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Corrections to Finite Size Scaling in Percolation
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Received on 2 May, 2003

A 1/L-expansion for percolation problems is proposed, whereL is the lattice finite length. The square lattice
with 27 different sizesL = 18, 22, . . . 1594 is considered. Certain spanning probabilities were determined by
Monte Carlo simulations, as continuous functions of the site occupation probabilityp. We estimate the critical
thresholdpc by applying the quoted expansion to these data. Also, the universal spanning probability atpc for
an annulus with aspect ratior = 1/2 is estimated asC = 0.876657(45).

I Introduction

In reference [1] a square lattice is viewed as a torus, thus
without frontiers, where sites are randomly occupied with
probabilityp. Wrappingpercolation probabilities can be de-
fined within this geometry, counting configurations which
wrap along the horizontal and/or/xor vertical directions. The
probabilityRh, for instance, counts all configurations wrap-
ping along the horizontal direction, no matter which occurs
vertically. As a function ofp, Rh corresponds to a plot
like figure 1 (to be quoted later) for a finite lattice. In the
thermodynamic limitL → ∞, this plot approaches a step
function, Rh = 0 below, andRh = 1 above the criti-
cal thresholdpc. The pointpL(τ) exemplified on the plot
serves as an estimator forpc: by measuring a sequence of
such values, for larger and larger sizesL1, L2 . . . LN , one
can extrapolate this sequence forL → ∞. Reference [1]
presents the figurepc = 0.59274621(13), the most accurate
available today, obtained from more than7 × 109 Monte
Carlo samples. Starting from an empty lattice, filled site
by site at random, each sample provides a single number
to the statistics, namely the precise numbern of occupied
sites for which the proper wrap (horizontal forRh) appears
for the first time. This computational strategy of filling up
the lattice site by site and storing data onto bell-shapedn-
histograms is equivalent to that of [2], and similar to early
works [3]. However, the multi-step strategy introduced in
[1] involves many other components (see [4]). The authors
of [1] assume apL(τ)−pc ∼ L−(2+1/ν) dependence, where
ν = 4/3 is the correlation length critical exponent. As
2 + 1/ν = 2.75 is a sufficiently high value, data up to only
L = 128 were needed. Also, the authors adopt the value
τ∗ = 0.521058290, corresponding to that particular wrap-
ping geometry and exactly known [5] as the limiting value
for Rh at pc, called Pinson’s number in [6]. Outside this
value or within other geometries, the not-so-high exponent
1 + 1/ν or even the smaller1/ν were observed [7].
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Figure 1. Spanning probability function forL = 18 (solid line),
38 and74 (dotted lines). By fixing some valueτ , one can find a
sequence of valuespL(τ) for increasing lattice sizes, approaching
the critical thresholdpc.

Here, we propose the mathematical form

pL(τ) = pc+
1

L1/ν

[
A0(τ)+

A1(τ)
L

+
A2(τ)

L2
+. . .

AM (τ)
LM

]
,

(1)
for estimatorspL obtained from quantities likeRh, where
the cutoffM is conveniently chosen according to the nu-
merical accuracy available.

We apply this formula to theL × L square lattice, with
a set of different increasing lengths such that the numbers
of sites grow by a factor of

√
2. Table I shows an example

for τ = 0.9, for which the traditional Chi-square fitting [8]
givespc = 0.59274675(88), in agreement with [1] although
within a larger error bar. We adoptedM = 4 in equation
(1), compatible with our smallest lattice sizeL = 18, since
18−4.75 = 1 × 10−6 still falls inside our numerical accu-
racy, whereas the next term18−5.75 = 6 × 10−8 would be
outside. The quality of this fit can be appreciated by the
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so-called goodness-of-fitQ [8], a quantity between 0 and 1.
The fit is considered believable [8] for values ofQ > 0.1. In
our example, we getQ = 0.857 for table I. All our data to
be discussed hereafter, for many other values ofτ between
0.5 and0.99, present the same degree of accuracy, giving
credit to our proposal, equation (1). In spite of these accu-
rate results, one cannot rule out some possible higher terms
deviating from (1), for example that proposed in [9].

L pL(τ = 0.9) samples
18 0.55982808(075) 109

22 0.56196704(122) 109

26 0.56403393(062) 109

30 0.56590384(082) 109

38 0.56902009(083) 109

46 0.57146271(087) 109

52 0.57296244(060) 109

62 0.57500000(066) 109

74 0.57689631(175) 108

86 0.57838778(129) 108

102 0.57993924(157) 108

118 0.58115110(109) 108

142 0.58254835(133) 5× 107

166 0.58360542(109) 5× 107

202 0.58479326(182) 3× 107

234 0.58558821(076) 3× 107

282 0.58649210(124) 107

334 0.58721227(157) 107

402 0.58791296(095) 107

478 0.58848866(104) 107

566 0.58898678(159) 6× 106

674 0.58944374(126) 6× 106

802 0.58984063(146) 4× 106

958 0.59019986(149) 4× 106

1126 0.59048760(168) 4× 106

1354 0.59077660(121) 4× 106

1594 0.59100202(082) 4× 106

Table I. Values forpL obtained for fixedτ = 0.9, as an
example. A Chi-square fitting of equation (1) givespc =
0.59274675(88), A0 = −0.44204(11), A1 = 3.275(14),
etc.

II Measured quantity

First, let’s explain thespanningprobability we adopted
within the torus, instead of thewrappingprobability [1]. We
consider two parallel lines distantL/2 from each other, on
theL×L square lattice. For each sample — again obtained
by filling up the initially empty lattice, site by site at ran-
dom — we count the precise numbern of occupied sites
for which these lines become connected for the first time,
no matter which occurs around the other direction. This
approach has a big advantage over thewrappingprobabil-
ity around the whole torus: From the same sample we can

countn justL times instead of only once! The parallel lines
can be numbered (i, i + L/2) for i = 1, 2, . . . L/2 along the
horizontal direction, with the same procedure repeated ver-
tically. Thus, the statistics is multiplied by a factor ofL. In
table I, for instance, the sampling counting109 for L = 18
corresponds to ann-histogram with18 × 109 accumulated
units (the total area below the bell-shaped curve). In the
same table, forL = 1594, the much smaller sampling count-
ing 4×106 corresponds indeed to almost the same statistics,
i.e. 6 × 109 accumulated units below the curve. This trick
allows us to test a wide range of lattice sizes, and verify the
validity of our proposal (1). The further computational time
one needs in order to implement this trick is negligible: we
simply keep in memory the top and bottom (left and right)
extreme lines for each already formed cluster of neighbour-
ing occupied sites. Thus, for each new included site, only
the last updated cluster must be verified.

Thespanningprobability function is obtained by super-
imposing a lot of step functions, one for each countedn,
and dividing the result by the total number (L×sampling
counts). An average is then performed, weighted by
C(L2, n)pn(1− p)L2−n whereC is a combinatorial factor,
yielding thep-continuous curves shown in figure 1.

The 3-digits error bars shown in table I were obtained
by dividing the whole set of data into, say,S = 10 sub-sets,
independently calculatingpL(τ) for each sub-set. The error
bars are the standard deviation of this distribution divided
by
√

S. This last division is based on the supposition that
the whole data is normally distributed. In order to verify the
validity of this approach, we repeated the same procedure
with S = 20. Indeed, the error bars are approximately the
same, independent ofS. For safety, we adopted always the
largest between both error bars so obtained. For intermedi-
ate lattice sizes (fromL = 74 up to 402), we usedS = 10
and 5, instead of 20 and 10.

We also simulated largerL × L lattices forτ = 0.5,
up to L = 24000, with free instead of periodic boundary
conditions, within a poorer statistics. The results are also
compatible with equation (1).

III Data Analysis

By fitting data with equation (1), we have a set
of M + 2 parameters to be determined, namely
pc, A0(τ), A1(τ), . . . AM (τ). The error bars for these quan-
tities come from the Chi-square fitting procedure [8], as a
consequence of the primary error bars directly measured for
the crude data (that of table I, for instance). Thus, the accu-
racy obtained for each parameter, in particular the interest-
ing onepc, involves a series of accumulated errors. Instead
of taking care ofpc, let’s turn our attention toA0(τ) for a
while. Fig. 2 shows a plot of this value as a function ofτ .

One can see thatA0 vanishes for the particular value
τ∗ = 0.984786(11). For the geometry we adopted, this is
the equivalent of the above quoted Pinson’s number [5, 6],
i.e. the universal value of our spanning probability atpc in
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Figure 2. Expansion parameterA0, equation (1), as a function
of τ . The error bars obtained from the Chi-square fitting appear
only within the smaller scale of the inset, near the special point
τ∗ = 0.984786(11) whereA0 vanishes.

the thermodynamic limit. Recently, Cardy [10] tried to cal-
culate this value for an annulus, i.e. anL1×L2 square lattice
where periodic boundary condition is adopted only along
the direction ofL1. The quoted universal value corresponds
to the critical spanning probability between the two free-
boundary lines, and depends only on the ratior = L2/L1.
Unfortunately, within his theoretical approach, Cardy was
forced to leave out spanning configurations which also wrap
along the direction ofL1, the periodic boundary.

Our geometry with the completeL × L torus divided
in two halves by the linesi and i + L/2 corresponds to
the r = 1/2 Cardy’s geometry counted twice, in paral-
lel. Thus, ourτ∗ can be related to Cardy’s numberC by
1 − τ∗ = (1 − C)2, i.e. C = 0.876657(45). Compared
with Cardy’s exact valueC − Cwrap = 0.7569977963 [10]
we found the contributionCwrap = 0.119659(45) for the
spanning configurations which also wrap around the peri-
odic direction.

The critical occupation probabilitypc can be obtained
from our expansion (1) by fixing any value forτ . The best
choice isτ = τ∗, for which the leading finite-size term in
(1) becomesL−1−1/ν instead ofL−1/ν . In this case, we
getpc = 0.59274621(33), where the error bar is estimated
by the same above-quoted procedure of dividing the whole
data set intoS = 10 sub-sets. For some unknown particu-
lar reason, thewrappingprobabilities adopted in [1] works
better yet, the leading finite-size term in (1) beingL−2−1/ν .
In [1] a numerical evidence for that behaviour is given, by
plotting τL(pc) − τ∗ againstL (assuming some previously
determined value forpc) and verifying a power-law depen-
dence with an exponent very close to−2. Indeed, for our
spanningprobability, the same plot gives an exponent very
close to−1.

IV Conclusion

We propose the finite-size expansion (1) for spanning prob-
abilities in percolation, wherepL(τ) is defined in Fig. 1.

This approach can be used to calculate various critical
quantities. We applied it to a particular geometry within the
site percolation problem on aL × L square lattice, con-
sidered as a torus. Taking two parallel lines distantL/2
from each other, our spanning probability counts configu-
rations for which these two lines are connected. The uni-
versal valueτ∗ = 0.984786(11) and the critical occupation
pc = 0.59274621(33) are obtained.

As a by-product, we propose the universal valueC =
0.876657(45) for the critical spanning probability within a
L × L/2 annulus, i.e. a square lattice with periodic (free)
boundaries along the direction ofL (L/2). This probabil-
ity corresponds to all configurations for which the frontiers
separated byL/2 are connected. Cardy [10] determined the
exact figureC −Cwrap = 0.7569977963, whereCwrap cor-
responds to spanning configurations which also wrap along
the direction ofL, discounted in his approach.

The whole computer time for obtaining these data was
20 thousand hours, on a dozen computers, typically pow-
ered by an Athlon 1GHz processor.
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