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The Infrared Behavior of the Gluon and Ghost Propagators in SU(2)
Yang-Mills Theory in the Maximal Abelian Gauge
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We report on some recent analytical results on the behaviour of the gluon and ghost propagators in Euclidean
SU(2) Yang-Mills theory quantized in the maximal Abelian gauge (MAG). This gauge is of particular interest
for the dual superconductivity picture to explain color confinement. Two kinds of effects are taken into account:
those arising from a treatment of Gribov copies in the MAG and those arising from a dynamical mass originating
in a dimension two gluon condensate. The diagonal component of the gluon propagator displays the typical
Gribov-type behaviour, while the off-diagonal component is of the Yukawa type due to the dynamical mass.
These results are in qualitative agreement with available lattice data on the gluon propagators. The off-diagonal
ghost propagator exhibits an infrared enhancement due to the Gribov restriction, while the diagonal one remains
unaffected.
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I. INTRODUCTION

We shall consider pure Euclidean SU(N) Yang-Mills theo-
ries with action

SY M =
1
4

∫
d4x F a

µνF a
µν , (1)

where Aa
µ , a = 1, ...,N2−1 is the gauge boson field, with as-

sociated field strength

F a
µν = ∂µAa

ν −∂νAa
µ +g f abcAb

µ Ac
ν . (2)

The theory (1) is invariant w.r.t. the local gauge transforma-
tions

δAa
µ = Dab

µ ωb , (3)

with

Dab
µ = ∂µδab−g f abcAc

µ , (4)

denoting the adjoint covariant derivative.

∗Work supported by FAPERJ, Fundação de Amparo à Pesquisa do Es-
tado do Rio de Janeiro, under the program Cientista do Nosso Estado, E-
26/151.947/2004.

As it is well known, the theory (1) is asymptotically free
[1, 2], i.e. the coupling becomes smaller at lower energies and
vice versa. At very high energies, the interaction is weak and
the gluons can be considered as almost free particles. How-
ever, in spite of the progress in the last decades, we still lack a
satisfactory understanding of the behaviour of Yang-Mills the-
ories in the low energy regime. Here the coupling constant of
the theory is large and nonperturbative effects have to be taken
into account. One of the greatest challenges of contempo-
rary theoretical physics is to actually prove that (1) describes
a confining theory in the infrared. Its physical spectrum is be-
lieved to be given by colorless bound states of gluons called
glueballs. We adopt here the common paradigm according to
which the first step for understanding color confinement in the
real world, i.e. in the QCD-world, is to understand it first in
pure Yang-Mills theory (1).

A partial list of causes of nonperturbative effects is given by
Gribov ambiguities which affect the Faddeev-Popov quanti-
zation procedure and hence the propagators [3], the existence
of condensates such as 〈F2〉, 〈A2〉, etc. [4–6], the existence
of (topologically) nontrivial field configurations like instan-
tons [7], etc. These effects are not necessarily unrelated, as
e.g. instantons can contribute to the condensate 〈F2〉 [7], the
Faddeev-Popov operator has zero modes in an instanton back-
ground [8], etc.
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A. The dual superconductivity picture

A particularly appealing proposal to explain confinement
in the low energy regime was made in [9–11]. Let us give a
simple idea of the picture. If the QCD vacuum would con-
tain magnetic monopoles and if these monopoles would con-
dense, there will be a dual Meissner effect which squeezes
the chromoelectric field into a thin flux tube. This results in
a linearly rising potential, V (r) = σr, between static charges,
as can be guessed from Gauss’ law,

∫
EdS = const or, since

the main contribution is coming from the flux tube, one finds
E∆S ≈ const, hence V =−∫

Edr ∝ r where ∆S is the area of
the flux tube. In fact, it is not difficult to imagine the longer the
flux tube (string) gets, the more energy it will carry. Hence,
it would cost enormous amounts of energies to separate two
test charges from each other and so they are confined to stay
together.

B. The maximal Abelian gauge

An important ingredient for the dual superconductivity pic-
ture to work, is clearly the presence of (magnetic) monopoles.
As the Yang-Mills action (1) is locally gauge invariant, we
need to fix the gauge in order to quantize it. ’t Hooft invented
the so-called Abelian gauges in [12], of which the maximal
Abelian gauge (MAG) is a specific example [12–14]. In these
Abelian gauges, defects in the gauge fixing give rise to point-
like singularities which can be associated to monopoles.

We may decompose the SU(2) gauge field into off-diagonal
and diagonal components, according to

Aµ = Aa
µT a +AµT 3 , (5)

where T a, a = 1,2, denote the off-diagonal generators of
SU(2), while T 3 stands for the diagonal generator,

[
T a,T b

]
= iεabT 3 ,

[
T 3,T a] = iεabT b, (6)

where

εab = εab3 , εacεad = δcd . (7)

Similarly, for the field strength one shall find

Fµν = Fa
µνT a +FµνT 3 , (8)

with off-diagonal and diagonal parts given by

Fa
µν = Dab

µ Ab
ν−Dab

ν Ab
µ , (9)

Fµν = ∂µAν−∂νAµ +gεabAa
µAb

ν ,

The covariant derivative Dab
µ is defined with respect to the di-

agonal component Aµ

Dab
µ ≡ ∂µδab−gεabAµ . (10)

For the Yang-Mills action in Euclidean space, one finally ob-
tains

SYM =
1
4

∫
d4x

(
Fa

µνFa
µν +FµνFµν

)
. (11)

As it is easily checked, the classical action (11) is left invariant
by the decomposed gauge transformations

δAa
µ = −Dab

µ ωb−gεabAb
µω ,

δAµ = −∂µω−gεabAa
µωb . (12)

The MAG is obtained by demanding

Dab
µ Ab

µ = 0 , (13)

which follows by requiring that the auxiliary functional

R [A] =
∫

d4xAa
µAa

µ , (14)

is stationary with respect to the gauge transformations (12).
Moreover, as it is apparent from the presence of the covari-

ant derivative Dab
µ , (13) allows for a residual local U(1) invari-

ance corresponding to the diagonal subgroup of SU(2). This
additional invariance has to be fixed by means of a suitable
gauge condition on the diagonal component Aµ, which will be
chosen to be of the Landau type, also adopted in lattice simu-
lations [15, 16], namely

∂µAµ = 0 . (15)

The MAG is interesting from the lattice as well as contin-
uum viewpoint. It can be simulated numerically, as first dis-
cussed in [13, 14], while the MAG is also renormalizable in
the continuum. Although strictly speaking, the MAG as de-
fined by (13) is not renormalizable. A slight generalization
has to be considered containing a gauge parameter α. More-
over, due to the nonlinearity of the gauge condition (13), a
quartic ghost interaction has to introduced in the MAG action
[17]. The complete action turns out to be given by

S = SYM +SMAG +Sdiag , (16)

where SMAG, Sdiag are the gauge fixing terms corresponding to
the off-diagonal and diagonal sectors, respectively, given by
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SMAG = s
∫

d4x
(

ca
(

Dab
µ Ab

µ +
α
2

ba
)
− α

2
gε abcacbc

)

=
∫

d4x
(

ba
(

Dab
µ Ab

µ +
α
2

ba
)

+ caDab
µ Dbc

µ cc +gcaεab
(

Dbc
µ Ac

µ

)
c−αgεabbacbc−g2εabεcdcacdAb

µAc
µ−

α
4

g2εabεcdcacbcccd
)

,

Sdiag = s
∫

d4x c∂µAµ =
∫

d4x
(

b∂µAµ + c∂µ

(
∂µc+gεabAa

µcb
))

. (17)

where s is the nilpotent (s2 = 0) BRST transformation, defined
through

sAa
µ = −

(
Dab

µ cb +gεabAb
µc

)
,

sAµ = −
(

∂µc+gεabAa
µcb

)
,

sca = gε abcbc , sc =
g
2

ε abcacb,

sca = ba , sc = b ,

sba = 0 , sb = 0 ,

sS = 0 . (18)

(ca,ca) and (c,c) are the off-diagonal and diagonal Faddeev-
Popov ghosts, while (ba,b) denote the Lagrange multipliers.
The action (16) is renormalizable to all orders of perturbation
theory [18, 19]. Only at the end, when the ultraviolet diver-
gences are consistently treated and the theory is renormalized,
can one consider the limit α→ 0 which is formally equivalent
with the condition (13). We refer to [18, 19] for details con-
cerning the MAG renormalization.

C. Abelian dominance

According to the concept of Abelian dominance, the low
energy regime of QCD can be expressed solely in terms of
Abelian degrees of freedom [20]. Lattice confirmations of
the Abelian dominance can be found in [21, 22]. An argu-
ment that can be interpreted in favour of it, is the fact that the
off-diagonal gluons would attain a large, dynamical mass. At
energies below the scale set by this mass, the off-diagonal glu-
ons should decouple, and in this way one should end up with
an Abelian theory at low energies.

D. Why study propagators?

The reader might question why one would study the prop-
agators, which are not even gauge invariant objects. Still, a
certain number of considerations can be outlined. To some
extent, propagators are the simplest Green’s functions to be
evaluated. Nowadays, it is possible to obtain analytic esti-
mates of the influence of nonperturbative effects, like Gribov
copies and condensates, on the infrared behaviour of the prop-
agators. As far as 4D Yang-Mills theory is considered, this
task appears to be very difficult for more complicated Green’s

functions. In the last decade there has been an intensive activ-
ity from the lattice community in the study of the gluon and
ghost propagators in a variety of gauges. We can thus com-
pare our theoretical predictions with the available lattice data.
So far, a certain number of gauges have been considered ex-
tensively from theoretical as well as from the lattice point of
view. This is the case of the Landau, Coulomb and maximal
Abelian gauge. In the following, we shall focus on the MAG.
We shall see that the agreement between lattice results and
theoretical investigations can be considered satisfactory.

The study of the propagators might also provide a useful
framework to investigate the behaviour of the running cou-
pling constant in the infrared. This is the case, for example,
of the Landau gauge, for which the following relation holds

Zg = Z−1/2
A Z−1

c , (19)

to all orders of perturbation theory (see e.g. [23]). If this rela-
tion is expected to be valid at the nonperturbative level, the in-
frared behavior of the running coupling constant α(p2) could
be investigated by looking at the form factors of the gluon and
ghost propagators. Such lattice simulations and studies based
on the Schwinger-Dyson equations have provided evidence of
the existence of an infrared fixed point in the Landau gauge
for a renormalization group invariant coupling constant based
on the gluon and ghost propagators (see e.g. [24]), i.e.

α(0)≈ 8.92
N

, (20)

a result that has received some numerical confirmation too,
see e.g. [25].

Analogous relationships can be derived in the Coulomb
gauge. A nice updated work on the status of the running cou-
pling constant in the Coulomb gauge and its relationship with
the Landau gauge can be found in [26].

Interestingly, it turns out that also in the MAG, the renor-
malization of the gauge coupling is related to that of the fields,
according to

Zg = Z−1/2
Adiag

, (21)

where ZAdiag is the renormalization factor of the diagonal com-
ponent of the gauge field [18, 19, 27]. Analogously to the
Landau gauge, this relationship suggests that the infrared be-
havior of the gauge coupling might be investigated by looking
at the diagonal gluon propagator.
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E. Lattice data in the MAG

Lattice simulations of the MAG have given strong indica-
tions that the off-diagonal gluons acquire a relatively large
mass. Let us mention here that the MAG condition (13)
amounts to keep as minimally as possible the off-diagonal
components of the gauge fields. As a consequence, one ex-
pects that the Abelian components will play a predominant
role. This is precisely the idea which underlies the Abelian
dominance hypothesis.

The first study of the gluon propagator on the lattice in
the maximal Abelian gauge was made in [15] in the case of
SU(2). The gluon propagator was analyzed in coordinate
space. The off-diagonal component of the gluon propagator
was found to be short-ranged, exhibiting a Yukawa type be-
havior

Goff ∼ e−Moffr

r3/2 with Moff ∼ 1.2GeV . (22)

The diagonal propagator was found to propagate over larger
distances.

More recently, a numerical investigation of the gluon prop-
agator in the maximal Abelian gauge has been worked out in
[16]. Here, the gluon propagator was investigated in momen-
tum space. At low momenta, the diagonal component of the
gluon propagator has been found to be much larger than the
off-diagonal one. In particular, a Gribov like fit,

Gdiag(q) =
q2

q4 +m4
dg

, (23)

turns out to be suitable for the diagonal component of the
gluon propagator. For off-diagonal gluons, a Yukawa type fit

Goff(q) =
1

q2 +M2
off

, (24)

seems to work quite well. The mass parameter Moff appearing
in the Yukawa fit is two times bigger that the corresponding
mass parameter mdiag of the Gribov fit, namely

Moff ≈ 2mdiag , (25)

where Moff ≈ 1.2GeV, in agreement with the result obtained
in [15]. This implies that the off-diagonal propagator is short-
ranged as compared to the diagonal one, a fact which can serve
as an indication for a kind of Abelian dominance.

We hope that it has become clear by now that the MAG is
an important gauge, and deserves our attention.

II. GRIBOV COPIES IN THE MAG AND RESTRICTION
TO THE FIRST GRIBOV HORIZON

The Gribov ambiguity is due to the fact that a gauge fixing
should in principle select a single representative of a gauge
orbit of any given gauge field configuration. Gribov has
shown in the seminal paper [3] that, at least in the Landau

and Coulomb gauge, there exist gauge equivalent field con-
figurations obeying the Landau (or Coulomb) gauge. Gribov
has worked out a method to restrict more tightly the domain
of integration in the path integral for what considers the gauge
fields.

Let us work out the condition for the existence of Gribov
copies in the MAG. In the case of small gauge transforma-
tions, this is easily obtained by requiring that the gauge trans-
formed fields (12), fulfill the same gauge conditions obeyed
by

(
Aµ,Aa

µ
)
, i.e. (13) and (15). Thus, to the first order in the

gauge parameters (ω,ωa), one gets

−Dab
µ Dbc

µ ωc−gεbcDab
µ

(
Ac

µω
)

+ gεabAb
µ∂µω

+g2εabεcdAb
µAc

µωd = 0 , (26)

−∂2ω−gεab∂µ

(
Aa

µωb
)

= 0 , (27)

which, due to (13) and (15) simplify to

M abωb = 0 , (28)

−∂2ω−gεab∂µ

(
Aa

µωb
)

= 0 , (29)

with

M ab =−Dac
µ Dcb

µ −g2εacεbdAc
µAd

µ . (30)

This operator M ab is recognized to be the Faddeev-Popov op-
erator for the off-diagonal ghost sector, see [28, 29]. It enjoys
the property of being Hermitian [30], thus having real eigen-
values.

One may thus expect the appearance of Gribov copies in the
MAG. And indeed, a normalizable zero mode of the Faddeev-
Popov operator (30) was constructed in [30].

It was shown in [28] that the partition function for the
MAG, described by the action (16) can be recast into the form

Z =
∫

DAµDAa
µ δ

(
Dab

µ Ab
µ

)
δ(∂µAµ)detM abe−SYM , (31)

in the limit α→ 0 and after integration over the Lagrange mul-
tipliers as well as over the off-diagonal and diagonal ghost
fields, in the latter case a nontrivial field transformation was
used.

Let us now briefly explain the idea of Gribov to restrict the
domain of integration further [3], applied to the MAG. The
interested reader can find the details for the MAG in [28]. We
define the Gribov region C0 as the set of fields fulfilling the
gauge conditions (13), (15) and for which the Faddeev-Popov
operator M ab is positive definite, namely

C0 =
{

Aµ, Aa
µ, ∂µAµ = 0, Dab

µ Ab
µ = 0, M ab > 0

}
. (32)

The boundary, l1, of the region C0, where the first vanishing
eigenvalue of M ab appears, is called the first Gribov horizon.
The restriction of the domain of integration to this region is
supported by the possibility of generalizing to the maximal
Abelian gauge Gribov’s original result [3] stating that for any
field located near a horizon there is a gauge copy, close to the
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same horizon, located on the other side of the horizon. This
statement for the MAG was explicitly proven in [28].

The idea of Gribov was now to restrict the domain of inte-
gration to the Gribov region. Therefore, we modify the MAG
partition function (31) to

Z =
∫

DAa
µDAµ detM ab(A) δ

(
Dab

µ Ab
µ

)
δ(∂µAµ)e−SY M V (C0) ,

(33)
where the factor V (C0) implements the restriction to the re-
gion C0. Following [3], the factor V (C0) can be accommo-
dated for by means of a so-called “no pole condition” on
the off-diagonal ghost two-point function, which is nothing
else than the inverse of the Faddeev-Popov operator M ab.
More precisely, denoting by G(k,A) the Fourier transform of(
M ab

)−1, we shall require that G (k,A) has no poles for a
given nonvanishing value of the momentum k, except for a
singularity at k = 0, corresponding to the boundary of C0, i.e.
to the first Gribov horizon l1 [3]. This no pole condition can
be easily understood by observing that, within the region C0,
the Faddeev-Popov operator M ab is positive definite. This
implies that its inverse,

(
M ab

)−1, and thus the Green func-
tion G(k,A), can become large only when approaching the
horizon l1, where the operator M ab has a zero mode.

A. Effects on the propagators

The explicit implementation of the factor V (C0) can be
found in [28]. Currently, we are more interested in the even-
tual implications on the propagators of the SU(2) MAG the-
ory.

For off-diagonal gluon propagator, it was found that
〈

Aa
µAb

ν

〉
q
= δab 1

q2

(
δµν− qµqν

q2

)
, (34)

while for the diagonal gluon propagator, it holds that

〈
AµAν

〉
q =

q2

q4 + γ4

(
δµν− qµqν

q2

)
. (35)

We notice the appearance of the so-called Gribov mass para-
meter, which is the solution of the gap equation

3
4

g2
∫ d4 p

(2π)4
1

p4 + γ4 = 1 . (36)

One sees that the diagonal component, (35), is suppressed in
the infrared, exhibiting the characteristic Gribov type behav-
ior. The off-diagonal components, (34), remains unchanged.
However, as we shall soon see, its infrared behavior turns out
to be modified once the gluon condensate

〈
Aa

µAa
µ
〉

is taken into
account.

Concerning the ghost propagators, it can be shown that the
diagonal ghost propagator is left unaffected by the restriction
to the first Gribov region (see [28]). For the (trace of the)
off-diagonal ghost propagator, one finds

G(q)q≈0 ≈ γ2

q4 , (37)

exhibiting the typical infrared enhancement due to the Gribov
restriction.

III. DYNAMICAL OFF-DIAGONAL GLUON MASS

In [19], the generation of the dimension two gluon conden-
sate

〈
Aa

µAa
µ
〉

was discussed. A renormalizable effective poten-
tial for

〈
Aa

µAa
µ
〉

in the MAG has been constructed and eval-
uated in analytic form in [19]. A nonvanishing condensate〈
Aa

µAa
µ
〉

is favoured since it lowers the vacuum energy. As a
consequence, a dynamical tree level mass for off-diagonal glu-
ons is generated. The combination of the condensate

〈
Aa

µAa
µ
〉

within the Gribov approximation can be performed along the
lines outlined in [31], where the effects of the Gribov copies
on the gluon and ghost propagators in the presence of the di-
mension two gluon condensate have been worked out in the
Landau gauge. Following [19], the dynamical mass genera-
tion is accounted for by adding to the gauge fixed Yang-Mills
action the following term [32]

Sσ =
∫

d4x
(

σ2

2g2ζ
+

1
2

σ
gζ

Aa
µAa

µ +
1
8ζ

(
Aa

µAa
µ
)2

)
. (38)

The field σ is an auxiliary field which allows one to study the
condensation of the local operator Aa

µAa
µ, since [19]

〈σ〉=−g
2

〈
Aa

µAa
µ
〉

. (39)

The dimensionless parameter ζ in expression (38) is needed
to account for the ultraviolet divergences present in the vac-
uum correlation function

〈
A2(x)A2(y)

〉
. For the details of

the renormalizability properties of the local operator Aa
µAa

µ in
the maximal Abelian gauge we refer to [19] and references
therein. The inclusion of the term Sσ is the starting point for
evaluating the renormalizable effective potential V (σ) for the
auxiliary field σ, which is moreover consistent with the renor-
malization group equations. The minimum of V (σ) occurs
for a nonvanishing vacuum expectation value σ, 〈σ〉 6= 0. In
particular, the first order off-diagonal dynamical gluon mass
turns out to be [19]

m2 ≡ 〈σ〉
gζ

≈ (2.25ΛMS)2 . (40)

The inclusion of the action Sσ leads to a partition function
which is still plagued by the Gribov copies. It might be use-
ful to note in fact that Sσ is left invariant by the local gauge
transformations (12), supplemented with

δσ = gAa
µDab

µ ωb . (41)

The same procedure as before in the absence of
〈
Aa

µAa
µ
〉

can be
repeated, and the outcome is that (35) and (37) are still valid,
but the off-diagonal gluon propagator (34) gets modified to

〈
Aa

µAb
ν

〉
q
= δab 1

q2 +m2

(
δµν− qµqν

q2

)
, (42)

at lowest order.
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IV. COMPARISON WITH MAG LATTICE DATA

Although the extrapolation of the lattice data in the region
q ≈ 0 is a difficult task, requiring large lattice volumes, the
results (35) and (42) on the (transverse) diagonal and off-
diagonal components of the gluon propagator can be consid-
ered to be in qualitative agreement with the lattice results, es-
pecially with the two parameter fits (23) and (24). Concerning
now the ghost propagator, to our knowledge, no lattice data is
available so far.

V. CONCLUSION

We have reviewed some analytically obtained results on the
infrared behavior of the gluon and ghost propagators in the
MAG. The diagonal gluon propagator displays a Gribov type
behavior (35), while the off-diagonal one has a Yukawa type
behavior (42), with an off-diagonal mass originating from the
dimension two condensate 〈Aa

µAa
µ〉. These results are in satis-

factory agreement with the available lattice data from [15, 16],
summarized in (22), (23) and (24).

We hope these results might stimulate further investigation
of Yang-Mills theories in the MAG. A first point of interest

is the behaviour of the ghost propagators in the infrared, on
which there is no lattice data available yet. A look at the off-
diagonal ghost propagator from lattice simulations would be
of a certain interest in order to improve our understanding of
the influence of the Gribov copies in the MAG. A second point
worth to be investigated is the all order relation (21), which
could allow one to get information on the behavior of the
gauge coupling constant in the infrared from the study of the
diagonal component of the gluon propagator, allowing thus
for a comparison with similar results obtained in Landau and
Coulomb gauges.
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Rio de Janeiro, the SR2-UERJ and the Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES) are
gratefully acknowledged for financial support. D. Dudal is a
postdoctoral fellow of the Special Research Fund of Ghent
University.

[1] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).
[2] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).
[3] V. N. Gribov, Nucl. Phys. B 139, 1 (1978).
[4] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys.

B 147, 519 (1979).
[5] F. V. Gubarev, L. Stodolsky, and V. I. Zakharov, Phys. Rev. Lett.

86, 2220 (2001).
[6] D. Dudal, H. Verschelde, J. A. Gracey, V. E. R. Lemes,

M. S. Sarandy, R. F. Sobreiro, and S. P. Sorella, JHEP 0401,
044 (2004).

[7] T. Schafer and E. V. Shuryak, Rev. Mod. Phys. 70, 323 (1998).
[8] A. Maas, hep-th/0511307.
[9] G. ’t Hooft, High Energy Physics EPS Int. Conference, Palermo

1975, ed. A. Zichichi.
[10] Y. Nambu, Phys. Rev. D 10, 4262 (1974).
[11] S. Mandelstam, Phys. Rept. 23, 245 (1976).
[12] G. ’t Hooft, Nucl. Phys. B 190, 455 (1981).
[13] A. S. Kronfeld, M. L. Laursen, G. Schierholz, and U. J. Wiese,

Phys. Lett. B 198, 516 (1987).
[14] A. S. Kronfeld, G. Schierholz, and U. J. Wiese, Nucl. Phys. B

293, 461 (1987).
[15] K. Amemiya and H. Suganuma, Phys. Rev. D 60, 114509

(1999).
[16] V. G. Bornyakov, M. N. Chernodub, F. V. Gubarev, S. M. Mo-

rozov, and M. I. Polikarpov, Phys. Lett. B 559, 214 (2003).
[17] H. Min, T. Lee, and P. Y. Pac, Phys. Rev. D 32, 440 (1985).
[18] A. R. Fazio, V. E. R. Lemes, M. S. Sarandy, and S. P. Sorella,

Phys. Rev. D 64, 085003 (2001).

[19] D. Dudal, J. A. Gracey, V. E. R. Lemes, M. S. Sarandy, R. F. So-
breiro, S. P. Sorella, and H. Verschelde, Phys. Rev. D 70,
114038 (2004).

[20] Z. F. Ezawa and A. Iwazaki, Phys. Rev. D 25, 2681 (1982).
[21] T. Suzuki and I. Yotsuyanagi, Phys. Rev. D 42, 4257 (1990).
[22] S. Hioki, S. Kitahara, S. Kiura, Y. Matsubara, O. Miya-

mura, S. Ohno, and T. Suzuki, Phys. Lett. B 272, 326 (1991)
[Erratum-ibid. B 281, 416 (1992)].

[23] O. Piguet and S. P. Sorella, Lect. Notes Phys. M28, 1 (1995).
[24] C. Lerche and L. von Smekal, Phys. Rev. D 65, 125006 (2002).
[25] J. C. R. Bloch, A. Cucchieri, K. Langfeld, and T. Mendes, Nucl.

Phys. B 687, 76 (2004).
[26] C. S. Fischer and D. Zwanziger, Phys. Rev. D 72, 054005

(2005).
[27] J. A. Gracey, JHEP 0504, 012 (2005).
[28] M. A. L. Capri, V. E. R. Lemes, R. F. Sobreiro, S. P. Sorella,

and R. Thibes, Phys. Rev. D 72, 085021 (2005).
[29] M. Quandt and H. Reinhardt, Int. J. Mod. Phys. A 13, 4049

(1998).
[30] F. Bruckmann, T. Heinzl, A. Wipf, and T. Tok, Nucl. Phys. B

584, 589 (2000).
[31] R. F. Sobreiro, S. P. Sorella, D. Dudal, and H. Verschelde, Phys.

Lett. B 590, 265 (2004).
[32] We recall here that in principle, one has to employ the renormal-

izable action (16). As a consequence, the slightly more general
operator 1

2 Aa
µAa

µ + αcaca has to used. At the end, one can con-
sider the limit α→ 0. We refer to [19] for more details.


