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The global multiplicative properties of the Laplacian on j� forms and related zeta functions are ana-
lyzed. The explicit form of the multiplicative and conformal anomalies in closed oriented hyperbolic
manifolds � H

d are derived.

I Introduction

The multiplicative properties of (pseudo-) di�erential

operators as well as properties of their determinants

have been studied actively during recent years in the

mathematical and physical literature. The anomaly

associated with product of regularized determinants

of operators can be expressed by means of the non-

commutative residue, the Wodzicki residue [1] (see also

Refs. [2, 3]). The Wodzicki residue, which is the unique

extension of the Dixmier trace to the wider class of

(pseudo-) di�erential operators [4, 5], has been consid-

ered within the non-commutative geometrical approach

to the standard model of the electroweak interactions

[6, 7, 8] and the Yang-Mills action functional. The prod-

uct of two (or more) di�erential operators of Laplace

type can arise in higher derivative �eld theories (for

example, in higher derivative quantum gravity).

Some recent papers along these lines can be found in

Refs. [9,10,11,12]. The zeta function associated to the

product of Laplace type operators acting in irreducible

rank 1 symmetric spaces and the explicit form of the

multiplicative anomaly have been derived in [11].

Under such circumstances we should note that the

conformal deformation of a metric and the correspond-

ing conformal anomaly can also play an important

role in quantum theories with higher derivatives. It is

well known that evaluation of the conformal anomaly

is actually possible only for even dimensional spaces

and up to now its computation is extremely involved.

The general structure of such an anomaly in curved d-

dimensional spaces (d even) has been studied in [13].

We brie
y mention here analysis related to this phe-

nomenon for constant curvature spaces. The conformal

anomaly calculation for the d� dimensional sphere can

be found, for example, in Ref. [14]. The explicit com-

putation of the anomaly (of the stress-energy tensor)

in irreducible rank 1 symmetric spaces has been carried

out in [15, 16, 17] using the zeta-function regularization

and the Selberg trace formula.

The purpose of the present paper is to investigate

the spectral zeta functions associated with a product of

Laplacians on j� forms and to calculate in an explicit

form the multiplicative and conformal anomalies for d�
dimensional closed oriented hyperbolic manifolds �=H d .

II The spectral zeta function

and the trace formula

We shall be working with irreducible rank 1 symmet-

ric spaces X = G=K of non-compact type. Thus G

will be a connected non-compact simple split rank 1

Lie group with �nite center and K � G will be a

maximal compact subgroup. Up to local isomorphism

we choose X = SO1(d; 1)=SO(d). Thus the isotropy

group K of the base point (1; 0; :::0) is SO(d); X can

be identi�ed with hyperbolic d� space H d , d = dimX .

It is possible to view H d , for example, as one sheet

of the hyperboloid of two sheets in Rd+1 given by

q(x) = �x20 + x21 + ::: + x2d = �1; x0 > 0 with the

metric induced by the quadratic form q(x). Let � � G

be a discrete, co-compact, torsion free subgroup, and

let �(
) = trace(�(
)) be the character of a �nite-

dimensional unitary representation � of � for 
 2 �.

Let L(j) � 4(j)
� be the Laplacian on j� forms acting

on the vector bundle V (X�) overX� = �nG=K induced
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by �. Note that the non-twisted j� forms on X� are

obtained by taking � = 1. One can de�ne the heat

kernel of the elliptic operator L(j) = L(j) + b(j) by

Tr
�
e�tL

(j)
�
=
�1
2�i

Tr

Z
C0

e�zt(z �L(j))�1dz, (2:1)

where C0 is an arc in the complex plane C ; the b(j) are

endomorphisms of the vector bundle V (X�). By stan-

dard results in operator theory there exist "; Æ > 0 such

that for 0 < t < Æ the heat kernel expansion holds

c

!
(j)
� (t; b(j)) =

1X
`=0

n`(�)e
�(�

(j)

`
+b(j))t =

X
0�`�`0

a`(L(j))t�` +O(t"), (2:2)

d

where f�(j)` g1`=0 is the set of eigenvalues of operator L
(j)

and n`(�) denote the multiplicity of �
(j)
` . Eventually we

would like also to take b(j) = 0, but for now we con-

sider only non-zero modes: b(j)+�
(j)
` > 0, 8` : �(j)0 = 0,

b(j) > 0.

Let a0; n0 denote the Lie algebras of A;N in an Iwa-
sawa decomposition G = KAN . Since the rank of G
is 1, dim a0 = 1 by de�nition, say a0 = RH0 for a
suitable basis vector H0. One can normalize the choice
of H0 by �(H0) = 1, where � : a0 ! R is the pos-
itive root which de�nes n0; for more detail see Ref.
[18]. Since � is torsion free, each 
 2 � � f1g can

be represented uniquely as some power of a primitive
element Æ : 
 = Æj(
) where j(
) � 1 is an integer
and Æ cannot be written as 
j1 for 
1 2 �, j > 1 an
integer. Taking 
 2 �, 
 6= 1, one can �nd t
 > 0

and m
 2 M
def
= fm
 2 Kjm
a = am
 ;8a 2 Ag

such that 
 is G conjugate to m
 exp(t
H0), namely
for some g 2 G; g
g�1 = m
 exp(t
H0). Besides let
��(m) = trace(�(m)) be the character of �, for � a
�nite-dimensional representation of M .

II.1 Fried's trace formula [19]

For 0 � j � d� 1,

c

Tr
�
e�tL

(j)
�
= I(j)(t; b(j)) + I(j�1)(t; b(j�1)) +H(j)(t; b(j)) +H(j�1)(t; b(j�1)), (2:3)

where

I(j)(t; b(j))
def
=

�(1)Vol(�nG)
4�

Z
R

��j (r)e
�t[r2+b(j)+(�0�j)

2]dr, (2:4)

H(j)(t; b(j))
def
=

1p
4�t

X

2C��f1g

�(
)t
j(
)
�1C(
)��j (m
)

� exp

(
�
"
b(j)t+ (�0 � j)2t+

t2

4t

#)
, (2:5)

�0 = (d� 1)=2, and the function C(
), 
 2 �, de�ned on �� f1g by

C(
)
def
= e��0t
 jdetn0

�
Ad(m
e

t
H0)�1 � 1
� j�1. (2:6)

For Ad denoting the adjoint representation of G on
its complexi�ed Lie algebra, one can compute t
 as fol-
lows [20]

et
 = maxfjcjjc = an eigenvalue of Ad(
)g. (2:7)

Here C� is a complete set of representatives in � of its
conjugacy classes; Haar measure on G is suitably nor-
malized. In our case K ' SO(d);M ' SO(d � 1). For
j = 0 (i.e. for smooth functions or smooth vector bun-
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dle sections) the measure �0(r) corresponds to the triv-
ial representation of M . For j � 1 there is a measure
��(r) corresponding to a general irreducible represen-
tation � of M . Let �j is the standard representation of
M = SO(d � 1) on �jC (d�1) . If d = 2n is even then
�j (0 � j � d � 1) is always irreducible; if d = 2n+ 1
the every �j is irreducible except for j = (d�1)=2 = n,
in which case �n is the direct sum of two (1=2)� spin

representations �� : �n = �+ � ��. For j = n the
representation �n of K = SO(2n) on �nC 2n is not irre-
ducible, �n = �+n � ��n is the direct sum of (1=2)� spin
representations.

II.2 The Harish-Chandra Plancherel
measure

Let the group G = SO1(2n; 1). Then

c

��j (r) =

�
2n� 1
j

�
�r

24n�4�(n)2

j+1Y
i=2

�
r2 + (n+

3

2
� i)2

�

�
nY

i=j+2

�
r2 + (n+

1

2
� i)2

�
tanh(�r) for 0 � j � n� 1, (2:8)

��j (r) =

�
2n� 1
j

�
�r

24n�4�(n)2

2n�jY
i=2

�
r2 + (n+

3

2
� i)2

�

�
nY

i=2n�j+1

�
r2 + (n+

1

2
� i)2

�
tanh(�r) for n � j � 2n� 1, (2:9)

and ��j (r) = ��2n�j�1 (r).
For the group G = SO1(2n+ 1; 1) one has

��j (r) =

�
2n
j

�
�

24n�2�(n+ 1
2 )

2

j+1Y
i=1

�
r2 + (n+ 1� i)2

�

�
nY

i=j+2

�
r2 + (n� i)2

�
for 0 � j < n, (2:10)

��j (r) =

�
2n
j

�
�

24n�2�(n+ 1
2 )

2

2n�j+1Y
i=1

�
r2 + (n+ 1� i)2

�

�
nY

i=2n�j+2

�
r2 + (n� i)2

�
for n+ 1 � j � 2n� 1. (2:11)

We should note that the reason for the pair of terms fI(j); I(j�1)g, fH(j); H(j�1)g in the trace formula Eq.
(2.3) is that �j satis�es �j jM = �j � �j�1.

Finally using Eqs. (2.8)-(2.11) we have

��j (r) = C(j)(d)P (r; d) �
�

tanh(�r) for d = 2n
1 for d = 2n+ 1

= C(j)(d)�

8><
>:
Pd=2�1

`=0 a
(j)
2` (d)r

2`+1 tanh(�r) for d = 2n

P(d�1)=2
`=0 a

(j)
2` (d)r

2` for d = 2n+ 1

, (2:12)

C(j)(d) =

�
d� 1
j

�
�

22d�4�(d=2)2
, (2:13)
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where the P (r; d) are even polynomials (with suitable

coeÆcients a
(j)
2` (d)) of degree d�1 forG 6= SO(2n+1; 1),

and of degree d = 2n+1 for G = SO1(2n+1; 1) [21, 18].

II.3 Case of the trivial representation

For j = 0 we take I(�1) = H(�1) = 0. Since �0
is the trivial representation ��0(m
) = 1. In this case
Fried's formula Eq. (2.3) reduces exactly to the trace
formula for j = 0 [20, 22]:

c

!
(0)
� (t; b(0)) =

�(1)vol(�nG)
4�

Z
R

��0(r)e
�(r2+b(0)+�20)tdr +H(0)(t; b(0)), (2:14)

where �0 is associated with the positive restricted (real) roots of G (with multiplicity) with respect to a nilpotent
factor N of G in an Iwasawa decomposition G = KAN . The function H(0)(t; b(0)) has the form

H(0)(t; b(0)) =
1p
4�t

X

2C��f1g

�(
)t
j(
)
�1C(
)e�[b

(0)t+�20t+t
2

=(4t)]. (2:15)

III Case of zero modes.

It can be shown [23] that the Mellin transform of H(0)(t; 0) (b(0) = 0, i.e. the zero modes case)

H
(0)(s)

def
=

Z 1

0

H(0)(t; 0)ts�1dt, (2:16)

is a holomorphic function on the domain Res < 0. Then using the result of Refs. [21, 18] one can obtain on Res < 0,

H
(0)(s) =

X

2C��f1g

�(
)t
j(
)
�1C(
)

Z 1

0

e�(�
2
0t+t

2

=(4t))p

4�t
ts�1dt

=
(2�0)

1
2�sp
�

X

2C��f1g

�(
)t
j(
)
�1C(
)t

s+ 1
2


 K 1
2�s

(t
�0), (2:17)

where K�(s) is the modi�ed Bessel function, and �nally

H(0)(s) =
sin(�s)

�
�(s)

Z 1

0

 �(t+ 2�0;�)(2�0t+ t2)�sdt. (2:18)

d

Here  �(s;�) � d(logZ�(s;�))=ds, and Z�(s;�) is a

meromorphic suitably normalized Selberg zeta function

[24-29,22,30,21].

III The multiplicative anomaly

In this section the product of the operators on j� formsNL(j)
p ;L(j)

p = L(j) + b
(j)
p , p = 1; 2 will be considered.

We are interested in multiplicative properties of deter-

minants, the multiplicative anomaly [2, 3]. The multi-

plicative anomaly F (L(j)
1 ;L(j)

2 ) reads

c

F (L(j)
1 ;L(j)

2 ) = det� [
O
p

L(j)
p ][det�(L(j)

1 )det�(L(j)
2 )]�1, (3:1)
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where we assume a zeta-regularization of determinants,
i.e.

det�(L(j)
p )

def
= exp

�
� @

@s
�(sjL(j)

p )js=0

�
. (3:2)

Generally speaking, if the anomaly related to el-
liptic operators is nonvanishing then the relation

logdet(
NL(j)

p ) = Trlog(
NL(j)

p ) does not hold.

II.1 The zeta function of the product of
Laplacians

The spectral zeta function associated with the prod-

uct
NL(j)

p has the form

�(sj
O
p

L(j)
p ) =

X
`�0

n`

2Y
p

(�
(j)
` + b(j)p )�s. (3:3)

We shall always assume that b
(j)
1 6= b

(j)
2 , say b

(j)
1 > b

(j)
2 .

If b
(j)
1 = b

(j)
2 then �(sjNL(j)

p ) = �(2sjL(j)) is a well-

known function. For b
(j)
1 ; b

(j)
2 2 R, set b+

def
= (b

(j)
1 +

b
(j)
2 )=2; b�

def
= (b

(j)
1 � b

(j)
2 )=2, thus b

(j)
1 = b+ + b� and

b
(j)
2 = b+ � b�.
The spectral zeta function can be written as follows

[11]:

c

�(sj
O
p

L(j)
p ) = (2b�)

1
2�s

p
�

�(s)

Z 1

0

!
(j)
� (t; b+)Is� 1

2
(b�t)dt, (3:4)

d

where the integral converges absolutely for Res > d=4.

This formula is a main starting point to study the

zeta function. It expresses �(sjNL(j)
p ) in terms of

the Bessel function Is� 1
2
(b�t) and !

(j)
� (t; b+), where

the trace formula applies to !
(j)
� (t; b+). Let Bp(j) =

(�0(p)� j)2 + b
(j)
p and A

def
= �(1)vol(�nG)C(j)(d)=4.

For Res > d=4 the explicit meromorphic continua-

tion holds:

c

�(sj
O
p

L(j)
p ) = A

d
2�1X
`=0

h
a
(j)
2` (d)

�
F (j)
` (s)�E

(j)
` (s)

�

+a
(j�1)
2` (d)

�
F (j�1)
` (s)�E

(j�1)
` (s)

�i
+ I(j)(s) + I(j�1)(s), (3:5)

where

E
(j)
` (s)

def
= 4

Z 1

0

drr2j+1

1 + e2�r

Y
p

(r2 +Bp(j))
�s, (3:6)

which is an entire function of s,

F (j)
` (s)

def
= (B1(j)B2(j))

�s
`!
�

2B1(j)B2(j)
B1(j)+B2(j)

�`+1

(2s� 1)(2s� 2):::(2s� (`+ 1))

�F
 
`+ 1

2
;
`+ 2

2
; s+

1

2
;

�
B1(j)�B2(j)

B1(j) +B2(j)

�2
!
, (3:7)

I(j)(s) def= (2b�)
1
2�s

p
�

�(s)

Z 1

0

H(j)(t; b+)Is� 1
2
(b�t)t

s� 1
2 dt. (3:8)

and F (�; �; 
; z) is the hypergeometric function.
The goal now is to compute the zeta function and its derivative at s = 0. Thus we have
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F (j)
` (0) =

(�1)`+1

`+ 1

�
2B1(j)

B1(j) +B2(j)

�`+1

�F
 
`+ 1

2
;
`+ 2

2
;
1

2
;

�
B1(j)�B2(j)

B1(j) +B2(j)

�2
!
=

(�1)`+1

2(`+ 1)

2X
p

Bp(j)
`+1, (3:9)

E
(j)
` (0) = 4

Z 1

0

drr2`+1

1 + e2�r
=

(�1)`
`+ 1

(1� 2�2`�1)B2`+2, (3:10)

I(j)(0) = 0, (3:11)

where B2n are the Bernoulli numbers.
A preliminary form of the zeta function �(sjNp L(j)

p ) at s = 0 is

�(0j
O
p

L(j)
p ) = A

d
2�1X
`=0

(�1)`+1

2(`+ 1)

"X
p

�
a
(j)
2` (d)Bp(j)

`+1

+a
(j�1)
2` (d)Bp(j � 1)`+1

�
+ (2� 2�2`)B2`+2

�
a
(j)
2` (d) + a

(j�1)
2` (d)

�i
. (3:12)

The derivative of the zeta function at s = 0 has the form:

� 0(0j
O
p

L(j)
p ) = A

d
2�1X
`=0

"
4X
m

�
a
(j)
2` (d)E(j)m + a

(j�1)
2` (d)E(j�1)m

�#
, (3:13)

where

E(j)1 = `!
�
B1(j)

`+1 +B2(j)
`+1
�X̀
k=0

(�1)k+1

k!(`� k)!(j + 1� k)!
, (3:14)

E(j)2 = B2(j)
`+1

�
B1(j)�B2(j)

2B1(j)

�
(�1)`
(`+ 1)!

1X
k=1

(`+ k + 1)!

(k + 1)!

��n
�
B1(j)�B2(j)

B1(j)

�k
, (3:15)

E(j)3 = log(B1(j)B2(j))
(�1)`
2(`+ 1)

(B1(j)
`+1 +B2(j)

`+1)

�4
Z 1

0

r2`+1log
�
r2+B1(j)
r2+B2(j)

�
dr

1 + e2�r
, (3:16)

E(j)4 � d

ds
I(j)(s)js=0 =

Z 1

0

h
H(j)(t; b

(j)
1 ) +H(j)(t; b

(j)
2 )
i
t�1dt, (3:17)

and �n
def
=
Pn

k=1 k
�1.

III.2 The one-loop e�ective action

After a standard integration, the contribution to the Euclidean one-loop e�ective action can be written as follows:

W(1) =
1

2
logdet(

O
p

L(j)
p ��2) = �1

2

"
� 0(0j

O
p

L(j)
p ) + log�2�(0j

O
p

L(j)
p )

#
, (3:18)

where �2 is a normalization parameter. As a result we have
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W
(1) = �1

2
A

d
2�1X
`=0

"
a
(j)
2` (d)

 
4X
m

E(j)m + log�2(F (j)
` (0)�E

(j)
` (0))

!

+a
(j�1)
2` (d)

 
4X
m

E(j�1)m + log�2(F (j�1)
` (0)�E

(j�1)
` (0))

!#
, (3:19)

where F (j)
` (0); E

(j)
` (0) and E(j)m are given by the formulae (3.9), (3.10) and (3.14)-(3.17) respectively.

d

III.3 The residue formula and the multi-
plicative anomaly

The value of F (L1;L2) can be expressed by means
of the non-commutative Wodzicki residue [1]. Let
Op; p = 1; 2; be invertible elliptic (pseudo-) di�eren-
tial operators of real non-zero orders � and � such that

� + � 6= 0. Even if the zeta functions for operators
O1;O2 and O1

NO2 are well de�ned and if their prin-
cipal symbols satisfy the Agmon-Nirenberg condition
(with appropriate spectra cuts) one has in general that
F (O1;O2) 6= 1. For such invertible elliptic operators
the formula for the anomaly of commuting operators
holds:

c

A(O1;O2) = A(O2;O1) = log(F (O1;O2)) =
res
h
(log(O�

1

NO��2 ))2
i

2��(�+ �)
. (3:20)

More general formulae have been derived in Refs. [2, 3]. Furthermore the anomaly can be iterated consistently.

Indeed, using Eq. (3.20) we have

A(O1;O2) = � 0(0jO1O2)� � 0(0jO1)� � 0(0jO2),

A(O1;O2;O3) = � 0(0j
3O
j

Oj)�
3X
j

� 0(0jOj)�A(O1;O2),

: : : : : : : : : : :

A(O1;O2; :::;On) = � 0(0j
nO
j

Oj)�
nX
j

� 0(0jOj)�A(O1;O2)

�A(O1;O2;O3):::�A(O1;O2; :::;On�1). (3:21)

III.4 The explicit formula for the multiplicative anomaly

In particular, for n = 2 and Op � L(j)
p the anomaly is given by the following formula

A(L(j)
1 ;L(j)

2 ) = A

d
2�1X
`=0

h


(j)
` +


(j�1)
`

i
, (3:22)

where



(j)
` =

a
(j)
2` (d)(�1)`

2

�
`

2
(B1(j)�B2(j))

2B2(j)
`�1

+
`(`� 1)

4
(B1(j)�B2(j))

3B2(j)
`�2 +

X̀
p=3

`!

(p+ 1)p!(`� p)!

�
 
1

p
+

1

p� 1
+

p�2X
q=1

1

p� q � 1

!
(B1(j)�B2(j))

p+1B2(j)
`�p

#
. (3:23)

We note that for the four-dimensional space with G = SO1(4; 1), one derives from Eq. (3.22) the result
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A(L(j)
1 ;L(j)

2 ) = �A(j)
G

�
b
(j)
1 � b

(j)
1

�2
�A

(j�1)
G

�
b
(j�1)
1 � b

(j�1)
1

�2
, (3:24)

which also follows from Wodzicki's formula (3.20), where we should set A
(j)
G = Aa

(j)
21 (4)=4.

d

IV The conformal anomaly and

associated operator prod-

ucts.

In this section we start with a conformal deformation

of a metric and the conformal anomaly of the energy

stress tensor. It is well known that (pseudo-) Rieman-

nian metrics g��(x) and ~g��(x) on a manifold X are

(pointwise) conformal if ~g��(x) = exp(2f)g��(x); f 2
C1(R). For constant conformal deformations the vari-

ation of the connected vacuum functional (the e�ective

action) can be expressed in terms of the generalized

zeta function related to an elliptic self-adjoint operator

O [31]:
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< T��(x) > Æg��(x)dx, (4:1)

where < T��(x) > means that all connected vacuum graphs of the stress-energy tensor T��(x) are to be included.
Therefore Eq. (4.1) leads to

< T�
� (x) >= (Vol(X�))

�1�(0jO). (4:2)

The formulae (3.5), (3.9), (3.10) and (3.11) give an explicit result for the conformal anomaly, namely
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where d is even. For B1;2(j) = B(j); B1;2(j � 1) = B(j � 1) the anomaly (4.3) has the form
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Note that for a minimally coupled scalar �eld of mass m, B(0) = �20+m
2. The simplest case is, for example, G =

SO1(2; 1) ' SL(2;R); besides X = H 2 is a two-dimensional real hyperbolic space. Then we have �20 = 1=4; a
(0)
20 = 1,

and �nally

< T �
� (x 2 �nH 2 ) >(L(0)

N
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�
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1

3

�
. (4:5)

For real d-dimensional hyperbolic space the scalar curvature is R(x) = �d(d�1). In the case of the conformally
invariant scalar �eld we have B(0) = �2o +R(x)(d � 2)=[4(d� 1)]. As a consequence, B(0) = 1=4 and

< T�
� (x 2 �nH d) >(L(0)
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(4�)d=2�(d=2)

d
2�1X
`=0

(�1)`+1

`+ 1
a
(0)
2` (d)

��2�2`�2 + (1� 2�2`�1)B2`+2

	
. (4:6)



Brazilian Journal of Physics, vol. 30, no. 3, September, 2000 589

Thus in conformally invariant scalar theory the
anomaly of the stress tensor coincides with one associ-
ated with operator product. This statement holds not
only for hyperbolic spaces considered above but for all
constant curvature manifolds as well [16].

V Concluding remarks

In this paper the one-loop contribution to the e�ective
action (3.19), the multiplicative anomaly (3.22) and the
conformal anomaly of the stress-energy momentum ten-
sor (4.4), related to the operator product, have been
evaluated explicitly. In addition we have considered

the product
N

p L(j)
p of Laplace operators L(j)

p acting
in closed real hyperbolic manifolds. Note that the mul-
tiplicative anomaly is equal to zero for d = 2 and for
the odd dimensional cases. It seems to us that the
explicit results for the anomalies are not only interest-
ing as mathematical results but are of physical interest.
We hope that proposed discussion will be interesting
in view of future applications to concrete problems in
quantum �eld theory.
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