
Brazilian Journal of Physics, vol. 31, no. 3, September, 2001 473

Normal Modes Propagation in a Helical

Free-Electron Laser with an Axial Guide Field

Riadh El-Bahi, Mohamed Nazih Rhimi, and Abdel Wahab Cheikhrouhou

Department of Physics, Faculty of Sciences,

University of Sfax,

B.P 802, Sfax 3018, Tunisia

Received on 5 January, 2001

Following up the detailed three-dimensional analysis of the particle dynamics in a free electron laser
with a helical wiggler and a uniform axial guide magnetic �eld, achieved by Rhimi et al. [1], we
study the motion of the electrons in the neighborhood of the ideal trajectory. The normal modes
ĥ� of the quadratic Hamiltonian are analyzed numerically in both the normal and reversed-�eld
con�gurations for di�erent values of the ratio 
̂w=
̂0. The electron trajectories are thus discussed.
It is found that pseudo-circular and elliptic trajectories are characterizing both group-I and reversed-
�eld group-II modes while the motion in the normal group-II mode is much more complicated.

I Introduction

The electron dynamics in a Free Electron Laser (FEL)
with a helical wiggler �eld and a uniform axial guide
�eld has been the subject of many researches [1-10], in
particular when the spatial dependence of the wiggler
�eld is included. It was established in early works that
a particular case of steady motion exists, in which the
electrons follow an axially centered helical path with
constant axial velocity in such a way that the trans-
verse velocity vector of the electron is parallel or anti-
parallel to the transverse magnetic �eld at each point.
Of course, now electron is likely to follow this ideal
trajectory, and the question of what the non- ideal tra-
jectories look like arises. Freund and Ganguly [3] have
studied the equations of motion in the neighborhood
of the ideal trajectory, and have obtained two squared
frequencies, which characterize the oscillations of the
electrons about it. Rhimi et al. [1] have extended this
work by using guiding centers coordinates to show that
the key quantity (called p̂z0) is a combination of linear
and orbital momentum which is conserved along any
trajectory as a consequence of the screw-displacement
symmetry of the magnetic �eld. For a given electron,
one determines the value of p̂z0 from the initial condi-
tions, and provided certain conditions are met, a �xed
point of the Hamiltonian exists. The Hamiltonian is
then expanded about the �xed point, and its quadratic
term may be reduced by the use of the properties of
the \rotational" variable ĥ to two uncoupled harmonic
oscillators of characteristic frequencies 
̂�, and ampli-
tudes jĥ�(t̂ = 0)j2 that are constants of motion.

In this paper, we continue the work of ref. [1] with
the study of the trajectories described by those har-

monic oscillators. The general behavior of the rota-
tional variable ĥ� as a function of the normalized ra-
dius has been investigated for the values 0.05 and 0.3
of the ratio 
̂w=
̂0. Provided that the magnitudes of
the oscillator amplitudes are not too large, the electron
dynamics in the neighborhood of the steady-state tra-
jectories can be described accurately using our method.
It is the behavior of those amplitudes with right to the
beam radius that is one of the most important tasks
of our work. As a matter of fact, it is through the ex-
tension of of the canonical transformation of Chen and
Davidson[5] and the de�nition of the rotational variable

ĥ that our formalism showed to be eÆcient to deal with
the physical insight of the problem.

The organization of the paper is as follows: The
problem formulation is given in section II. Section III
is devoted to the quadratic approximation to the Hamil-
tonian and the investigation of normal modes. We end
by the conclusions.

II Problem formulation

The physical con�guration we employ is that of a rela-
tivistic electron beam propagating through an ambient
magnetic �eld composed of a helically symmetric and
periodic helical wiggler �eld, and a uniform guide �eld

B = B0êz +Bw (1)

where B0 denotes the magnitude of the guide �eld, and
the wiggler �eld Bw is taken to be that generated by a
bi�lar helix [11]
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Bw = 2BwL
0

1(kwr)sin(� � kwz)êr

+2Bw[I1(kwr)=kwr] cos(� � kwz)ê�

�2BwI1(kwr) cos(� � kwz)êz (2)

represents the wiggler �eld in cylindrical coordinates.
In Eq. (2), Bw describes the wiggler amplitude, kw =
2�=�w is the wiggler wave number, �w is the wiggler pe-
riod, and In(kwr) and I

0
n(kwr) represent the modi�ed

Bessel function of order n and its derivative, respec-
tively.

The self-electric and self-magnetic �elds are ne-
glected within the neutral electron beam. Then it
follows from the steady-state Maxwell equation that
B = r � A and the vector potential can be written
as

A = �2(Bw=kw)[I1(kwr)=kwr]sin(� � kwz)êr

+[B0r=2� 2(Bw=kw)I
0

1(kwr) cos(� � kwz)]ê� (3)

The Hamiltonian that governs the motion of an electron
within the beam is:

H(x;P) = cfm2c2 + [P+ (e=c)A]2g1=2 � 
mc2 (4)

where P is the canonical momentum, c is the veloc-
ity of light, �e and m are the charge and the mass of
the electron, respectively; and 
 is the relativistic mass
factor


 = [1 + (p=mc)2]1=2 (5)

and the mechanical momentum p is related to the
canonical momentum P by

p = P+ eA=c (6)

III Hamiltonian quadratic ap-

proximation and normal

modes

In addition to the energy, the second constant of motion
p̂z0 is given by [1]

p̂z0 = p̂z + (ĥ�ĥ
�

� � ĥ ĥ
�

 ) = p̂z + L̂z (7)

where L̂z is the z-component of the angular momen-

tum, ĥ� =
q
P̂� exp(i�) and ĥ =

q
P̂ exp(i ) are

the rotational variables corresponding to the angles �
and  , respectively r̂c = (2P̂�=
̂0)

1=2 is the gyroradius

and r̂c = (2P̂ =
̂0)
1=2 is the guiding radius [8].

Introducing dimensionless parameters and variables
de�ned by


̂0;w =

0;w

ckw
; P̂�; =

kwP�; 
mc

; Ĥ =
H

mc2
;

ẑ0 = kwz
0; r̂ = kwr; R̂ =

r
kw
mc

R; t̂ = ckwt;

the Hamiltonian given by Eq.(4) is then expressed in
the dimensionless form as

c

Ĥ(ĥ�; ĥ
�

�; ĥ ; ĥ
�

 ; P̂z) = [2
̂0ĥ�ĥ
�

� � 
̂w(2
̂0)
1=2(Kĥ�� +K�ĥ�)

(P̂z0 � ĥ�ĥ
�

� + ĥ ĥ
�

 )
2 + 
̂2

wKK
� + 1]1=2 � 
 (8)

d

where 
̂0w = eB0;w=mc
2kw are the dimensionless non-

relativistic frequencies and the complex quantity K is

K = I0(kwr) + I2(kwr)
R̂

R̂�

The complex quantity R̂ in the last equation is given
by

R̂ = ĥ� + iĥ� = r̂

q

̂0=2e

i(��ẑ0)

The one-dimensional case corresponding to K = 1
has been studied extensively in the litterature [2,5-9].
The three-dimensional case was undertaken by Freund
et al. [3] and Rhimi et al. [1] in di�erent manners.
Provided a �xed point exists and after expanding the
Hamiltonian in a Taylor series about it, and retaining
only the lowest order terms, we obtain [1]

c

Ĥ(�;  ; P̂�; P̂ ; p̂z0) = Ĥ0

�
�0 = 0;  0 =

�

2
; P̂�0; P̂ 0; p̂z0

�
+ ĤQ (9)
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where Ĥ0 is the steady state Hamiltonian evaluated at

the �xed points (exactly helical trajectories) and ĤQ

is the quadratic part of the Hamiltonian. Treating ĤQ

yielded two uncoupled harmonic oscillators whose char-

acteristic frequencies and amplitude are 
̂+ and 
̂�,

and ĥ+ and ĥ� respectively. The quadratic piece of the

Hamiltonian is thus written as:

ĤQ = 
̂+ĥ+ĥ
�

+ + 
̂�ĥ�ĥ
�

� = 
̂+P̂+ + 
̂�P̂� (10)

and the solution to Hamiltons equations are simply

ĥ�(t̂) = ĥ�(t̂ = 0)ei
̂� t̂ =

q
P̂�(t̂ = 0)ei
̂� t̂ (11)

giving two obvious constants of motion ĥ�(t = 0). The

complete solution to the problem, in the quadratic ap-

proximations, has thus been found.

Expressing the oscillator rotational variables ĥ� as

a linear combination of the di�erent actions P̂� and P̂ ,

and corresponding angles � and  

c

ĥ� = ���(P̂� + i�� P̂�0) + ����(P̂� � i�� P̂�0)

��� [P̂ + i � (P̂ 0 + i�=2)]� �� � [P̂ � i � (P̂ 0 � i�=2)] (12)

d

The normalization of the rotational variable ĥ� is

obtained by requiring that the Poisson bracket of ĥ�
with its complex conjugate ĥ�� be

[ĥ�; ĥ
�

�] = i (13)

which is equivalent to imposing

�2�� � �2��� + �2� � �2� � = 1=2 (14)

The investigation of these coeÆcients that depend only

on the ratio 
̂w=
̂0 and the normalized radius r̂0, will

allow the study the di�erent modes of propagation and

to identify, and then avoid the problematic operating

conditions of the concerned FEL.

The general behavior of these coeÆcients as func-

tions of r̂0 and 
̂w=
̂0 is shown in Figs. 1-4. The

range of r̂0 in each �gure has been limited to values

such that the lower characteristic frequency 
̂� is real.

Both group I (r̂0 < 0) and group II (r̂0 > 0) are repre-

sented in Figs. 1 and 3 for 
̂w=
̂0 = 0.05 and in Figs.

2 and 4 for 
̂w=
̂0=0.3. First, we see in both Figs. 1

and 2, that for group I, the coeÆcient �+ � 1=
p
2;

while �+�; �+�� and �+ are much smaller in magni-

tude. This implies that the rotational variable ĥ+ is

quasi-identical with (�(P̂ � P̂ 0) � i( � �=2)). We

can expect that the rotational variable ĥ� should pre-

dominantly entail (P̂�� P̂�0+ i�) and (P̂�� P̂�0� i�).
Looking at Figs 3 and 4 for group I shows that the co-

eÆcients �� and �� � are indeed small, while at the

vicinity of the stability limits (where the frequency 
̂�
becomes imaginary), both coeÆcients ��� and ����

diverge. This divergence is accompanied by a vanish-

ing of the frequency, so that the quadratic Hamiltonian

remains �nite. For smaller values of jr̂0j, ��� � 1=
p
2

with ���� � 0 and consequently ĥ� should mainly in-

volve (P̂� � P̂�0 + i�). This advantageous situation

(quazi- constant gyroradius) requires either high energy

or small axial �elds [1]. The contribution of the con-

jugate (P̂� � P̂�0 � i�) increases with increasing jr̂0j,
making the gyroradius trajectory elliptic rather than

circular. Quasi-circular transverse motion is preferable,

since the trajectory is close to the steady-state orbits

and the axial velocity has less ripple. Hence, on the

basis of the above stated explanation, we deduce that

group-I motion is lucid provided one stays far away from

the stability limits.

The behavior of the group-II motion is much more

complicated, as is apparent in Figs. 1-4. First, in

group-II reversed-�eld characterized by small positive

values of r̂0 (r̂0 < �
̂w=
̂0) and where the beam and

the axial �elds are anti-parallel, the curves are self-

explanatory. The coeÆcients �+� and �� are very

close to 1=
p
2 and �1=p2, respectively and all others

are much smaller in magnitude. The rotational vari-

able ĥ+ may thus be identi�ed with (P̂� � P̂�0 � i�)

(constant gyroradius trajectory) while ĥ� is described

by (P̂ � P̂ 0 � i( � �=2)) (constant guiding center

radius trajectory). The trajectories of the gyroradius

and the guiding center radius in the complex plane are

thus circles centered at (2P̂�0=
̂0)
1=2 and (2P̂ 0=
̂0)

1=2

swept out with frequencies 
̂+ and 
̂�, respectively.

For group-II reversed �eld where r̂0 is very close to

zero, the situation is completely comparable to the one-

dimensional case [8].
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Figure 1. The coeÆcients of the normal mode ĥ+ as a

function of r̂0 with 
̂w=
̂0 = 0:05:

Figure 2. Same as in Fig. 1, for 
̂w=
̂0 = 0:30:

Figure 3. The coeÆcients of the normal mode ĥ� as a

function of r̂0 with 
̂w=
̂0 = 0:05:

Figure 4. Same as in Fig. 3, for 
̂w=
̂0 = 030:
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For the normal group-II motion, the situation re-
mains the same up to the region of closest approach
where the frequencies repel each other (r̂0 � 0:1). In
Figs. 1 and 3, it is clear that this frequency crossing is
behind the abrupt rise of the coeÆcients ��� and �+ 
to the value of 1=

p
2 and the accompanying fall of �+�

and �� to zero ( ĥ+ is converted to ĥ� and vice-versa).

In this case for r̂0 � 0:01; ĥ+ describes a circle of con-
stant gyroradius at frequency 
̂+, while for r̂0 � 0:05;
ĥ+ , it traces out a circle of constant guiding center
radius at the same frequency. On the other hand, ĥ�
moves from a circular motion of constant guiding cen-
ter radius to a circular motion of constant gyroradius
but with a frequency 
̂�: Beyond r̂0 � 0:015, as is ap-
parent in Fig. 3, ���� becomes non-negligible leading
to complicated trajectories. For larger values of r̂0, all
coeÆcients become signi�cant, and the simple behavior
of the oscillator amplitudes ĥ+ and ĥ� is no longer easy
to touch (see Figs. 1 and 3).

As seen in Figs. 2 and 4 and for the larger value of

̂w=
̂0 = 0:3, the transition region being much larger in
the variable hatr0 reaches the stability limits before be-
ing complete. All the coeÆcients are almost divergent
and do contribute to the oscillator rotational variables
ĥ� on the same feet, the thing that complicates the
trajectories beyond the value of r̂0 � 0:25. Obviously,
such a situation worsens with increasing 
̂w=
̂0.

IV Conclusions

In this work, we are following up the detailed three-
dimensional analysis of the particle dynamics in a Free
electron laser with a helical wiggler and a uniform ax-
ial guide magnetic �eld, achieved by Rhimi et al. [1].
Using Eq. (12), the general behavior of the rotational

variable ĥ� as a function of the normalized radius has
been investigated for the values 0.05 and 0.3 of the ratio

̂w=
̂0. Provided that the magnitudes of the oscillator
amplitudes are not too large, the electron dynamics in
the neighborhood of the steady-state trajectories can be
described accurately using our method. It is the behav-
ior of those amplitudes with right to the beam radius
that is one of the most important tasks of our work. A
uniformly reversed guide �eld can present a better qual-
ity of trajectories for an electron beam drifting through
the wiggler �eld. In fact, we observe that in the limit of
intense axial guide �elds the elliptic motion reduces to
a circular one in which the radial displacement of the

guiding-center from the axis of symmetry is constant.
This simple and favorable situation persists into the
normal group-II region, but for small �eld for the radius
r̂0. As the limits of stability (where one of our oscilla-
tor frequencies vanish) are approached, certain normal
mode coeÆcients become large, and the correspond-
ing movement unpredictable. Pseudo-circular and el-
liptic trajectories are characterizing both group-I and
reversed-�eld group-II while the motion in the normal
group-II is found to be much more complicated. Under
certain conditions, the simple picture of the transverse
motion as a superposition of the ideal helical motion
and the parasitic cyclotron motion is identi�ed.

The explicit calculation of the orbits followed by a
particle for which the present formalism is adequate, is
under way and the results are postponed to a subse-
quent publication.
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