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We study the formation of Cooper pairs in high-Tc cuprate superconductors within a spin 
uctuation
model for doped quantum Heisenberg antiferromagnets. The charge of the dopants (chargons) is
associated to quantum skyrmion excitations of the Cu++ antiferromagnetic spin background. We
then compute the quantum skyrmion e�ective interaction potential as a function of doping and
temperature in order to study charge pairing. It becomes clear that Cooper pair formation is
determined by the competition between the spin 
uctuations of the Cu++ magnetic ions and the
spins of the O�� doped holes (spinons). The superconducting transition occurs when the e�ective
potential allows for skyrmion bound states. Our theoretical predictions for the superconducting
phase diagram of La2�xSrxCuO4 and YBa2Cu3O6+x are in good agreement with experiment.

I Introduction

Strongly correlated electron systems have been the ob-
ject of intense studies, both theoretical and experi-
mental, after numerous indications that the high tem-
perature superconductivity, discovered in cuprate per-
ovskites [1], arises from the doping of a Mott-Hubbard
antiferromagnetic insulator. The strong correlating sys-
tem deviates signi�cantly from the usual Fermi liquid
and a number of anomalies are observed in the so called
underdoped regime. Among the most interesting ones
are: N�eel and metal-insulator transitions, linear depen-
dence of the resistivity with temperature [2], the reduc-
tion of the density of states previous to superconductiv-
ity (pseudogap) [3], di�erent responses for the optical
probes of the spin and charge degrees of freedom (spin-
charge separation) [4], etc., which have inspired a large
amount of theoretical and experimental work for about
�fteen years. In spite of that, even the nature of the
ground state and of its elementary excitations have not
yet been fully determined and many di�erent pictures
are available, ranging from a resonating liquid of spin
singlets (Anderson's RVB) [4] until the recent proposed
staggered 
ux phase (SF-phase) of Wen and Lee [5].

One of the most fundamental points yet to be un-
derstood is the mechanism of charge pairing. It is by
now well established that antiferromagnetic spin corre-
lations play an important role in the dynamics of the
system, even after the destruction of the N�eel state. In-
deed, di�erent spin-
uctuation models have been suc-
cessfully used to explain the observed spectral weight in
ARPES data of high-Tc materials [6], as well as other

anomalies [7]. Moreover, the idea of spin-
uctuation
induced charge pairing and superconductivity has been
used recurrently [8].

In this work we propose a theory for high-Tc

cuprates that takes into account the spin 
uctuations
of the Cu++ magnetic ions and of the O�� doped holes
as independent degrees of freedom. The charge of the
dopants (chargons) is associated to skyrmion quantum
spin excitations of the Cu++ background, which in the
N�eel phase are �nite energy defects closely related to
their classic counterparts whereas in the quantum disor-
dered phase are nontrivial zero energy purely quantum
mechanical excitations. The spin of the doped holes
(spinons), on the other hand, is represented by charge-
less, massless Dirac fermion �elds [9]. We calculate
the e�ective interaction potential between these quan-
tum skyrmion topological excitations in order to study
charge pairing. It becomes clear that Cooper pairing
is controlled by the competition between the spin 
uc-
tuations of Cu++ magnetic ions and those of the O��

doped holes. Our predictions for the Tc line are in good
agreement with experiment for both La2�xSrxCuO4

and YBa2Cu3O6+x.

II The model

It is generally accepted that the relevant electronic de-
grees of freedom in the perovskites are con�ned to two
dimensions and reside in Copper-Oxide planes [10], like
the one shown in Fig. 1. Our starting point will then
be the generalized spin-fermion model described by the



Eduardo C. Marino and Marcello B. Silva Neto 711

square lattice Hamiltonian

H = �tp
X

hi;ji;�

(cyi;�cj;� + h:c:) + Up
X
i;�

ni;�ni;�

+ JK
X
i;�;�

~Si � c
y
i;�~���ci;� + J

X
hi;ji

~Si � ~Sj ; (1)

which arises from the strong coupling limit of the three
band Hubbard Model (3BHM) [11]. In the above ex-

pression, ~Si represent the localized spins of Copper
ions, which interact through the superexchange J , cyi;�,
� = 1::N = 2, is the hole creation operator, tp is the
hopping term for holes, JK is a Kondo like coupling
between the spins of Cu++ ions and the spins of O��

holes, and we have retained the usually ignored on-
site Coulomb repulsion between O�� holes, Up 6= 0

with ni;� = cyi;�ci;�. Since realistic estimates from the
3BHM suggest that Up=tp � 10 [12], being rather large,
and thus we can perform a tp=Up expansion. Second
order perturbation theory in tp=Up will give rise to a
superexchange Jp = 2t2p=Up between oxygen spins and
we end up with a t� J model for the holes.

tp, Up

Jk

J
Cu Cu

CuCu

O

O O O
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Figure 1. Unit cell of the CuO2 plane.

The mean �eld (largeN) solutions of the t�J model
are well known and it has been established that a �-
ux
phase has minimum energy, at least at the saddle-point
level (N !1) [9]. We can write the electron in terms
of a charged spinless boson �i (chargon) and a charge-
less spin-1=2 fermion fi;� (spinon),

cyi;� = �yif
y
i;�; (2)

in such a way that the above object has exactly the
same quantum numbers as the electron. We decouple
the four particle interactions by introducing the d-wave
auxiliary �elds

�ij =
D
fyi;�fj;�

E
�ij = hfi;"fj;# � fi;#fj;"i ; (3)

which acquire a nonzero expectation value for T < T �,
where T � is the so called pseudogap temperature.

In terms of the new degrees of freedom, �i and fi;�,
we see that the Hilbert space is twice as large as in the
original t � J Hamiltonian. Furthermore, the result-
ing Hamiltonian has an extra Z2 (Ising) symmetry [13]
since now each piece is invariant under a change of sign
in both the chargon and spinon �elds

�i ! ��i

fi;� ! �fi;�: (4)

We shall then impose a constraint in order to account
for the above discussed facts. We can write

X
i

h
fyi;�fi;� + �yi�i

i
= N; (5)

where N � 0 is an even number. With this constraint
the only possible states in the Hilbert space are: a)
N = 0, no chargons and no spinons (a hole); b) N = 2,
one chargon and one spinon (one electron), or two char-
gons and no spinons (one Cooper pair), or no chargons
and two spinons (a spin singlet); c) N > 2, N chargons
and no spinons (N=2 Cooper pairs), or two spinons and
N �2 chargons (one spin singlet and (N �2)=2 Cooper
pairs). It is clear how the extra Z2 symmetry forbids
states with a single chargon and no spinon, and vice
versa, since all physical states must be Z2 invariant.

If we then neglect charge 
uctuations,
D
�i�

y
j

E
'

j�ij
2 = const:, and if we recall that the order parameter

�ij has d-wave symmetry, thus vanishing linearly along
the four Dirac points (��=2;��=2), we �nd that the
lowest lying excitations of the �-
ux phase are massless,
chargeless, spin carrying Dirac Fermi �elds [9] whose
dynamics is described by the Lagrangian

L =
X
�;�

i �;�

�

0@� � vF~
 � ~r

�
 �;�; (6)

where � = 1; 2 label the only two inequivalent Fermi
points at (�=2;��=2) (see Fig. 2), @� = (@� ; ~r),

� = (
0; ~
) = (i�z ; �x; �y), vF = 2a� is the dopant
Fermi velocity (with a being the lattice spacing and �
the constant amplitude of j�ij j) and

 �;� =

�
fe�;�
fo�;�

�
; (7)

for (o)dd and (e)ven lattice sites.
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Figure 2. Fermi surface for the low energy excitations of
the t � J model at low doping in the �-
ux phase. The
small pockets are located at (�=2; �=2) and symmetry re-
lated points in the Brillouim zone.

The long wavelength 
uctuations of the localized
Cu++ spins, on the other hand, are described by the
CPN�1 Lagrangian [14, 15]

LCPN�1 =
1

2g0
j(@� � iA�)zij

2
; (8)

where ~S = zyi ~�ijzj , with zyi ; zi, i = 1::N = 2, be-

ing Schwinger boson �elds such that zyi zi = 1, A� =
�i�zi@�zi, g0 is a bare coupling constant, and we are us-
ing units where c = 1. It is now convenient to perform
the local canonical transformation  ! U , where

U = exp

�
q

�
z1 ��z2
z2 �z1

��
(9)

is a SU(2) matrix, and q is arbitrary. Now the Kondo
coupling term in (1) reduces to a chemical potential

term, since U y~S � ~�U = �z . Also, since Uy@�U =
iq�zA�+ negligible nondiagonal terms, we end up with
the e�ective theory

Z =

Z
D�zDzD D DA� Æ[�zz � 1]e�S; (10)

where

S =

Z �~

0

d�

Z
d2x

( X
i=1::N

1

2g0
j(@� � iA�)zij

2

+
X

�=1::N;�=1;2

 �;� 
� (i@
� � q�zA

�) �;�

9=
; ;(11)

where � = 1=kBT and we have set, for now, vF = 1.

III Chargons as quantum

skyrmions

In previous works [16], we have proposed a model
for doping quantum Heisenberg antiferromagnets, that
successfully described the magnetization curves and the
AF part of the phase diagrams of both LSCO and
YBCO. One of the important consequences of that
model was the observation that each hole added to the
CuO2 planes creates a skyrmion topological defect on
the Cu++ spin background, in agreement with earlier
proposals [17]. The dopant charge, in particular, was
found to be attached to the skyrmion charge and conse-
quently its dynamics becomes totally determined by the
quantum skyrmion correlation functions. Despite the
fact that the model proposed in [16] is restricted to the
antiferromagnetic part of the phase diagram, we shall
nevertheless pursue the picture in which skyrmions are
in general the charge carriers of the doped holes. This
will allow us to treat the bosonic variable �i introduced
above as a quantum skyrmion operator. In particular,
we shall exploit this idea in the quantum disordered
phase, Æ � ÆAF , where the skyrmions are purely quan-
tum mechanical and have zero energy (Æ is the in-plane
doping parameter).

The full treatment of the quantum skyrmions of the
theory described by (11) has been carried out in [18]. In
the renormalized classical regime, g0 < gc (gc = 8�=�),
we have

h�(x)�y(y)i =
e�2��sjx�yj

jx� yjq2=2
; (12)

where �s = 1=g0 � 1=gc and q is the spinon coupling.
Conversely, for the theory studied in [16] the corre-
sponding correlator was found to be

h�(x)�y(y)i =
e�2��s(Æ)jx�yj

jx� yj�(Æ)
; (13)

where the expressions for �s(Æ) and �(Æ) have been care-
fully determined in [16]. In particular,

�(Æ) =

�
64

�2 + 16
+
�EM
4�2

�
(nÆ)2; (14)

with n = 1 for YBCO and n = 4 for LSCO, the fac-
tor of four being a consequence of the existence of four
branches in the Fermi surface for this compound, as
discussed in [16]. In the above expression �EM is the
electromagnetic �ne structure constant and we see that
the contribution from the electromagnetic coupling is
negligible. In this sense, we shall assume �EM = 0 in
all the subsequent calculations.

The �s(Æ) function is given by �s(Æ) = �s(0)[1 �
AÆ2], for YBCO and �s(Æ) = �s(0)[1 � BÆ � CÆ2]1=2,
for LSCO, and again the di�erent behavior being as-
cribed to the form of the Fermi surface in each case
[16]. The constants A,B and C have been evaluated
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from �rst principles in [16]. In order to obtain the Æ-
dependence of the spin sti�ness �s and of the spinon
coupling q in our model (11), we now match the two
correlation functions in (12) and (13) (ordered phase),
obtaining �s = �s(Æ) and

q =

r
128

�2 + 16
(nÆ): (15)

The sublattice magnetization in the ordered phase
is given by M(Æ) =

p
�(Æ), and consequently ÆAF can

be obtained from �(ÆAF ) = 0, both in good agreement
with experiment, see [16]. For Æ > ÆAF , on the other
hand, where �s = 0, we shall assume that the expres-
sion for q(Æ) still holds. This is quite reasonable since
q was introduced by a local canonical transformation,
and at least locally there still is short range AF order.

IV Cooper pair formation

Let us now investigate the conditions for Cooper pair-
ing. We shall �rst introduce in the partition function
(10) the skyrmion current, J � = 1

2� �
���@�A� , through

the identity

1 =

Z
DJ� Æ[J� �

1

2�
����@�A� ]: (16)

Integrating over zyi ; zi and  a;  a, we obtain, at leading
order, the e�ective Lagrangian

Leff [A�] =
N

2
A�(x; �)�

�� (x� y; � � � 0)A�(y; �
0);

(17)
where ���(x � y; � � � 0) has Fourier transform given
by ���(p; i�m) = ���

B (p; i�m) + ���
F (p; i�m), which

are respectively the contributions to the �nite temper-
ature vacuum polarization coming from the complex

scalar �elds zi (Schwinger bosons) and fermions  �;�
(spinons), see Fig. 3.

kµ kν

Π =
µν

Πµν
F

B

=
γµ γν

− 

δµν

2

Figure 3. Leading order graphs for the polarization tensor
��� = �B

�� +�F
�� .

In order to obtain the e�ective current-current inter-
action between skyrmions, we use an exponential rep-
resentation for the Æ-function in (16) and integrate over
A� and the corresponding Lagrange multiplier �eld.
The result is

Z =

Z
DJ� e

�
�2�2

R
d3x
R
d3yJ�(x)�

��(x�y)J�(y)
	
;

(18)
where ���(p) = ���(p)=p2, x = (�;x) and p = (i�m;p).
The real time e�ective interaction energy between static
skyrmions (�m = 0) is then

HI = 2�2
Z

d2x

Z
d2y �(x) �00(x� y; 0) �(y); (19)

where �(x) = J0(x) is the dopant charge density and
�00(x� y; 0) has Fourier transform given by �00(p) =
�B(p) + �F (p) with

c

�B(p) = �
�

2�
+

1

2�

Z 1

0

dx
p
jpj2x(1� x) +m2 coth

 p
jpj2x(1� x) +m2

2kBT

!
; (20)

and

�F (p) =
q2

�

Z 1

0

dx
p
jpj2x(1� x) tanh

 p
jpj2x(1� x)

2kBT

!
: (21)

d

In the above expressions, m is the inverse correlation
length of the quantum disordered phase of the CPN�1

model, where

� = 8�

�
1

gc
�

1

g0

�
(22)

and �s = 0. At order N , it is given exactly by [15]

��1(T ) = m(T ) = � + 2kBTe
��=kBT : (23)

For two charges at positions x1 and x2, we have
�(x) = Æ(2)(x � x1) + Æ(2)(x � x2). After discarding
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self-interactions, we obtain (r = x1 � x2)

V (r) =

Z
d2p �00(p) eip�r + Vl(r); (24)

where we have also introduced the centrifugal barrier
potential between the two charges that form the Cooper
pair,

Vl(r) =
l(l+ 1)~2

2M�r2
; (25)

with l specifying the relative orbital angular momentum
of the pair and M� the e�ective mass of the charges.

IV.1 Determination of ÆSC

It is well known that in high-Tc cuprates, Cooper
pairs form at relatively short distances. In this limit,
large jpj, we have, at T = 0

V (r)!

Z
d2p

�
1

8jpj
�

2q2

8jpj

�
eip�r + Vl(r): (26)

The above expression clearly shows a competition be-
tween the spin 
uctuations of the Cu++ spins (�rst
term) and of the O�� doped spins (second term). For
small enough doping, q2 < 1=2, the potential is always
repulsive and there is no charge pairing. For q2 > 1=2,
on the other hand, the potential has a minimum and
charge (skyrmion) pairing occurs. We conclude that the
critical doping for the onset of superconductivity is de-
termined by the condition q2(ÆSC) = 1=2. We observe
that without the Cu++ background, the interaction po-
tential (26) would always have bound states for any
q 6= 0, at zero temperature, and ÆSC = 0. This is what
happens in the mean �eld phase diagram of Kotliar and
Liu [19]. We see that the e�ect of the Cu++ background
is to shift the value of ÆSC to its correct position in the
phase diagram.

From expression (15) we see that ÆSC is only de-
termined by the geometry of the Fermi surface of the
compound. Using that q2(ÆSC) = 1=2 we get ÆY BCOSC =
0:318 and ÆLSCOSC = 0:079, which have a fairly good
agreement with experiment. In particular, we see that
ÆY BCOSC = 4ÆLSCOSC , a result that is veri�ed by experi-
ments, if we take in account the relation between Æ and
the stoichiometric doping parameter x, namely Æ = x
for LSCO and Æ = x� 0:20 for YBCO. Another predic-
tion of our model is that compounds with similar Fermi

surfaces should have the same superconducting critical
doping ÆSC .

IV.2 Disorder

We can improve even further our agreement with ex-
perimental data for ÆSC by considering disorder in the
bonds of the Cu++ antiferromagnetic lattice. In fact,
disorder may be modelled in the ordered N�eel phase
of a doped antiferromagnet by considering a continu-
ous random distribution of spin sti�nesses [20]. The ef-
fect of introducing a Gaussian�j���sj

��1 distribution,
with exponentially suppressed magnetic dilution, in the
original model [16], is a correction for �(Æ), namely
�(Æ) ! �0(Æ) = �(Æ) + � [20], and consequently we
end up with

q(Æ) =

r
128

�2 + 16
(nÆ)2 + 2�; (27)

Choosing � = 1
8 for both compounds, we get ÆSC =

1
n

q
�2+16
512 , or equivalently xY BCOSC = 0:425 and

xLSCOSC = 0:056, in good agreement with experiment.

IV.3 The superconducting transition line TSC

The computations at �nite temperature are a bit
more involved. Since the integrals over the Feynman
parameters in (20) and (21) can not be solved exactly,
we shall make use of some temperature expansions. For
�B we shall expand in kBT=m, since it is clear that
m(T ) > kBT;8T . �B will then be simply given by its
zero temperature limit, where m = �. For �F , on the
other hand, such a low T expansion is not necessarily
valid even for jpj � kBT . We will then have to split
the integral over the Feynman parameter x in (21) into
three parts. For 0 � x � xc and 1 � xc � x � 1,
xc = (kBT=jpj)

2
, we use a high T expansion, while for

xc � x � 1�xc we use the low T expression. We obtain

�00(p) =
(1� 2q2)

8jpj
�

m

�jpj2
+

m2

2jpj3
+
16q2T 3 � 4m3

3�jpj4
:

(28)
Inserting this in (24), we get V (r), and from the
threshold conditions for the formation of bound states,
namely V 0(r0) = 0 and V 00(r0) = 0, we obtain the rela-
tion

c

(kBTSC)
3 = �

�(1� 2q2)�3

512q2
+
m�2

32q2
�
3�m2�

128q2
+
m3

4q2
�
3�2l(l + 1)�4

q2M�v2F
; (29)

d
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where � = ~vF =r0, m = �, and r0 is the minimum of
the potential (it also measures the size of the Cooper
pair).

V Comparison with experiment

In order to make contact with experimental data we
need the doping dependence of �. For YBCO, we use
�(Æ) = �0[(Æ=ÆAF )

2�1], in agreement with the results
of [16], with �0 = 8:0 meV. For LSCO, we shall use
an expression that �ts the experimental data of [21],
namely �(Æ) = �0[(Æ=ÆAF )

2 � 1]1=2, with �0 = 0:87
meV. For the T = 0 AF quantum critical point ÆAF ,
we know from experiments that ÆAF = 0:22 for YBCO
and ÆAF = 0:02 for LSCO. Inserting in (29) the values
of ÆSC at T = 0, obtained previously, we get a relation
that �xes M�v2F with respect to r0. In Figs. 4 and 5
we plot the curve (29) for LSCO and YBCO, respec-
tively, with r0 = 38 �A, ~vF = 0:1 eV �A for LSCO and
~vF = 1:15 eV �A for YBCO, and l = 2 (d-vave pairing).
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Figure 4. TSC versus strontium content x for
La2�xSrxCuO4. The lines correspond to the theoretical pre-
diction (Eq. 29). Experimental data from [21].
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Figure 5. TSC versus oxygen content x for YBa2Cu3O6+x.
The lines correspond to the theoretical prediction (Eq. 29).
Experimental data from [22].

In Fig. 4 (LSCO), the dashed part is in the region
where T > T � and we should move to a new saddle-
point. In Fig. 5 (YBCO) we have shifted the curve
(dashed part) to the right in the regions x = [0:52; 0:7]
and x = [0:8; 1] in order to comply with the e�ects of
the out-of-plane O-Cu-O chains, which produce the ob-
served 60 K and 90 K plateaus, where the extra holes do
not enter in the CuO2 planes. Furthermore, for YBCO,
T � is higher than Tmax (x = 1) and therefore imposes
no restrictions to our results.

VI Final remarks

We would like to remark that our theory (11) also gives
a simple interpretation for the pseudogap phenomena.
Indeed, for TSC < T < T � spinons are paired into
d-wave singlets but chargons (skyrmions) repel each
other and there is no superconducting state. Only for
T < TSC we do have Cooper pair formation and super-
conductivity.
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