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We develop a Dirac-Hartree-Fock-Bogoliubov description of nuclear matter pairing in 1S0 and 3S1 −3 D1

channels. Here we investigate the density dependence ot the 1S0 and 3S1 −3 D1 pairing fields in asymmetric
nuclear matter, using a Bonn meson-exchange interaction between Dirac nucleons. In this work, we present
preliminary results.

1 Introduction

Nonrelativistic calculations of 1S0 + 3S1−3D1 in symmet-
ric nuclear matter, using standard nucleon-nucleon interac-
tions, yeald a 1S0 pairing gap of about the expected size, but
an extremely large pairing gap, of the order of 10 MeV, in
the 3S1 −3 D1 channel [1, 2, 3, 4, 5]. It has been suggested
that relativistic effects substantially reduce this pairing gap
[6], as is the case for 1S0 pairing at densities near saturation
[7]. However, the size of the pairing gap has also been found
to be related to the energy of the virtual/bound state in the
vacuum of the channel under consideration [7]. This would
imply a much larger pairing gap in the 3S1 −3 D1 channel,
corresponding to the deuteron in the vacuum, than that in the
1S0 channel, which corresponds to the two-nucleon virtual
state in the vacuum.

2 The Formalism

We take the hamiltonian form of the HFB equation to be

(
hk − µk ∆̄†

k

∆̄k −hTk + µk

)(
Ukn

Vkn

)
= εkn

(
Ukn

Vkn

)
,

where

hk = �α · �k + βM + βΣk

and

hTk = BhT
−kB† = �α · �k + βM + βΣTk

with

ΣTk = BΣT
−kB†.

The index n denotes the 16 solutions to the HFB equation.
The self-consistency equations may be written as

βΣk =
∑
j,αβ

(
γ0Γjα(0)Dαβ

j (0)
∫

d3q

(2π)3
Tr [γ0Γjβ(0)g(q)]

−
∫

d3q

(2π)3
γ0Γjα(k − q)Dαβ

j (k − q)g(q) γ0Γjβ(q − k)

and

∆̄k =
∫

d3q

(2π)3
B (γ0Γjα(k − q))T

B†Dαβ
j (k − q)

×f̄(q) γ0Γjβ(q − k),

where the index j refers to the different mesons exchanged
and the indices α and β are their Lorentz/isospin indices.
The normal and anomalous densities, g(q) and f(q), respec-
tively, are given by

g(q) =
∑

n

UqnU†
qn and f̄(q) =

∑
n

VqnU†
qn,

with the sum over n running over the appropriate set of so-
lutions of the HFB equation.

We take for the Dirac and isospin structure of the mean
fields

βΣk =
(
βΣs0(k) + Σ00(k) + �α · k̂Σv0(k)

)
⊗ 1

+
(
βΣsi(k) + Σ0i(k) + �α · k̂Σvi(k)

)
⊗ τi

and

∆̄k = [∆̄si(k) + β∆̄0i(k) + �α · k̂∆̄Ti(k)] ⊗ τi

+ [∆̄1(k)γ5�γ · ξ̂ + ∆̄2(k) γ5�γ · Y2(k̂) · ξ̂
+ ∆̄3(k)γ0γ5�γ · ξ̂ + ∆̄4(k) γ0γ5�γ · Y2(k̂) · ξ̂
+ ∆̄5(k)k̂ · ξ̂ γ5 + ∆̄6(k)(ξ̂ × k̂) · �γ] ⊗ 1 ,

where the rank two tensor Y2(k̂) is given by

Y2(k̂)ij =
1√
2
(3 k̂i k̂j − δij) .

The densities can be decomposed similarly, where the com-
ponent densities can be obtained with the appropriate traces,

gs0(q) =
1
8

∑
n

U†
qnβ⊗1Uqn, f̄si =

1
8

∑
n

U†
qn1⊗τiVqn, etc.

The vertices and propagators of the mesons are given in
Table 1, where we have defined

d̃α(q) =
1

m2
α − q2

.
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We will neglect retardation effects in the following so
that the composite form-factor/reduced propagator will take
the form

dα(q) =
1

�q 2 + m2
α

(
Λ2

α − m2
α

Λ2
α + �q2

)2

.

We will denote the remaining factors of the vertices as the
bare vertices.

To obtain the reduced self-consistency equations, we
substitute these decompositions in the unreduced equations,
calculate and take traces. The equations for the components
of 1S0 pairing field that result are uncoupled integral equa-
tions of the form

∆̄si(k) = −
∫

d3q

(2π)3
[
g2

σdσ(k − q) + g2
δdδ(k − q)

4g2
ωdω(k − q) − 4g2

ρdρ(k − q)

−
(
�k − �q

)2
((

fπ

mπ

)2

dπ(k − q)

+
(

fη

mη

)2

dη(k − q)

)]
f̄si(q)

The equations for the l = 0 and l = 2 components of
3S1 −3 D1 pairing field reduce to coupled equations. To un-
couple these further, we make an additional approximation
- we replace the components of the mean field and pairing
field by their (spherically symmetric) angular averages.

TABLE 1. Meson-nucleon vertices and propagators. The factor
Fi(q) is the vertex form factor.

meson vertex propagator
σ gσFσ(q) 1 ⊗ 1 Dσ(q) = −d̃σ(q)

δ gδFδ(q) 1 ⊗ τk Dkl
δ (q) = −δkld̃δ(q)

ω gωFω(q) γµ ⊗ 1 Dµν
ω (q) = gµν d̃ω(q)

ρ gρFρ(q) γµ ⊗ τk Dµk,νl
ρ (q) = gµνδkld̃ρ(q)

π fπ
mπ

Fπ(q) iγµqµγ5 ⊗ τk Dkl
π (q) = −δkld̃π(q)

η
fη

mη
Fη(q) iγµqµγ5 ⊗ 1 Dη(q) = −d̃η(q)

Figure 1. Proton-proton gap as a function of the asymmetry param-
eter α and density for pure standard pairing.

Figure 2. The same as Fig. 1 for neutron-neutron pair.

Figure 3. The same as Fig. 1 for proton-proton pair, in calculations
for 1S0 +3 S1 −3 D1 pairing.

Figure 4. The same as Fig. 3 for neutron-neutron pair.

Figure 5. The same as Fig. 3 for quasi-deuteron pair.
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3 Results and Conclusions

In Figs. 1 and 2 we show the pairing gap for the pp and
nn pairs as a function of asymmetry and density, calculated
numerically for pure standard pairing in nuclear matter. In
Figs. 3 to 5, we show pp, nn and quasi-deuteron pairings
gaps for standard plus quasi-deuteron pairing. We have
found that pairing in these two channels coexists in asym-
metric nuclear matter. This mixed state is the ground state
of nuclear matter in the region in which it exists.

References

[1] M. Baldo, I. Bombaci, and U. Lombardo, Phys. Lett. B 283, 8
(1992).
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