ity at short (and perhaps also at large) distances. Such new
laws of gravity would imply modifications of those General-
ized Uncertainty Principles (GUP’s) designed to account for
gravitational effects in the measure of positions and energies.

On the other hand, the holographic principle is claimed
to apply to all of the gravitational systems. The existence of
GUP’s satisfying the holography in four dimensions (one of
the main examples is due to Ng and Van Dam [3]) led us to
explore the holographic properties of the GUP’s extended to
the brane-world scenarios [4]. The results, at least for the
examples we considered, are quite surprising. The expected
holographic scaling indeed seems to hold only in four dimen-
sions, and only for the Ng and van Dam’s GUP. When extra
spatial dimensions are admitted, the holography is destroyed.
This fact allows two different interpretations: either the holo-
graphic principle is not universal and does not apply when
extra dimensions are present; or, on the contrary, we take se-
riously the holographic claim in any number of dimensions,
and our results are therefore evidence against the existence of
extra dimensions.

The four-dimensional Newton constant is denoted by GN

throughout the paper.

2 Linear GUP in four dimensions
from micro black holes

In this Section we derive a GUP via a micro black hole
gedanken experiment, following closely the content of
Ref. [5].

When we measure a position with precision of order ∆x,
we expect quantum fluctuations of the metric field around the
measured position with energy amplitude

∆E ∼ ~ c

2∆x
. (1)

The Schwarzschild radius associated with the energy ∆E,

RS =
2 GN ∆E

c4
, (2)

falls well inside the interval ∆x for practical cases. However,
if we wanted to improve the precision indefinitely, the fluc-
tuation ∆E would grow up and the corresponding RS would
become larger and larger, until it reaches the same size as ∆x.
As it is well known, the critical length is the Planck length,

∆x = RS ⇒ ∆x =
(

GN ~
c3

)1/2

≡ `p , (3)

and the associated energy is the Planck energy

εp ≡ ~ c

2 `p
=

1
2

(
~ c5

GN

)1/2

. (4)

If we tried to further decrease ∆x, we should concentrate in
that region an energy greater than the Planck energy, and this
would enlarge further the Schwarzschild radius RS, hiding
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more and more details of the region beyond the event horizon
of the micro hole. The situation can be summarized by the
inequalities

∆x &





~ c

2∆E
for ∆E < εp

2 GN ∆E

c4
for ∆E > εp .

(5)

which, if combined linearly, yield

∆x & ~ c

2∆E
+

2 GN ∆E

c4
. (6)

This is a generalization of the uncertainty principle to cases
in which gravity is important, i.e. to energies of the order of
εp. We note that the minimum value of ∆x is reached for
(∆E)min = εp and is given by (∆x)min = 2 `p.

2.1 Holographic properties
In this section, we investigate the holographic properties of
the GUP proposed above. We shall estimate the number of
degrees of freedom n(V ) contained in a spatial volume (cube
or “hypercube”) of size l. The holographic principle claims
that n(V ) scales as the area of the (hyper-)surface enclosing
the given volume, that is (l/`p)2+n in 4 + n dimensions.

For the four-dimensional GUP considered in the previous
section, Eq. (6), we find that this scaling does not occur. In
fact, (∆x)min ∼ `p and a cube of side l contains a number of
degrees of freedom equal to

n(V ) ∼
(

l

`p

)3

. (7)

We then conclude that this GUP, obtained by linearly com-
bining the quantum mechanical expression with gravitational
bounds, does not imply the holographic counting of degrees
of freedom.

3 Ng and Van Dam GUP in four di-
mensions

An interesting GUP that satisfies the holographic principle in
four dimensions has been proposed by Ng and van Dam [3],
based on Wigner inequalities about distance measurements
with clocks and light signals [6].

Suppose we wish to measure a distance l. Our measuring
device is composed of a clock, a photon detector and a pho-
ton gun. A mirror is placed at the distance l which we want
to measure and m is the mass of the system “clock + photon
detector + photon gun”. We call “detector” the whole system
and let a be its size. Obviously, we suppose

a > rg ≡ 2 GN m

c2
= RS(m) , (8)

which means that we are not using a black hole as a clock.
Be ∆x1 the uncertainty in the position of the detector, then

the uncertainty in the detector’s velocity is

∆v =
~

2 m∆x1
. (9)

After the time T = 2 l/c taken by light to travel along the
closed path detector–mirror–detector, the uncertainty in the
detector’s position (i.e. the uncertainty in the actual length of
the segment l) has become

∆xtot = ∆x1 + T ∆v = ∆x1 +
~T

2 m∆x1
. (10)

We can minimize ∆xtot by suitably choosing ∆x1,

∂∆xtot

∂∆x1
= 0 ⇒ (∆x1)min =

(
~T

2 m

)1/2

. (11)

Hence

(∆xtot)min = (∆x1)min +
~T

2 m (∆x1)min

= 2
(
~T

2 m

)1/2

. (12)

Since T = 2 l/c, we have

(∆xtot)min = 2
(
~ l

m c

)1/2

≡ δlQM . (13)

This is a purely quantum mechanical result obtained for the
first time by Wigner in 1957 [6]. From Eq. (13), it seems that
we can reduce the error (∆xtot)min as much as we want by
choosing m very large, since (∆xtot)min → 0 for m → ∞.
But, obviously, here gravity enters the game.

In fact, Ng and van Dam have also considered a further
source of error, a gravitational error, besides the quantum me-
chanical one already addressed. Suppose the clock has spher-
ical symmetry, with a > rg. Then the error due to curvature
can be computed from the Schwarzschild metric surrounding
the clock. The optical path from r0 > rg to a generic point
r > r0 is given by (see, for example, Ref. [7])

c ∆t =
∫ r

r0

dρ

1− rg
ρ

= (r − r0) + rg log
r − rg

r0 − rg
, (14)

and differs from the “true” (spatial) length (r − r0). If we
put a = r0, l = r, the gravitational error on the measure of
(l − a) is thus

δlC = rg log
l − rg

a− rg
∼ rg log

l

a
, (15)

where the last estimate holds for l > a À rg.
If we measure a distance l ≥ 2a, then the error due to

curvature is

δlC ≥ rg log 2 ' GNm

c2
. (16)

Thus, according to Ng and van Dam the total error is

δltot = δlQM + δlC = 2
(
~ l

m c

)1/2

+
GN m

c2
. (17)
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This error can be minimized again by choosing a suitable
value for the mass of the clock,

∂ltot(m)
∂m

= 0 ⇒ mmin = c

(
~ l

G2
N

)1/2

(18)

and, inserting mmin in Eq. (17), we then have

(δltot)min = 3
(
`2p l

)1/3
. (19)

The global uncertainty on l contains therefore a term propor-
tional to l1/3.

3.1 Holographic properties
We now see immediately the beauty of the Ng and van Dam
GUP: it obeys the holographic scaling. In fact in a cube of
size l the number of degrees of freedom is given by

n(V ) =
(

l

(δltot)min

)3

=

(
l

(`2p l)1/3

)3

=
l2

`2p
, (20)

as required by the holographic principle.

4 Models with n extra dimensions
We shall now generalize the procedure outlined in a previous
section to a space-time with 4+n dimensions, where n is the
number of space-like extra dimensions [4]. The first problem
we should address is how to relate the gravitational constant
GN in four dimensions with the one in 4 + n, henceforth de-
noted by G(4+n).

This of course depends on the model of space-time with
extra dimensions that we consider. Models recently appeared
in the literature mostly belong to two scenarios:

• the Arkani-Hamed–Dimopoulos–Dvali (ADD)
model [1], where the extra dimensions are compact
and of size L;

• the Randall–Sundrum (RS) model [2], where the extra
dimensions have an infinite extension but are warped
by a non-vanishing cosmological constant.

A feature shared by (the original formulations of) both sce-
narios is that only gravity propagates along the n extra dimen-
sions, while Standard Model fields are confined on a four-
dimensional sub-manifold usually referred to as the brane-
world.

In the ADD case the link between GN and G(4+n) can
be fixed by comparing the gravitational action in four dimen-
sions with the one in 4+n dimensions. The space-time topol-
ogy in such models is M = M4 ⊗ <n, where M4 is the
usual four-dimensional space-time and <n represents the ex-
tra dimensions of finite size L. The space-time brane has no
tension and therefore the action S(4+n) can be written as

S(4+n) =
c3

16 π G(4+n)

∫

M4⊗<n

d4+nx
√−g R

∼ c3

16 π G(4+n)

∫

M4
d4x

√
−g̃ Ln R̃ , (21)

where R̃, g̃ are the projections on M4 of R and g. Here
Ln is the “volume” of the extra dimensions and we omitted
unimportant numerical factors. On comparing the above ex-
pression with the purely four-dimensional action

S(4) =
c3

16 π GN

∫

M4
d4x

√
−g̃ R̃ , (22)

we obtain

G(4+n) ∼ GN Ln . (23)

The RS models are more complicated. It can be shown [2]
that for n = 1 extra dimension we have G(4+n) = σ−1 GN,
where σ is the brane tension with dimensions of length−1 in
suitable units. The gravitational force between two point-like
masses m and M on the brane is now given by

F = GN
mM

r2

(
1 +

e−σr

σ2r2

)
, (24)

where the correction to Newton law comes from summing
over the extra dimensional graviton modes in the graviton
propagator [2]. However, since Eq. (24) is obtained by per-
turbative calculations, not immediately applicable to a non-
perturbative structure such as a black hole, we shall consider
only the ADD scenario in this paper. To be more precise,
from table-top tests of the gravitational force one finds that
n ≥ 2 in ADD [1, 8]. On the other hand, black holes with
mass M ¿ σ−1 are likely to behave as pure five-dimensional
in RS [9], therefore our results for n = 1 should apply to such
a case.

5 Ng and Van Dam GUP in 4 + n di-
mensions

Ng and van Dam’s derivation can be generalized to the case
with n extra dimensions. The Wigner relation (13) for the
quantum mechanical error is not modified by the presence of
extra dimensions and we just need to estimate the error δlC
due to curvature.

We ought not to consider micro black holes created by the
fluctuations ∆E in energy, as in Section 2, but we have rather
to deal with (more or less) macroscopic clocks and distances.
This implies that we have to distinguish four different cases:

1. 0 < L < rg < a < l;

2. 0 < r(4+n) < L < a < l;

3. 0 < r(4+n) < a < L < l;

4. 0 < r(4+n) < a < l < L;
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where r(4+n) is the Schwarzschild radius of the detector in
4 + n dimensions, and of course rg = r(4). The curvature
error will be estimated (as before) by computing the optical
path from a ≡ r0 to l ≡ r. Of course, we will use a metric
which depends on the relative size of L with respect to a and
l, that is the usual four-dimensional Schwarzschild metric in
the region r > L, and the 4 + n dimensional Schwarzschild
solution in the region r < L (where the extra dimensions play
an actual role).

In cases 1. and 2. the length of the optical path from a to
l can be obtained using just the four-dimensional Schwarz-
schild solution and the result is given by Eq. (19).

In cases 3. and 4. we instead have to use the Schwarz-
schild solution in 4 + n dimensions [11],

ds2 = −
(

1− C

rn+1

)
c2dt2

+
(

1− C

rn+1

)−1

dr2 + r2dΩ2
n+2 , (25)

at least for part of the optical path. In the above,

C =
16 π G(4+n) m

(n + 2) An+2 c2
, (26)

and An+2 is the area of the unit (n + 2)-sphere, that is

An+2 =
2 π

n+3
2

Γ
(

n+3
2

) . (27)

Besides, we note that, for n = 0,

C =
2 GN m

c2
= rg , (28)

that is, C coincides in four dimensions with the Schwarz-
schild radius of the detector. The Schwarzschild horizon is
located where (1− C/rn+1) = 0, that is at r = C1/(n+1) ≡
r(4+n), or

r(4+n) = α(n)
[
2 G(4+n) m

c2

] 1
n+1

(29)

where

α(n) =
[

8 π

(n + 2) An+2

] 1
n+1

(30)

is an unimportant numerical factor.
Since measurements can be performed only on the brane,

to the uncertainty ∆x in position we can still associate an
energy given by Eq (1). The corresponding Schwarzschild
radius is now given by Eq. (29) with m = ∆E/c2 and the
critical length such that ∆x = r(4+n) is the Planck length in
4 + n dimensions,

∆x = [α(n)]
1+n
2+n

(
G(4+n) ~

c3

) 1
2+n

= [α(n)]
1+n
2+n

(
`2p Ln

) 1
n+2 . (31)

For sake of simplicity (because α(0) = 1 and in any case
α(n) ∼ 1) we define the Planck length in 4 + n dimensions
as

`(4+n) ≡
(
`2p Ln

) 1
n+2 . (32)

The energy associated with `(4+n) is analogously the Planck
energy in 4 + n dimensions,

ε(4+n) =
1
2

(
~ c5

GN

~n cn

Ln

) 1
n+2

=
1
2

[
4 ε2p

(
~ c

L

)n] 1
n+2

(33)

where εp is the Planck energy in four dimensions given in
Eq. (4).

In case 3. we obtain the length of the optical path from a
to l by adding the optical path from a to L and that from L to
l. We must use the solution in 4 + n dimensions for the first
part, and the four-dimensional solution for the second part of
the path,

c ∆t =
∫ L

a

(
1 +

C

rn+1 − C

)
dr +

∫ l

L

(
1 +

rg

r − rg

)
dr

= (L− a) + (l − L) + C

∫ L

a

dr

rn+1 − C

+ rg

∫ l

L

dr

r − rg
. (34)

It is not difficult to show that from r(4+n) < L (which holds
in cases 3. and 4.) we can infer

rg < r(4+n) < L . (35)

Now, suppose an+1 À C = rn+1
(4+n), that is a À r(4+n),

so that we are not doing measures inside a black hole. Then
rg < r(4+n) ¿ a < L < l and

c ∆t ' (l − a) + C

∫ L

a

dr

rn+1
+ rg

∫ l

L

dr

r

= (l − a) +
C

n

(
1
an

− 1
Ln

)
+ rg log

l

L

= (l − a) +
1
n

(
1
an

− 1
Ln

)
16 π G(4+n)

(n + 2)An+2 c2
m

+
(

2 GN

c2
log

l

L

)
m . (36)

The error caused by the curvature (when a < L < l) is there-
fore linear in m,

δlC =
[

1
n

(
1
an

− 1
Ln

)
16 π GNLn

(n + 2) An+2 c2
+

2 GN

c2
log

l

L

]
m

≡ K m . (37)

We recall that the curvature error in four dimensions does
not contain the size of the clock. On the contrary, this error
in 4 + n dimensions depends explicitly on the size a of the
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clock and on the size L of the extra dimensions. Hence the
total error is given by

δltot = δlQM + δlC = 2
(
~ l

m c

)1/2

+ K m

= J m−1/2 + K m , (38)

where J = 2 (~ l/c)1/2 and K is defined above. This error
can be minimized with respect to m,

∂δltot
∂m

= 0 ⇒ mmin =
(

J

2 K

)2/3

. (39)

Finally,

(δltot)min = 3 · 2−2/3
(
K J2

)1/3

= 3 · 21/3

[
1
n

(
1
an

− 1
Ln

)

×
8 π `2+n

(4+n) l

(n + 2) An+2
+ `2p l log

l

L

]1/3

(40)

where we used the definition of J and K.
In case 4., the optical path from a to l can be obtained by

using simply the Schwarzschild solution in 4+n dimensions.
We get

c ∆t =
∫ l

a

(
1 +

C

rn+1 − C

)
dr

= (l − a) + C

∫ l

a

dr

rn+1 − C
. (41)

Suppose now, as before, that an+1 À C = rn+1
(4+n), that is

a À r(4+n) (i.e. our clock is not a black hole). We then have

c ∆t ' (l − a) + C

∫ l

a

dr

rn+1

= (l − a) +
C

n

(
1
an

− 1
ln

)
. (42)

If the distance we are measuring is, at least, of the size of the
clock (l ≥ 2 a), we can write

c ∆t & (l − a) +
C

n

(
2n − 1
2n an

)
. (43)

The error caused by the curvature is therefore (when a < l <
L)

δlC =
C

n

(
2n − 1
2n an

)
. (44)

Here we again note that the curvature error in 4 + n dimen-
sions explicitly contains the size of the clock. The global
error can be computed as before

δltot = δlQM + δlC = 2
(
~l
m c

)1/2

+
C

n

(
2n − 1
2n an

)
, (45)

where C is linear in m. Minimizing δltot with respect to m
can be done in perfect analogy with the previous calculation.
The result is

(δltot)min = 3 · 2−2/3

(
2n − 1
2n n

64 π

(n + 2) An+2

)1/3

×

×
(

`n+2
(4+n) l

an

)1/3

. (46)

We note that the expression (40) coincides in the limit
L → a with Eq. (19) (taking l ≥ 2 a), while, in the limit
L → l, we recover from Eq. (40) the expression (46) (of
course, supposing also that l ≥ 2 a).

5.1 Holographic properties
We finally examine the holographic properties of Eq. (46) for
the GUP of Ng and van Dam type in 4 + n dimensions. We
just consider the expression in Eq. (46) because it also repre-
sents the limit of Eq. (40) for L → l and l ≥ 2 a. Moreover,
for n = 0, Eq. (46) yields the four-dimensional error given in
Eq. (19).

Since we are just interested in the dependence of n(V ) on
l and the basic constants, we can write

(δltot)min ∼
(

`n+2
(4+n) l

an

)1/3

. (47)

We then have that the number of degrees of freedom in the
volume of size l is

n(V ) =
(

l

(δltot)min

)3+n

=
(

l2 an

`2p Ln

)1+ n
3

, (48)

and the holographic counting holds in four-dimensions (n =
0) but is lost when n > 0. In fact we do not get something as

n(V ) =
(

l

`(4+n)

)2+n

, (49)

as we would expect in 4 + n dimensions. Even if we take the
ideal case a ∼ `(4+n) we get

n(V ) =
(

l

`(4+n)

)2 (1+ n
3 )

, (50)

and the holographic principle does not hold for n > 0.

6 Concluding remarks
In the previous Sections, we have shown that the holographic
principle seems to be satisfied only by uncertainty relations
in the version of Ng and van Dam and for n = 0. That is,
only in four dimensions we are able to formulate uncertainty
principles which predict the same number of degrees of free-
dom per spatial volume as the holographic counting. This
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could be evidence for questioning the existence of extra di-
mensions. Moreover, such an argument based on holography
could also be used to support the compactification of string
theory down to four dimensions, given that there seems to be
no firm argument which forces the low energy limit of string
theory to be four-dimensional (except for the obvious obser-
vation of our world). In this respect, we should also say that
the cases 3. and 4. of Section 5 do not have a good probability
to be realized in nature since, if there are extra spatial dimen-
sions, their size must be shorter than 10−1 mm [8]. Therefore,
cases 1. and 2. of Section 5 are more likely to survive the test
of future experiments.

A number of general remarks are however in order. First
of all, we cannot claim that our list of possible GUP’s is com-
plete and other relations might be derived in different con-
texts which accommodate for both the holography and extra
dimensions. Further, one might find hard to accept that quan-
tum mechanics and general relativity enter the construction
of GUP’s on the same footing, since the former is supposed
to be a fundamental framework for all theories while the lat-
ter can be just regarded as a (effective) theory of the gravita-
tional interaction. We might agree on the point of view that
GUP’s must be considered as “effective” (phenomenological)
bounds valid at low energy (below the Planck scale) rather
than “fundamental” relations. This would in fact reconcile
our result that four dimensions are preferred with the fact that
string theory (as a consistent theory of quantum gravity) re-
quires more dimensions through the compactification which
must occur at low energy, as we mentioned above. Let us
also note that general relativity (contrary to usual field theo-
ries) determines the space-time including the causality struc-
ture, and the latter is an essential ingredient in all actual mea-
surements. It is therefore (at least) equally hard to conceive
uncertainty relations which neglect general relativity at all.
This conclusion would become even stronger in the presence
of extra dimensions, since the fundamental energy scale of
gravity is then lowered [1, 2] (possibly) within the scope of
present or near-future experiments and the gravitational ra-
dius of matter sources is correspondingly enlarged [10].

A final remark regards cases with less than four dimen-
sions. Since Einstein gravity does not propagate in such
space-times and no direct analogue of the Schwarzschild so-

lution exists, one expects a qualitative difference with respect
to the cases that we have considered here. For instance, a
point-like source in three dimensions would generate a flat
space-time with a conical singularity and no horizon [12].
Consequently, one does expect that the usual Heisenberg un-
certainty relations hold with no corrections for gravity.
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