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This work reports the performance of a dispersion compensating coaxial �ber as a function
of its geometric parameters. Our analysis is carried out by solving the wave equation under
the linearly polarized approximation, which leads to transcendental equations that provide
the e�ective index of refraction. The highest e�ciency at a �xed wavelength is achieved for
a suitably chosen geometry and this choice is an important factor to determine the general
shape of the wavelength-dependent dispersion curve.

I. Introduction

The development of Erbium-doped �ber ampli�ers

with gain at 1.55 �m suggests the need of upgrading

the existing 1.31 �m optical �ber links for operation in

that wavelength. This will bring the advantage of using

unrepeted long-haul systems. However, transmission of

high data rates over long distances using the already

installed single mode �bers (SMF) requires the use of

techniques to compensate the pulse spreading caused by

positive chromatic dispersion. In order to accomplish

this goal, many researchers have directed their atten-

tion to the use of dispersion compensating �bers (DCF)

[1-4]. Peschel et al. [3] have recently shown that the su-

permodes of two dissimilar coupled planar waveguides

may exhibit dispersion compensation and discussed the

trade-o� between group velocity dispersion (GVD) and

bandwidth. Their theoretical analysis was carried out

with the coupled wave guides model, where the modes

in each isolated sub-structure are coupled through a

coupling constant �. Based on the idea of dissimilar

waveguides, Thyagarajan et al. [4] extended this con-

cept to a cylindrical geometry by performing a theo-

retical analysis of a highly asymmetric four-layer �ber,

whose refractive index pro�le is schematically shown in

Fig. 1. It has four distinct regions: rod (0 < r < a),

gap (a < r < b), barrier (b < r < c) and clad (r > c),

and can be thought as composed of two sub-structures,

namely rod [5] and tube [6], as indicated in the �gure.

Their analysis, carried out with a numerical technique

proposed by Sharma et al. [7], indicates the possibility

of large negative dispersion coe�cients, D, with values

as high as 5100 ps/(nm.km). The coupled mode theory

used by Peschel et al. [3] was �rst studied by Boucou-

valas [8] to describe four-layer coaxial �bers. The su-

permodes HE11 and HE12 of this kind of �bers are well

described as combinations of HE11 modes of the two

isolated sub-structures. More recently, Nunes et al. [9]

presented a detailed theoretical study of di�erent coax-

ial �bers, where the structure presented in Fig.1 is a

particular case of them. In that work, the wave equa-

tion of the �bers were solved under the linearly polar-

ized (LP) approximation [10], leading to transcendental

equations from which the propagation constant, �, can

be calculated. In this way, the e�ective index of re-

fraction , n(n = �=k, where k = 2�=� and � is the
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wavelength), is obtained as well as universal dispersion

curves for any �ber mode.

Figure 1. Refractive index radial pro�le of the dispersion
compensating coaxial �ber. The sub-structures that com-
pose the coaxial �ber (rod and tube) are also shown.

The present work employs the theoretical frame-

work developed in ref. [9] to determine the dispersion

coe�cient of coaxial �bers, by performing a numerical

calculation of the second order derivative of n. There-

fore, the procedure adopted here is di�erent from that

using coupled modes [3], and also from the numerical

approach developed in ref. [7]. The emphasis in this

work is placed on the dependence of the dispersion co-

e�cient on the geometrical parameters, namely, the rod

radius, a, the outer gap radius, b, and the outer barrier

radius, c. When they change, the depth and bandwidth

of the wavelength-dependent dispersion coe�cient can

change signi�cantly. There is a trade-o� between the

group velocity dispersion and bandwidth [3], and then

it becomes important to determine the shape of the

wavelength-dependent dispersion coe�cient for di�er-

ent design situations.

II. Fiber design and theoretical framework

As mentioned in the previous section, the disper-

sion coe�cient is calculated through the second deriva-

tive of the e�ective refractive index curve. These curves

are obtained with the LP approximation for the coax-

ial �ber that has the pro�le shown in Fig. 1, and the

resulting transcendental equations are those presented

for the W1 structure (with n2 = n4) in ref. [9]. The

values of the refractive indices n1 and n2 are calculated

by adding to the lower refractive index value, n3, the

same steps employed in ref. [4], namely , �1 = 0:02

and �2 = 0:003; where �i = (n2i � n2
3
)=(2n2

3
): The

wavelength dependence is assumed to be the same for

all refractive indices. n3 was calculated with the well-

known Sellmeier equation: [10]

n2
3
= 1 +

3X

j=1

Aj�
2

j

(�2 � �2j )
(1)

with A1 = 0:69681388; A2 = 0:40865177; A3 =

0:89374039; �1 = 0:070555513; �2 = 0:11765660 and

�3 = 9:8754801 [10]. Assuming the same parameters for

all refractive indices does not a�ects the general trend

of the results presented here, but a better approach is

being searched for future work. Unfortunately, up to

the author's knowledge, there are no available data to

compare with the refractive index steps used here.

The dispersion coe�cient is calculated according to

[11]:

D = �
�

c

d2n

d�2
(2)

where c is the speed of light in vacuum. Once n is ob-

tained from the transcendental equations, D(�) can be

found by numerically determining its second derivative.

The results were obtained with a Pentium 133 MHz , 32

Mb RAM personal computer, with the need of less than

�ve minutes to generate each data �le for D. The mode

pro�les can also be found with the theoretical approach

given here, by substituting the propagation constant �

into the wave equation of the �bers.

III. Numerical results and discussions

Our results show that the dispersion enhancement

occurs at the wavelength where the indices of the super-

modes HE11 and HE12 approach each other, as shown

in Fig. 2 for a coaxial �ber with a = 1 �m , b = 15 �m

and c = 22 �m. This is associated to the strong cou-

pling between the two individual modes of the isolated

sub-structures, rod and tube, which at that wavelength

are phase matched [3,4]. According to eq. (2), the

supermode HE11 will result in a negative dispersion,

as required for compensation, while the mode HE12
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will present a positive dispersion. When any geomet-

ric parameter changes, the wavelength where the phase

matching occurs also changes, in addition to the shape

of the dispersion curve. We �rst discuss the in
uence of

the rod radius and of the outer gap radius in the disper-

sion curve, for a given value of the outer barrier radius.

With the theoretical approach described previously [9],

we found to be possible to obtain pairs of geometric

parameters (a; b) such that the dispersion occurs at the

same wavelength, but the shape of the dispersion curve

will depend on these parameters. This a�ects the de-

sired compensation and constitutes the interest of the

present work.

Figure 2. Indices of the supermodes HE11 and HE12 as a
function of the wavelength.

Fig. 3 shows the dependence of b on a such that

the pairs (a; b) will result in \maximum dispersion" at

the wavelengths of interest for communication systems,

1.31 �m and 1.55 �m. The value of c is kept constant

at 22 �m. The results indicate that any increase in

the value of the rod radius can be compensated with

a smaller value of the external gap region, as a way to

produce the group velocity dispersion at the same wave-

length. However, the behavior of the dispersion curve

is much more sensitive to a than to b, meaning that

a small variation in a requires a much larger change

in b, as can be seen in Fig. 3. We have also calcu-

lated wavelength-dependent dispersion curves for those

pairs (a; b) shown as solid circles in Fig. 3 and the re-

sults are presented in Fig. 4. The values of D found

with the present theoretical approach are in good agree-

ment with those of Thyagarajan et al. [4] for 1.55 �m

when the same values of the �ber parameters are used

(a = 1:0 �m , b = 15:2 �m, c = 22 �m, �1 = 0:02

and �2 = 0:003). The maximum dispersion occurs at

a = 1:01 �m and b = 14:7 �m for 1.55 �m, and a = 0:87

�mand b = 15 �m for 1.31 �m. Their values were found

to be D1:55
max

= �4100 ps/(nm.km) and D1:31
max

= �21500

ps/(nm.km). Any increase or decrease of a results in a

less e�cient dispersion. Taking into account that the

spectral half-width of a 10 ps pulse is about 3:5� 10�4

�m, Fig. 4 indicates that the bandwidth of the coaxial

DCF is su�ciently large for the two wavelengths con-

sidered.

Figure 3. Pairs of geometric parameters a and b that pro-
vides the maximum dispersion at wavelengths of interest for
communication systems, 1.31 �m and 1.55 �m. The curves
are just for a visual aid.

Next, we also consider the variation of the radius

c, but in this case we restrict the discussion to �=1.55

�m. For each value of c we evaluate those pairs (a; b)

that will produce a dispersion curve whose maximum

e�ciency is located at 1.55 �m. This procedure re-

sults in the family of curves shown in Fig. 5. The

height of the dispersion dip at 1.55 �m changes as we

move along each of these curves, but we found that the

highest dispersion always occurs for a =1.02 �m if c is

greater than 22 �m. This is schematically shown as the

nearly vertical line in the �gure. On the other hand, if

we move upwards along this line, the value of the dis-

persion maximum increases steadily, reaching values as

high as 105 for c = 31 �m. However, these huge �gures-

of-merit are unfounded because the exact same prop-

erty that gives high dispersions also gives high bend

sensitivity and thus implies in the use of large diameter

spools, which is completely impractical. The bend loss

arises because barriers with large radius force a signi�-

cant amount of energy to travel close to the edge of the

�ber. A throughout study is necessary in order to �nd

the optimum value of c that gives a high dispersion and

does not produce a signi�cant bend loss.



88 F. D. Nunes et al.

Figure 4. Wavelength-dependent dispersion curves for di�erent pairs (a; b) at (a) 1.55 �m and (b) 1.31 �m.

Figure 5. Pairs of radius a and b that provides the maximum
dispersion at 1.55 �m for di�erent values of c. The nearly
vertical curve corresponds to pairs that give the highest dis-
persion.

Another point to be considered is the spatial �eld

distribution of the supermodes HE11 and HE12. They

have modal pro�les with a central peak, which are quite

similar for both modes and two lateral peaks, also sim-

ilar in pro�le but with opposite signals. As already dis-

cussed by Boucouvalas [8], these two supermodes are

able to describe the fundamental modes of rod �bers

as well of tube �bers, by either adding or subtracting

them. When the modes HE11 and HE12 are added, the

lateral peaks cancel and the �nal result is a Gaussian-

like distribution as is the case of the fundamental mode

of a rod �ber. By taking their di�erence, the central

peaks will be canceled while the lateral peaks will be

added, resulting in the pro�le of the fundamental mode

of a tube [8]. Accordingly, it is possible to devise a way

to excite the fundamentalmode of the coaxial �ber from

the fundamental mode of a standard SMF with a taper

made with a coaxial �ber. When the SMF fundamental

mode is launched into the taper, will be decoupled in

two or more modes, in response to the lack of longi-

tudinal invariance. In the case of an adiabatic taper,

only the modes HE11 and HE12 will be excited, but

just a small power (less then 10%) will be located in

the HE12 mode and the remaining will be transported

by the HE11 mode [12]. Therefore, there will a disper-

sion compensation for most of the signal propagating in

the coaxial �ber. Since the mode HE12 has a positive

dispersion it will be spreaded giving rise to a negligibly

small pedestal. When the light reaches the end of the

coaxial �ber, another taper of appropriate length, will

cause the opposite e�ect regenerating the fundamental

mode of the SMF rod �ber.

IV. Conclusions

We have analyzed the performance of a dispersion

compensating coaxial �ber as a function of two of its ge-

ometric parameters, the rod radius and the outer gap

radius. We found pairs (a; b) that provide the high-

est e�ciency at a �xed wavelength and studied how

the choice of these pairs a�ect the general shape of the

wavelength-dependent dispersion curve. Our analysis

was carried out by taking the second derivative of the

e�ective index of refraction obtained from transcenden-

tal equations arising when the wave equation is solved

under the linearly polarized approximation. The results
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were found to be in agreement with those of Thyagara-

jan et al. [4]. The modal �eld distribution for HE11 and

HE12 were calculated, although not presented here, and

the mechanism of excitation of the coaxial �ber funda-

mental mode from the fundamental mode of a rod SMF

with a taper was discussed.
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