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Self-avoiding chains on regular lattices are frequently used as models to study thermody-
namic properties of linear polymers, particularly regarding critical phenomena which may
occur in these systems. We review these models, concentrating on their properties under
geometric constraints, when the walks are placed inside strips or pores. In these cases the
models may be solved using a transfer matrix formalism for the generating functions. A
short range interaction between the sites visited by the walks and the walls is included in
the model and the distribution of the sites and the forces on the walls are studied as functions
of the strength of this interaction.
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I Introduction

Polymers have attracted much interest for many years,

basically because of the huge number of technical ap-

plications for them, but also due to some quite funda-

mental and challenging problems in the study of sta-

tistical mechanical models formulated to address their

thermodynamical properties. Some of these models

have been proposed and studied quite a long time ago

[1], but interest in them was renewed as it was found

that the models for polymers may present phase tran-

sitions analogous to the ones found in magnetic (and

other) systems. Some of the simplest models for linear

polymers represent them as self- and mutually-avoiding

chains (the constraint takes care of the excluded volume

e�ect), sometimes placed on a regular lattice. It is of

interest to consider also other topologies for the poly-

mer network [2], but here we will consider only linear

chains. The formal equivalence of these models to the

n! 0 limit of an n-component spin model [3, 4] sheds

light on this analogy. It also associates a hamiltonian to

the model, since originally the models for polymers are

among those models which may be called \geometric",

in a sense that a statistical weight is associated to each

allowed con�guration of the lattice, but no hamiltonian

is explicitly used in this connection. It is worth remark-

ing that for n below 1 the n-vector model, viewed as a

magnetic model, exhibits some anomalies, such as neg-

ative susceptibilities, and that some time ago its cor-

respondence with polymer models has even be called

into question [5], but a careful study of the equation

of state in the scaling limit con�rms the mapping [6].

Other examples of geometric models are the dimers [7]

and percolation [8]. It is remarkable that for those mod-

els a correspondence to a hamiltonian model was also

found, at least in some particular cases [9, 10].

To study the properties of self-avoiding walks on

lattices, one may consider the partition or generating

function

Y (x) =
X

CN;Mx
NyM (1)

where CN;M is the number of con�gurations of the lat-

tice with M chains visiting a total of N sites of the

lattice (sites incorporated into a chain will be called

monomers). Physical systems which might be described

by a partition function such as 1 are polymers in good

solvents, since in this case one may neglect e�ective at-

tractive interactions between the monomers induced by

a poor solvent, which tend to drive the polymers into

collapsed con�gurations, and only the excluded volume
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interaction needs to be taken into account. Since the

number of chains and the number of monomers in the

polymeric chain may 
uctuate, the partition function

corresponds to the grand-canonical ensemble. Such a

model, as stated above, may be mapped onto a mag-

netic n-vector model in the limit n ! 0, the activity

of a monomer x being equal to the interaction term of

the magnetic hamiltonian, while the activity y which

controls the number of chains is proportional to the

magnetic �eld term [11]. As usual for magnetic sys-

tems, in the limit y ! 0 the model undergoes a second

order phase transition at a critical activity xc in two or

more dimensions. Unlike to what happens in the Ising

model, in one dimension the model exhibits a �rst or-

der transition at xc = 1 [12]. The critical properties of

the model, such as the critical activity and exponents,

have been extensively studied by many techniques. In

two dimensions, very precise results are known through

transfer matrix calculations [13] and principally series

expansions [14]. Also, the exact values of some criti-

cal exponents are known exactly in this case [15]. In

the dilute limit, when interchain contacts may be ne-

glected, one may consider the case of a single chain

(m = 1 in Eq. 1). The problem of calculating the par-

tition function, even in this particular case and on a

two-dimensional lattice, has not been solved so far and

there are indications that, if a exact solution might be

found, it will not belong to the class of D�finite func-

tions, which encompasses all exact solutions known so

far for statistical mechanical models [16].

The self avoidance constraint is the origin of the

di�culty of solving the counting problems for chains

on a lattice. If this constraint is relaxed (this is fre-

quently called the ideal chain approximation), most of

the calculations may be done analytically, but they re-

sult in classical critical exponents [4]. It is possible to

take the excluded volume interactions into account par-

tially, such as counting only chains without immediate

returns. These calculations, although leading to bet-

ter numerical values for non-universal parameters such

as critical activities, also result in classical exponents,

as expected. These \beyond mean �eld" approxima-

tions turn out to be equivalent to exact solutions of

the models on treelike lattices, such as the Bethe and

Husimi lattices [17]. Another simpli�ed version of the

walk counting problem are the so called directed walks,

where it is assumed that in one or more axes of the lat-

tice only steps in the positive direction are allowed [18].

Many analytical calculations are possible in such mod-

els, but again the correct critical exponents are missed.

In Fig. 1 examples of some of the walks described above

are depicted.

Figure 1. Examples of walks on the square lattice: (a) Par-
tially directed walk, with positive steps only in the vertical
direction; (b) Fully directed walk, with positive steps only
in both directions; (c) Self-avoiding walk.

More recently, the behavior of polymers in the pres-

ence of a surface was studied [19], as was also done for

other systems exhibiting critical phenomena [20]. An

appropriate model for this problem consists in consid-

ering an additional Boltzmann factor ! = e��� for each

monomer on the surface, so that � < 0 (! > 1) would

correspond to an attracting surface. The partition func-

tion for this model is

Y (x; !) =
X

CN;Nw
xN!Nw ; (2)

where the sum is over con�gurations of one chain with

the initial monomer on the surface, N being the total

number of monomers of this chain, Nw of them located

on the surface. Actually, the behavior of polymers close

to a surface has attracted the attention for quite a long

time, and a thorough study for ideal chains [21] already

showed that, if ! is above a critical value !0 > 1, the

surface polymerization transition will occur at a lower

value of x than the one in the bulk. The phase dia-

gram of this model is shown schematically in Fig. 2.

It may be noted that for ! < !0 the polymerization

transition occurs at the bulk critical value xc and that

this ordinary transition line O ends at the adsorption

transition point A. This point is usually identi�ed as

a bicritical point [19], but it may have di�erent char-

acteristics for self-avoiding chains on a two-dimensional

lattice limited by a line, since in this case we expect the

surface transition S to be of �rst order, as happens for

polymer models in one dimension with any �nite width



[12, 22]. One possibility in this case would be that the

adsorption transition corresponds to a tricritical point.

This model and others related to it were much studied

by several techniques such as scaling and Monte Carlo

simulations [23], transfer matrix and �nite size scaling

methods [24] and series expansions [25].

Figure 2. Phase diagram for a polymer in the presence of
a surface. The activity of a monomer is denoted by x and
a short range interaction energy � for monomers located on
the surface is included, so that ! = e���. O is the ordinary
(bulk) polymerization transition, S is the surface polymer-
ization transition and A is the adsorption multicritical point
(also called special transition). A is located at x = xc (the
bulk critical polymerization activity) and ! = !0 > 1.

The study of polymers in the presence of a surface

leads naturally to the consideration of other geometric

constraints, such as wedges and slabs [26]. In this paper

we will review some recent work on the thermodynamic

behavior of self-avoiding chain under a one dimensional

constraint, such as a strip or a pore. In these cases

the solution of the problem may be found through a

recursive procedure for the generating functions of the

model. In Section II we de�ne the model and show the

combination of transfer matrix and generating function

formalisms which lead to its solution. The results for

walks con�ned in strips are shown in Section III and

some new results for walks in pores may be found in

Section IV. Final comments and conclusions are in Sec-

tion V. The spatial distribution of monomers and the

tension on the walls for walks con�ned in a strip were

already discussed before [27, 28].

II De�nition of the model and its

solution

We will consider self-avoiding chains which are con�ned

in structures which are in�nite in one direction (let us

call it z) and �nite in the direction(s) perpendicular to

z. Two speci�c examples will be dealed with: a) A strip

on the square lattice of �nite width in one direction and

in�nite length, and b) A pore, with a �nite crossection.

Other geometries may also be considered, provided the

number of lattice sites in the hyperplanes orthogonal

to z is �nite. If the sets of sites in each hyperplane

are identical to each other, with respect to number and

connectivity, as is the case in the examples above, the

method of solution is simpler and we will consider this

case from now on, assuming Np sites in each of them.

In general, we will allow the statistical weight of each

monomer to be site-dependent, that is, its value will

depend on the localization in the hyperplane of the site

the monomer occupies. Thus there may be up to Np

di�erent activities xi, but in general we will be inter-

ested in more symmetric models and this number is

reduced. The choice of di�erent weights enables us to

�nd the spacial distribution of monomers in the sys-

tem and also to take into account interactions between

the monomers and the walls, so that, for instance, a

monomer which is located at the walls may have a dif-

ferent statistical weight than a monomer which is not.

In order to take into account the excluded volume con-

straint, we follow the procedure proposed by Derrida

[13] and specify, at each hyperplane, the connectivity

properties of all bonds of the chain arriving from lower

values of z. This may be done specifying the bond

belonging to the segment of the chain which includes

the initial monomer (placed at z = 0) and the pairs

of bonds connected to each other by a segment whose

monomers are all at lower values of z. In Fig. 3 these

de�nitions are shown through examples. The con�gu-

rations of the hyperplanes are represented by a set of

integer numbers associated to each of the Np sites. A

site with no bond incident from below is associated to

0, the only site connected to the initial monomer cor-

responds to 1 and the pairs of sites connected to each

other are designated by the same number larger than

1, di�erent for each pair. The maximum number of

possible con�gurations of a hyperplane is given by [29]

Nc;max =

�
Np+1

2

�X
i=0

Ji(Np); (3)



where Ji(Np) is the number of con�gurations with i

pairs, which is equal to

Ji(Np) =
Np!

i!(i+ 1)!(Np � 2i� 1)!
: (4)

Actually some con�gurations do not occur due to

boundary conditions and the self-avoidance constraint.

For example, a con�guration such as (2; 1; 2) is forbid-

den for chains in a strip de�ned on the square lattice

with a crossection of Np = 3 sites and limited by walls

impenetrable to the monomers. Also, the number of

non-equivalent con�gurations is usually smaller due to

the symmetry of the hyperplanes in each case. For ex-

ample, for the strip with Np = 3 the number of allowed

con�gurations is Nc = 5 (Nc;max = 6 in this case), but

due to the re
ection symmetry this number will be re-

duced to Ns = 3, as is shown in Fig. 3. In any case,

Ns increases very fast with Np, and this sets a limit to

the sizes of the crossections we are able to consider.

The partition function for con�ned self-avoiding

chains may be calculated through a combination of the

transfer matrix [13] and the generating function [18] for-

malisms. In order to obtain the partition function of an

ensemble of con�ned self-avoiding chains, we �rst �nd

the Nc allowed hyperplane con�gurations. Next, we

de�ne partial partition functions gz(k), which encom-

pass the contributions of all monomers located below z

and of chains which arrive at z in the k'th hyperplane

con�guration. Therefore

gz(k) =
X NaY

i=1

[x
N(i)
i ]; (5)

where Na is the number of di�erent site dependent ac-

tivities xi and N(i) is the number of monomers located

below z of each walk considered in the sum. We thus

have a set of Nc partition functions, and may consider

the addition of an additional hyperplane to the walks

included in gz(k). Since they all arrive at the hyper-

plane located at z in the k'th con�guration, the parti-

tion functions gz+1 are related linearly to the gz

gz+1(i) =

NcX
j=1

A(i; j)gz(j): (6)

The elements of the transfer matrix A(i; j) are the con-

tributions to the partition function of the monomers

placed on the Np sites located in the hyperplane at z.

If con�guration j may not be followed by con�guration

i, A(i; j) is set equal to zero. In general, the elements

of the transfer matrix are polynomials in the activities

xi; i = 1; Na, one monomial for each possibility of hav-

ing con�gurations i and j connected. We will choose

the initial monomer of the walks to be placed at the

hyperplane z = 0. If we now order the Nc hyperplane

con�gurations in such a way that the �rst Np corre-

spond to having just one bond arriving at one site from

below, such as the �rst three con�gurations in Fig. 3,

we will have

g0(k) =

�
1; if k � Np;
0; otherwise.

(7)

Figure 3. (a) - Self-avoiding walk con�ned in a strip with
Np = 6. The walk arrives at the line located at z = 2 in
the con�guration (0; 0; 1; 2; 0; 2) and at the line in z = 6
the con�guration is labeled (2; 3; 0; 3; 2; 1). (b) - Allowed
Nc = 5 line con�gurations for walks in a strip with Np = 3
with the corresponding labeling indicated. Con�gurations
(1; 0; 0) and (0; 0; 1) as well as (2; 2; 1) and (1; 2; 2) are re-
lated by re
ection symmetry, and thus Ns = 3 in this case.



Considering now the ensemble of all the walks which

end at any value of z in hyperplane con�guration k, its

partition function will be

G(k) =

1X
z=1

gz(k): (8)

From the recursion relations for the partial partition

functions, Equations 6, and the initial conditions on

the walks which lead to Equations 7, we �nd that the

partition functions G(k) are the solutions of a set of Nc

linear equations

NcX
j=1

[A(i; j)� �i;j ]G(j) = �g0(i); (9)

where �i;j is the Kronecker delta. Calling Bi the matri-

ces obtained if we replace the i'th column of the matrix

A! AI by the vector �g0, the solution of these linear

equations may be written as

G(i) =
jBij

jA� I j
; (10)

where I is the identity matrix. Thus, the determination

of the partition functions is reduced to the calculation

of determinants. In general, due to the particular sym-

metry of the speci�c problem considered, the partition

functions G(i) will be equal for all hyperplane con�gu-

rations related by symmetry. Thus, the actual size of

the determinants we need to calculate in Equation 10

is reduced from Nc to Ns.

In general, we will be interested in a particular sub-

set of the chains included in all the partition functions

G(i). For example, we might consider all chains which

end at one of the �rst Np hyperplane con�gurations.

The appropriate partition function will be

G =

NpX
i=1

G(i): (11)

The thermodynamic properties of the model may then

be obtained from the partition function. For example,

the mean number of the number of monomers with ac-

tivity xi in the chains will be

hNii =
xi
G

@G

@xi
; (12)

and the mean number of monomers in the walk is

hNi =

NaX
i=1

< Ni > : (13)

Now expressions 10 and 11 for the partition function

may be used and lead to

c

hNi =

NaX
j=1

xj

 
1PNp

i=1 jBij

@
PNp

i=1 jBij

@xj
�

1

jA� I j

@jA� I j

@xj

!
: (14)

d

At the polymerization transition the mean number of

monomers diverges. In all particular cases we consid-

ered this divergence originates from the second term in

Equation 14, so that jA � I j ! 0 is the critical condi-

tion. As expected, this condition is identical to the one

obtained by considering a single chain using the usual

transfer matrix formalism [13], which corresponds to

having the largest eigenvalue of the transfer matrix A

equal to 1. In our calculation, although an ensemble

of chains is considered, the thermodynamic properties

at the critical condition are dominated by the contri-

butions of in�nite chains at the polymerization transi-

tion. Another point to be stressed is that at the poly-

merization transition all thermodynamic properties are

determined by the transfer matrix A, the contributions

coming from the determinants jBij vanish. This is phys-

ically very reasonable, since we would not expect that

the initial and �nal conditions imposed on the walks,

which are re
ected in jBij, would have any in
uence on

the transition. One quantity we consider is the fraction

of monomers with a particular activity xi, which is

�i =
hNii

hNi
: (15)

At the critical condition, this density is equal to

�i =
xi

@jA�Ij
@xiPNa

j=1 xj
@jA�Ij
@xj

: (16)



Finally, the tension or pressure applied by the chains

on the walls which limit the strip or the pore may be cal-

culated considering the change of the thermodynamic

potential

 = �
ln(G)

�
(17)

as the walls are moved. This quantity diverges at the

transition, so that the tension or pressure per monomer

is the quantity to be looked at.

To do the calculations, we �rst generate all hyper-

plane con�gurations. Next, the transfer matrix is built,

taking into account the symmetry of the model. These

two �rst steps are done through computer programs

with just logical and integer variables, the elements of

the transfer matrix, which in general are polynomials in

the activities, are calculated exactly. Finally, the trans-

fer matrix is used as input for the numerical calculation

of the thermodynamic properties of the model.

III Results for chains in strips

A particular realization of the calculations described

above may be done for walks con�ned in strips de�ned

on the square lattice. For a square lattice in the (y; z)

plane, a strip with Np sites in the crossection is de-

�ned by all lattice sites with 0 � y � Np � 1. This

problem was already studied in detail for ideal chains

[30], and it is interesting to �nd out what in
uence the

self-avoidance constraint has on the results. A short

range interaction between the monomers and the im-

penetrable walls located at y = 0 and y = Np � 1 is

included, so that a monomer located at the walls con-

tributes with an additional Boltzmann factor ! = e���

to the partition function.

Due to the re
ection symmetry of the model with

respect to a line at y = (Np � 1)=2, we start de�n-

ing [(Np + 1)=2] activities, so that pairs of sites in the

crossection which are equidistant of the center of the

strip have the same activity. Without much compu-

tational e�ort, it was possible to study widths up to

Np = 9 (Nc = 1353 and Ns = 681 in this case). As an

example, we give the transfer matrix for a strip with

Np = 3, with the crossection con�gurations ordered as

in Fig. 3,

A =

0
BBBB@

x1 x1x2 x21x2 0 x21x2
x1x2 x2 x1x2 0 0
x21x2 x1x2 x1 x21x2 0
x21x2 0 0 x21x2 0
0 0 x21x2 0 x21x2

1
CCCCA ; (18)

where monomers in the center and on the walls have

activities x1 and x2, respectively.

In this model, we studied the fraction � of monomers

in each column y and the tension on the walls at the

transition activity xc for �xed values of !. The criti-

cal activity is a decreasing function of ! for �xed width

Np. At low values of ! it decreases with Np, whereas at

higher ! an increase with Np is obtained. The curves

xc(!) cross the two-dimensional (Np ! 1) value for

xc roughly between 1.65 and 1.75. For ideal chains,

the results are qualitatively similar, but all curves with

Np � 2 cross the two-dimensional critical activity value

xc = 1=4 at ! = 4=3, which is the adsorption transition

value for this case. For self-avoiding chains the adsorp-

tion transition is estimated to occur at !0 = 1:82�0:03

[25], above the values in which xc(!;Np) cross the two-

dimensional critical activity. As Np is increased, these

crossing values increase also, approaching !0.

Figure 4. Fractions of monomers �(y) located at column y
for Np = 9 as functions of !. The main graph shows results
for ideal chains and in the inset data for SAW's are shown.
The curves are for y ranging from 4 to 8, as indicated.

The densities �(y) show a concave pro�le for neutral

walls ! = 1, with a maximum density in the center of

the strip. This is expected since the central region is

favored entropically. As ! is increased, monomers on

the walls decrease the energy of the system and thus

the pro�le becomes convex. In Fig. 4 the densities

are plotted as functions of ! for a strip with Np = 9.

Due to the re
ection symmetry, �(y) = �(Np � 1� y).

For ideal chains, a 
at pro�le in the internal columns



(1 � y � 7)is found when ! is equal to the adsorp-

tion value !0 = 4=3, but the crossing pattern of the

curves obtained for self-avoiding chains is more com-

plex, as may be seen in the inset, and the pro�le in

this case is convex at the estimated adsorption value

for self-avoiding chains on the square lattice.

The force on the walls may be obtained through the

procedure indicated above if we imagine the operation

of increasing the spacing between the walls. If the lat-

tice parameter is equal to a, we have

F =
1

a

�
@ 

@y

�
(19)

where a attractive force is positive. As stated above,

this force diverges at the polymerization transition, so

that we consider an adimensional force per monomer,

de�ned as f = a�F
hNi , which may be calculated through

f =
1

xc

�
@xc
@Np

�
!

(20)

Since we know the critical activities for integer values of

the wall separation Np only, we evaluate the derivative

through a discrete approximation and thus

f(Np + 1=2; !) =
2[xc(Np + 1; !)� xc(Np; !)]

xc(Np + 1; !) + xc(Np; !)
: (21)

For ideal chains, the curves f�! may be seen in Fig.

5 for wall separation between 2.5 and 7.5. For Np � 2:5

the force is repulsive for ! < !0 = 4=3 and attractive

for ! above the adsorption value. For Np = 1:5 the

! independent value f = �2=5 is found. Thus, for

! > 4=3, a stable equilibrium point is found at low val-

ues of wall separation, an unstable equilibrium point

being located at in�nite separation. For ! below the

adsorption value the force is always repulsive and the

equilibrium point at in�nite separation becomes stable.

For self-avoiding chains, the situation changes qualita-

tively. The force vanishes at Np dependent values of !,

all below the estimated adsorption value for this case,

as may be seen in the inset of Fig. 5. This leads, for

! > 1:549375:::, besides the stable equilibrium point

at low wall separation, to a new unstable equilibrium

point at a �nite value of Np which grows as ! is in-

creased. The equilibrium point at in�nite separation

is always stable. In Fig. 6 a curve f � Np for self-

avoiding chains is shown, illustrating the behavior de-

scribed above. Thus, for self-avoiding chains, the rather

unphysical behavior found for ideal chains, which show

an attractive force between the walls for large distance

above the adsorption transition, does not occur. More

details about the behavior of chains in strips may be

found in references [27] and [28].

Figure 5. Force on the walls as functions of ! for ideal chains
for values of Np between 3.5 and 8.5. In the inset, results
for self-avoiding chains and the same range for Np close to
f = 0 are displayed showing that, unlike to what happens
for ideal chains, the force vanishes for di�erent values of !
for each Np.

Figure 6. Force on the walls as functions of the wall separa-
tion Np�1 for self-avoiding chains and ! = 1:64. The circles
indicate the calculated values and the lines are just guides
to the eye. In the inset, the region close to the unstable
equilibrium point is enlarged.

IV Results for chains in pores

The generating function formalism using the transfer

matrix can be used to study the properties of self-



avoiding chains in pores, with a �nite crossection com-

prising Np sites and in�nite length in the z direc-

tion. Di�erent crossections may be considered, such as

squares and rectangles. To illustrate this, we will dis-

cuss here the problem of cylindrical pores, discretized

so that the sites other than the central one are de�ned

at r possible distances of the center and in m di�er-

ent directions, as may be seen in Fig. 7. In general,

the number of sites in the crossection for a cylindrical

pore de�ned as above will be Np = 1 + mr. This is

rather unphysical for large values of r, since we would

expect Np to grow with r2. We number the sites se-

quentially in a way illustrated in Fig. 7. Due to the

Cm symmetry of the problem, we de�ne r+1 activities

xi, i = 0; 1; : : : ; r, for a monomer placed at distance i

from the center. The force on the walls applied at each

of the m sites located on them will be

F =
1

ma

@ 

@r
; (22)

where a is the distance between two successive radii.

Again we use a discrete approximation for the deriva-

tive and evaluate the adimensional force per monomer

a�F
hNi , at the critical condition, which is given by

f(r + 1=2; !) =
2[xc(r + 1; !)� xc(r; !)]

m[xc(r + 1; !) + xc(r; !)]
: (23)

Figure 7. Two examples of crossections for cylindrical pores:
(a) r = 2, m = 3, with the sequential numbering of sites
shown; (b) r = 3, m = 4.

We will brie
y show how the properties of ideal

chains con�ned in the pores de�ned above may be stud-

ied. For this we de�ne a set of r + 1 partial partition

functions gl(i); i = 0; 1; : : : ; r. In gl(i) the contributions

of all chains with l steps (l � 1 monomers) whose �nal

monomer is located at a distance i of the center of the

pore are included. It is then easy to write done the

recursion relations for the gl(i), which are

c

gl+1(0) = x0[2gl(0) +mgl(1)];

gl+1(i) = xi[4gl(i) + gl(i+ 1) + gl(i� 1)]; i = 1; 2; : : : ; r � 1; (24)

gl+1(r) = xr [4gl(r) + gl(r � 1)]:

If the initial monomer is placed at the center of the pore, we have

g0i = x0�i;0: (25)

As usual, we may de�ne the partition functions

G(i) =

1X
l=0

gl(i); (26)

which are the solution of a set of r + 1 linear equations

r+1X
j=1

[A(i; j)� �i;j ]G(j) = �g0(i): (27)

The matrix A in this case has a very simple structure, which is



A =

0
BBBBBBB@

2x0 � 1 mx0 0 0 : : : 0 0 0
x1 4x1 x1 0 : : : 0 0 0
0 x2 4x2 x2 : : : 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 : : : xr�1 4xr�1 xr�1
0 0 0 0 : : : 0 xr 4xr

1
CCCCCCCA
: (28)

d

Due to the band structure of the matrix some proper-

ties of the model may be calculated analytically [30].

To study the properties of self-avoiding chains in

the pores, we generated the crossection con�gurations

and the polynomials which are the elements of the

transfer matrix. As an example, we show some re-

sults for m = 3. Since at each additional value of the

radius r the number of sites in the crossection is in-

creased by m, the number of crossection con�gurations

grows very fast with r, limiting the cases we could con-

sider. For r = 1; 2; 3 we found Nc = 16; 532; 26200 and

Ns = 5; 108; 4530, respectively. So, we limited ourselves

to a maximum value r = 2. As in the cases of chains in

strips, some possible con�gurations are not connected

to any other in the transfer matrix and therefore may

be eliminated. But, unlike to what happens for chains

in strips, these con�gurations are not obvious a priori,

so we detected them after the transfer matrix was ob-

tained. Such con�gurations do not occur for r = 1 and

for r = 2 their elimination reduced Nc to 531 and Ns

to 105.

In Fig. 8 the densities for ideal and self-avoiding

chains in the pore are shown for r = 2 and m = 3 as

functions of !. Although di�erences are apparent be-

tween both cases, they are relatively smaller than the

ones observed in the case of chains in strips. This is

expected since the coordination numbers of the sites in

the pores are larger than the ones of the corresponding

sites in the strips, and thus the self avoidance constraint

is expected to have a smaller in
uence on the results for

chains in pores. Finally, Fig. 9 displays the results ob-

tained for the force on the walls for r = 2;m = 3. Again

we notice that, similar to what was found for the strips,

the force vanishes at a lower value of ! for ideal chains

than it does for self-avoiding chains.

(a)

(b)

Figure 8. Fractions of monomers �(i) for chains placed in
cilindrical pores with r = 2 and m = 3. For i > 0 the frac-
tions indicated correspond to monomers located at one of
the m sets of sites situated at a distance i from the center.
Results for (a) ideal and (b) self avoiding chains are shown.



Figure 9. Force on the wall for cylindrical pores with r = 2
and m = 3. Curve 1 corresponds to ideal and curve 2 to self
avoiding chains.

V Discussion and �nal com-

ments

We studied the properties of ideal and self-avoiding

chains in strips and pores, concentrating on the spa-

tial distribution of monomers and on the tension on

the walls. It should be stressed that the solution of

statistical mechanical models in con�ned geometries,

particularly on strips or on the surface of cylinders, is

not new. The main interest in such studies is to use �-

nite size scaling in order to provide information on the

behavior of the two-dimensional models from the solu-

tion of a sequence of one-dimensional models [31]. Also,

scaling arguments have been applied very successfully

to con�ned polymers [32], but it should be noticed that

these arguments usually lead to monotonical behavior

of the thermodynamic properties with the size of the

system. Our results show their most interesting fea-

tures at sizes below the ones where �nite size scaling

is valid. This is clear if we consider the tension on the

walls of the strips, which display equilibrium points at

low values of Np.

To our knowledge, there are no experimental results

regarding the distribution of monomers for chains con-

�ned in pores or strips. The tension on plates with poly-

mers in solution has been measured [33], being repulsive

at low plate separation with a weak attractive tail as the

separation increases, in qualitative agreement with the

results for ideal chains. So, at least within the precision

of the measurements, no unstable equilibrium point was

found. Oscillating forces have also been reported [34],

but only for monodisperse melts with rather low num-

bers of monomers (N equal to 20 and 65), and thus no

comparison can be made with the present calculations.

In principle, it would be possible to study the behavior

of monodisperse melts with techniques similar to the

ones used above, but with a transfer matrix which will

grow very fast with the number of monomers.
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