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Gribov Ambiguities in the Maximal Abelian Gauge
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The effects of the Gribov copies on the gluon and ghost propagators are investigated in SU(2) Euclidean
Yang-Mills theory quantized in the maximal Abelian gauge. By following Gribov’s original approach, extended
to the maximal Abelian gauge, we are able to show that the diagonal component of the gluon propagator displays
the characteristic Gribov type behavior. The off-diagonal component is found to be of the Yukawa type, with
a dynamical mass originating from the dimension two gluon condensate, which is also taken into account.
Furthermore, the off-diagonal ghost propagator exhibits infrared enhancement. Finally, we make a comparison
with available lattice data.
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I. INTRODUCTION

Nowadays, the main problem of Yang-Mills theories (YM)
and consequently of quantum chromodynamics (QCD), is to
explain theoretically the confinement phenomenon. Despite
the fact that there are several approaches to treat the issue,
there is no final answer to the confinement problem. Let us
briefly point out the main ideas which will be the motivation
of the present work.

A. Dual superconductivity and confinement

An appealing mechanism to explain the color confinement
is the so called dual superconductivity mechanism [1]. Ac-
cording to this proposal, the low energy regime of YM would
contain monopoles as vacuum configuration. The ensuing
magnetic condensation would induce a dual Meissner effect
in the chromoelectric sector. As for ordinary superconducting
media, the potential between chromoelectric charges increases
linearly with their length, characterizing a confinement pic-
ture.

The splitting between the diagonal and off-diagonal degrees
of freedom in this approach [1, 2] indicates that the natural
way to treat the problem would be to consider different gauge
fixings for the diagonal and off-diagonal sectors of the the-
ory. In fact, the class of Abelian gauges [2] shows itself to be
the suitable framework to work with. In this class of gauges
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not only are the diagonal and off-diagonal sectors indepen-
dently gauged, but also monopoles show up as defects in the
gauge fixing. An interesting example of an Abelian gauge is
the maximal Abelian gauge (MAG) [2], which will be used in
this work and discussed in the next section.

B. Abelian dominance and dynamical gluon mass

Another important ingredient of the infrared regime of
QCD is the hypothesis of Abelian dominance [3]. This prin-
ciple states that in the infrared limit, QCD would be described
by an effective theory constructed from only Abelian degrees
of freedom. This effect has been confirmed using lattice nu-
merical simulations [4, 5].

Recently, it has been argued that the off-diagonal gluon
might acquire a large dynamical mass in the MAG [6], with
the explicit SU(2) value of m ≈ 2.25ΛQCD, due to the con-
densation of the off-diagonal gluon composite operator Aa

µAa
µ.

This can be regarded as evidence in favour of the Abelian
dominance, since for an energy scale below this mass, the off-
diagonal gluons should decouple and the diagonal degrees of
freedom would dominate the theory. At the same level, evi-
dence of Abelian dominance has been advocated in the Lan-
dau gauge, due to the condensation of dimension two opera-
tors [7]. The Abelian degrees of freedom are identified here
with the diagonal gluons.

C. Gribov ambiguities and the quantization of QCD

It is a fact that YM theories are plagued by Gribov ambi-
guities [8, 9], i.e., after the gauge fixing of the model, there
still remains a residual gauge symmetry spoiling a consistent
complete quantization of QCD.
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The improvement of the Faddeev-Popov quantization for-
mula [8] in the Landau gauge, yields modifications of the
propagators of the theory. The gluon propagator turns out to
be suppressed in the infrared limit, acquiring pure imaginary
poles, indicating a destabilization of the gluon excitations. On
the other hand, the ghost propagator shows itself to be more
singular than the perturbative behavior, and can be related to
the existence of long range forces. Thus, one can tacitly infer
that the Gribov problem is related to the confinement phenom-
enon. This is a strong motivation to study Gribov ambigui-
ties in the MAG. However, concerning the Gribov problem in
gauges other than the Landau and Coulomb ones, the available
information is very humble. To our knowledge, the only avail-
able results are those obtained in the linear covariant gauges
[10] and in the MAG [11–13]. The latter one will be discussed
here.

D. Lattice data

The final motivation for the present work is related to lat-
tice numerical simulations, which provide a useful nonpertur-
bative method to treat QCD. In the last decades the lattice has
been used to extract nonperturbative effects of QCD. Mass
parameters are commonly used to fit the lattice data with rela-
tive success. In particular, in the MAG, two mass scales have
been employed to fit the data obtained for the diagonal and
off-diagonal gluon propagators, yielding evidence in favour
of the Abelian dominance [14, 15]. In [15], the off-diagonal
mass has been found to be almost twice as big as compared
to the diagonal one. Moreover, the most suitable fit for the
transverse off-diagonal gluon propagator is found to be of the
Yukawa type

Do f f (q) =
1

q2 +m2
o f f

, (1)

while for the diagonal sector, the best fit of the transverse
propagator is given by a Gribov type formula

Ddiag(q) =
q2

q4 +m4
diag

, (2)

where

mo f f ≈ 2mdiag . (3)

The numerical value of the off-diagonal mass is, in both works
[14, 15], mo f f ≈ 1.2GeV . Both propagators are suppressed
in the infrared limit. In addition, a longitudinal component
arises in the off-diagonal sector from the lattice data [15]. This
component is very well described by a Yukawa fit, (1), using
the same off-diagonal mass value. In the case of the diagonal
sector, there is no longitudinal component of the propagator.

E. Analytic results

The above considerations are sufficient to justify the study
of the MAG. Here, we shall summarize the analytic results

obtained in [13], concerning the effects of the Gribov ambigu-
ities and of the dynamical mass generation on the propagators
of the theory, in the case of SU(2) MAG.

The original Gribov approach, [8], can be essentially re-
peated in the case of the MAG, where the effect of the dy-
namical off-diagonal gluon mass [6] can also be taken into
account. The resulting behavior of the propagators is as fol-
lows. The transverse off-diagonal gluon propagator is of the
Yukawa type

Do f f (q) =
1

q2 +m2 , (4)

where m is the dynamical mass generated due to the conden-
sation of the off-diagonal gluon operator Aa

µAa
µ. The diagonal

propagator is purely transverse, being given by

Ddiag(q) =
q2

q4 + γ4 , (5)

where γ is the so called Gribov parameter, with the dimension
of a mass. Further, the off-diagonal ghost propagator turns out
to be enhanced in the low energy region, according to

lim
q→0

G(q) ∝
1
q4 . (6)

To our knowledge this is the first result on the ghost propaga-
tor in the MAG when the Gribov ambiguities are taken into
account.

These results might provide some physical insights on the
nature of the mass parameters appearing in the lattice fits.
Here, one can easily see from (4) and (5) that the Gribov am-
biguities are responsible for the infrared suppression of the
diagonal sector, while the dynamical mass enters only the off-
diagonal sector, making it also suppressed in the infrared.

Despite the fact that the propagators (4) and (5) are in qual-
itative agreement with the lattice data (1) and (2), see [15],
we were not able to provide specific values for γ and m due
to the lack of a more formal framework to work with. Such
a framework is currently only at hand in the Landau gauge
where a local, renormalizable Lagrangian, which takes into
account the Gribov ambiguities, is known [16]. In [17–19],
this Lagrangian was used to make explicit computations. In
the case of the MAG, such a Lagrangian was recently derived
[20], but no explicit computations have been performed yet.
Moreover, it will allow us to investigate the behavior of the
longitudinal component of the off-diagonal gluon propagator,
a feature which we were unable to address within the approx-
imation employed in [13].

II. GRIBOV AMBIGUITIES IN THE MAG

First, we shall present the MAG in the case of SU(2) Yang-
Mills. Then, the Gribov ambiguities will be introduced and
their main features will be briefly discussed.
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A. The maximal Abelian gauge

In order to fix the gauge differently in the diagonal and off-
diagonal sectors, we decompose the SU(2) gluon field accord-
ing to [21]

Aµ = Aa
µT a +AµT 3 , (7)

where T a, a = 1,2, stands for the off-diagonal generators of
SU(2), while T 3 denotes the diagonal one. In the same way
the field strength decomposes as

Fµν = Fa
µνT a +FµνT 3 , (8)

so that, for the YM action we get

SY M =
1
4

∫
d4x

(
Fa

µνFa
µν +FµνFµν

)
. (9)

Explicitly, for the components of the field strength we have

Fa
µν = Dab

µ Ab
ν−Dab

ν Ab
µ ,

Fµν = ∂µAν−∂νAµ , (10)

where the covariant derivative Dab
µ is defined with respect the

diagonal gluon

Dab
µ = δab∂µ−gεabAµ . (11)

The action (9) is invariant under the gauge transformations

δAa
µ = −Dab

µ ωb−gεabAb
µω ,

δAµ = −∂µω−gεabAa
µωb , (12)

where {ωa,ω} are the infinitesimal gauge parameters. The
presence of the gauge freedom requires a constraint for a con-
sistent perturbative quantization. The MAG gauge fixing con-
dition is attained by requiring that

Dab
µ Ab

µ = 0 . (13)

The residual local U(1) gauge symmetry present in the diag-
onal sector is fixed by means of the Landau gauge

∂µAµ = 0 . (14)

According to [13], the gauge fixing conditions (13), (14) yield
the following partition function

Z =
∫

DAaDA
(

detM ab
)

δ(Dab
µ Ab

µ)δ(∂µAµ)e−SY M , (15)

where M ab is the off-diagonal Hermitian Faddeev-Popov
ghost operator

M ab =−Dac
µ Dcb

µ −g2εacεbdAc
µAd

µ . (16)

B. The Gribov problem in the MAG

The existence of a residual gauge symmetry in the path in-
tegral (15) is recognized as the well known Gribov problem
[8]. It consists in the existence of equivalent gauge field con-
figurations, {Ãa

µ, Ãµ}, obeying the gauge conditions (13) and
(14), namely

Dab
µ (Ã)Ãb

µ = 0 ,

∂µÃµ = 0 . (17)

At the infinitesimal level, conditions (17) yield

M abωb = 0 , (18)
−∂2ω−gεab∂µ(Aa

µωb) = 0 , (19)

implying the existence of zero modes for the Faddeev-Popov
operator M ab. Thus, the Yang-Mills measure in the partition
function (15) is ill-defined. Also, from eq.(19), one observes
that the diagonal parameter ω is completely determined once
eq.(18) has been solved for ωa, according to

ω =−gεab 1
∂2 ∂µ(Aa

µωb) . (20)

As expected, this observation allows us to prove that the diag-
onal ghosts decouple, and can be in fact integrated out in the
partition function (15). Thus, one can focus only on the zero
modes of the off-diagonal Faddeev-Popov operator, eq.(18).

C. Facing the Gribov copies

According to [13], the existence of the Gribov copies in the
MAG can be faced along the lines outlined by Gribov in the
case of the Landau and Coulomb gauges [8], where the do-
main of integration in the Feynman path integral is restricted
to a smaller region Ω, known as the Gribov region.

In the case of the MAG, the region Ω is identified with the
set of field configurations obeying the gauge conditions (13)
and (14), and for which the Faddeev-Popov operator, eq.(16),
is strictly positive, namely

Ω≡
{

Aµ

∣∣∣ Dab
µ Ab

µ = 0 , ∂µAµ = 0 , M ab > 0
}

. (21)

The boundary ∂Ω of the region Ω is known as the Gribov hori-
zon. In the MAG, the restriction of the domain of integration
in the path integral to the region Ω is supported by the fact
that for a field configuration belonging to Ω and lying near
the Gribov horizon ∂Ω, there is an equivalent configuration
located on the other side of the horizon ∂Ω, outside of the
Gribov region Ω. This result is a generalization to the MAG
of Gribov’s original statement in the Landau gauge. The com-
plete proof can be found in [13]. The restriction to the region
Ω is achieved by modifying the partition function (15) in such
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a way that

Z =
∫

DAaDA
(

detM ab
)

δ(Dab
µ Ab

µ)δ(∂µAµ)e−SY M V (Ω) ,

(22)
where the functional V (Ω) implements the restriction to Ω in
field space.

The functional V (Ω) can be constructed recursively by
means of a no-pole condition on the off-diagonal ghost prop-
agator, which is nothing else but the inverse of the operator
M ab. In fact, from the definition of the region Ω, it follows
that the inverse of the Faddeev-Popov operator, (M ab)−1, see
[8, 13], has to be positive and without singularities, except
for those configurations which are located on the boundary
∂Ω, where M ab vanishes. Moving to momentum space, it
can be shown that the Green function G(k) =

〈
k
∣∣M −1

∣∣k
〉

has no poles at nonvanishing k2, except for a singularity at
k2 = 0, corresponding in fact to the boundary ∂Ω. Accord-
ing to the no-pole prescription, the first nontrivial term for the
factor V (Ω) if found to be [13]

V (Ω) = exp
{
−γ4

2

∫ d4q
(2π)4

Aµ(q)Aµ(−q)
q4

}
, (23)

where γ is the Gribov parameter. It is not a free parameter,
being determined by the gap equation

3
4

g2
∫ d4q

(2π)4
1

q4 + γ4 = 1 . (24)

The gap equation (24), together with the path integral (22)
ensures the correct truncation of the integration domain up to
the Gribov horizon.

D. Propagators I

The restriction of the domain of integration, eq.(22), has
far reaching consequences on the behavior of the propagators.
Looking at the form of the functional (23), one can easily see
that it affects only the diagonal tree level propagator. In fact,
the diagonal propagator is given by (5), which is infrared sup-
pressed. We notice the appearance of imaginary poles in this
propagator, indicating that the diagonal gluon does not belong
to the physical spectrum of the model. This behavior is con-
sistent with the confining character of the theory.

Concerning the off-diagonal gluon propagator, it is left un-
modified at the tree level, coinciding with the transverse per-
turbative propagator

Dpert
o f f =

1
q2 . (25)

There is no longitudinal off-diagonal component at the tree
level.

The off-diagonal ghost propagator shows itself to be more
singular in the infrared region, as can be inferred from (6). We
remark that the gap equation (24) is an essential ingredient for
this behavior. Notice also that this enhancement is a mani-
festation of the Gribov horizon, where the ghost propagator is
highly singular.

III. DYNAMICAL MASS IN THE MAG

In [13], the Gribov issue was also studied in the presence of
the off-diagonal dynamical gluon mass. In [6], the condensa-
tion of the operator Aa

µAa
µ was analysed in detail in the MAG,

by evaluating the effective potential for this operator at one
loop order. It was shown that this potential develops a non-
trivial minimum, which lowers the vacuum energy, favoring
thus the formation of the condensate

〈
Aa

µAa
µ
〉
, which results

in an effective dynamical off-diagonal gluon mass. Follow-
ing [6], the dynamical mass generation can be described by
adding to the Yang-Mills action the following term

Sm =
1

2ζg2

∫
d4x

[
σ2 +gσAa

µAa
µ +

g2

4
(
Aa

µAa
µ
)2

]
, (26)

where σ is a Hubbard-Stratanovich auxiliary field coupled to
the composite operator Aa

µAa
µ. As shown in [6], the field σ

develops a nonvanishing vacuum expectation value, 〈σ〉 6= 0,
which is related to the gluon condensate

〈
Aa

µAa
µ
〉

through the
relation [6]

〈σ〉=−g
2

〈
Aa

µAa
µ
〉

. (27)

The parameter ζ is needed to account for the vacuum diver-
gences present in the Green function

〈
A2(x)A2(y)

〉
. At one

loop order, for the dynamical gluon mass m one finds [6]

m2 =

〈
Aa

µAa
µ
〉

gζ
≈ (2.25ΛQCD)2 , (28)

Remarkably, the effective action

S = SY M +Sm , (29)

turns out to be gauge invariant, provided the auxiliary field σ
transforms as

δσ = gAa
µDab

µ ωb . (30)

As a consequence, the action (29) is still plagued by the Gri-
bov ambiguities. In order to cure this pathology, one can per-
form the same procedure as was performed for the massless
case. According to [13], both the functional (23) and the gap
equation (24) remain the same.

A. Propagators II

Since the functional (23) depends only on the diagonal
gluon field, the corresponding propagator is not affected, at
the tree level, by the dynamical mass. Thus, the diagonal
gluon propagator is given by (5).

The off-diagonal gluon propagator is, however, affected by
the dynamical mass. A simple computation leads to the ex-
pression (4), exhibiting infrared suppression due to the dy-
namical mass. .

The ghost propagator, also not affected by the gluon mass,
shows the typical infrared enhancement (6). Again, the gap
equation (24) is fundamental for this result.
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IV. CONCLUSIONS AND MORE

In this work we have reviewed the influence of the Gribov
ambiguities and of the dynamical gluon mass on the propaga-
tors of SU(2) Yang-Mills theories in four-dimensional Euclid-
ean space time, quantized in the maximal Abelian gauge. The
diagonal as well as the off-diagonal gluon propagators are in-
frared suppressed. The diagonal sector displays a Gribov type
behavior, due to the presence of the Gribov parameter, see (5).
The off-diagonal gluon propagator has a Yukawa type behav-
ior, see (4).

The off-diagonal ghost propagator was computed in the in-
frared limit. The result (6) shows that it is enhanced in the
low energy region. To some extent, this enhancement signals
the influence of field configurations located near the boundary
∂Ω of the Gribov region, where the ghost propagator is highly
singular [8, 24].

We recall here that, for the gluon propagators, our results

are in qualitative agreement with the available lattice data
[15], see (1) and (2). Unfortunately, till now, no data for the
ghost propagator are available.
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