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A model for the Universe is proposed where it is considered as a mixture of scalar and matter fields. The
particle production is due to an irreversible transfer of energy from the gravitational field to the matter field
and represented by a non-equilibrium pressure. This model can simulate three distinct periods of the Universe:
(a) an accelerated epoch where the energy density of the scalar field prevails over that of the matter field, (b) a
past decelerated period where the energy density of the matter field becomes larger than the scalar field energy
density, and (c) a present acceleration phase where the scalar field energy density overcomes the energy density
of the matter field.

1 Introduction

In order to take into account the irreversible processes dur-
ing the evolution of the Universe, cosmological models were
proposed where the Einstein field equations are combined
with the field equations of the thermodynamic theory of ir-
reversible processes. For a homogeneous and isotropic Uni-
verse, represented by the Robertson-Walker metric, there
exists only one term related to the irreversible processes,
namely the non-equilibrium pressure. In Eckart (or first-
order) thermodynamic theory the non-equilibrium pressure
is considered as a constitutive quantity which is propor-
tional to the Hubble parameter and whose proportionality
factor is the coefficient bulk viscosity (see e.g. the works [1-
3]), whereas in extended (second-order or causal) thermo-
dynamic theory the non-equilibrium pressure is supposed
to obey an evolution equation (see e.g. the works [4-12]).
These theories are known in the literature as viscous cosmo-
logical models.

According to cosmological observations one can distin-
guish three different periods of the Universe with respect to
its acceleration field, namely, (a) an early accelerated epoch,
(b) a past decelerated period, and (c) a present accelerated
phase.

The early acceleration of the Universe, which refers to
the inflationary period, can be modeled as a mixture of a
scalar field – the so-called inflaton – and a matter field while
the non-equilibrium pressure is identified with the particle
production due to an irreversible transfer of energy from the
gravitational field to the matter field [9, 13, 14]. The inflaton
is supposed to have a negative pressure which is the respon-
sible for the acceleration of the early Universe.

The present acceleration of the Universe is also due to
a scalar field with a negative pressure, since it has been
observed that the energy density of the present Universe
is not due to matter or radiation but to an extraordinary
non-baryonic matter and energy. Hence, the present Uni-

verse can be modeled as a mixture of a matter field with
a scalar field which is identified with the dark energy den-
sity. If the irreversible processes are taken into account the
non-equilibrium pressure, in this case, is the responsible for
the transfer of energy between the matter and gravitational
fields. There exist at least two candidates in the literature
for the dark energy density, namely the quintessence [15-
18,10] and the Chaplygin gas (see e.g. [11] and the refer-
ences therein).

The objective of this work is to present a model of the
Universe which could describe the distinct periods of the
Universe, beginning with an early accelerated epoch, pass-
ing through a decelerated period and leading back to an ac-
celerated phase. For that end we model a homogeneous and
isotropic Universe as a mixture of two constituents, namely:
(a) a scalar field that plays the role of the inflaton at the early
accelerated period and of the dark energy at the present ac-
celerated phase; (b) a matter field that represents the parti-
cles classically and which are created from the irreversible
transfer of energy from the gravitational field to the matter
field. Here we show, among other results, that this model
can simulate the three distinct periods: the early acceler-
ated, the past decelerated and the present accelerated peri-
ods. Units have been chosen so thatc = ~ = k = 1.

2 Field Equations

The equations of state that relate the pressures of the scalar
field pφ and of the matter fieldpm to their energy densities
ρφ andρm are given by

{
pφ = wφρφ, with −1 ≤ wφ ≤ 0,
pm = wmρm, with 0 ≤ wm ≤ 1.

(1)

While the equation of state of the matter is the well-known
barotropic equation withwm = 0; 1/3; 2/3 representing a
pressureless fluid, radiation and non-relativistic matter, re-
spectively, the motivation for the equation of state of the
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scalar field can be found e.g. in the works [19, 20] and in
the references therein.

If we consider the irreversible processes of particle pro-
duction in the Universe, the energy-momentum tensorTµν

is written as

Tµν = (ρ + p + $)UµUν − (p + $)gµν . (2)

In the above equationUµ (such thatUµUµ = 1) is the four-
velocity and$ denotes the non-equilibrium pressure which
is the quantity responsible for particle production [9, 13, 14]
during the evolution of the Universe. Moreover, the pressure
p and the energy densityρ of the mixture are given by

ρ = ρφ + ρm, p = pφ + pm. (3)

From the conservation law of the energy-momentum
tensorTµν

;ν = 0 it follows the balance equation for the
energy density of the mixture that – in a comoving frame
and by considering the Robertson-Walker metric – reads

ρ̇ + 3H(ρ + p + $) = 0. (4)

The quantityH = ȧ(t)/a(t) is the Hubble parameter while
a(t) denotes the cosmic scale factor and the over-dot refers
to a differentiation with respect to time.

The cosmic scale factor is connected with the energy
density of the mixture by the Friedmann equation

H2 +
k

a2
=

8πG

3
ρ, (5)

whereG is the gravitational constant andk assumes the val-
ues+1, 0,−1 for closed, flat and open Universes, respec-
tively.

We assume that the scalar field interacts only with it-
self and is minimally coupled to the gravitational field. In
this case, the balance equation for the energy density of the
scalar field decouple from the energy density of the mixture
(4) and can be written as

ρ̇φ + 3H(ρφ + pφ) = 0. (6)

Equation (6) is used to get from (4) the balance equation for
the energy density of the matter field

ρ̇m + 3H(ρm + pm) = −3H$. (7)

From the above equation it is possible to interpret the term
−3H$ as the energy density production rate of the matter
field (see e.g. [10, 11]).

The relationship between the cosmic scale factor and the
energy density of the scalar field can be obtained from the
integration of (6) by considering the equation of state given
in (1), yielding

ρφ = ρ0
φ

(a0

a

)3(wφ+1)

. (8)

In the above equationρ0
φ is the value of the energy density

of the scalar field att = 0 (by adjusting clocks) whilea0 is
the corresponding value of the cosmic scale factor.

Now we differentiate the Friedmann equation (5) with
respect to time and get the following equation for the time
evolution of the cosmic scale factor

Ḣ +
3
2
(wm + 1)

(
H2 +

k

a2

)
=

k

a2

+4πG

[
(wm − wφ)ρ0

φ

(a0

a

)3(wφ+1)

−$

]
. (9)

In order to find a solution of (9) for the cosmic scale fac-
tor one has to specify how the non-equilibrium pressure$
is connected witha(t). Here we assume that$ is a vari-
able within the framework of extended (causal or second-
order) thermodynamic theory and write the linearized evo-
lution equation for the non-equilibrium pressure as

$ + τ$̇ = −3ηH. (10)

For the derivation of this equation within the framework of
the Boltzmann equation one is referred to [21]. Moreover,
the coefficient of bulk viscosityη and the characteristic time
τ are assumed to be related to the energy density of the mix-
tureρ by

η = αρ, with τ = η/ρ, (11)

whereα is a constant (see e.g. [4, 9, 10, 11]).
For the solution of the system of differential equations

(9) and (10) we introduce the dimensionless quantities

H ≡ H

H0
, t ≡ tH0, a ≡ a

a0
, $ ≡ 8πG$

3H2
0

, (12)

and the dimensionless coefficients

α ≡ αH0, χ = H2
0a2

0, (13)

where the index zero denotes the value of the quantity at
t = 0 (by adjusting clocks).

Now the system of differential equations (9) and (10)
can be written in terms of the dimensionless quantities (12)
and (13) as

Ḣ +
3
2
(wm + 1)

(
H2 +

k

χa2

)
=

k

χa2

+
3
2

[
(wm − wφ)

1 + k/χ

1 + ρ0
m/ρ0

φ

(
1
a

)3(wφ+1)

−$

]
, (14)

$ + α$̇ = −3αH

(
H2 +

k

χa2

)
. (15)

With respect to the above dimensionless quantities the
energy densities of the scalar and matter fields, can be deter-
mined from (8) and (5) and read

ρφ

ρ0
φ

=
(

1
a

)3(wφ+1)

, (16)

ρm

ρ0
φ

=
1 + ρ0

m/ρ0
φ

1 + k/χ

(
H2 +

k

χa2

)
−

(
1
a

)3(wφ+1)

. (17)
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By specifying initial conditions fora(t), ȧ(t) and$(t)
at timet = 0 and values for the parameterswφ, wm, ρ0

m/ρ0
φ,

k, χ andα one can determine from the system of differen-
tial equations (14) and (15) the time evolution of the cosmic
scale factora(t) and of the non-equilibrium pressure$(t).
Oncea(t) is a known function of time the energy densities
are obtained from (16) and (17). The parameterswφ, wm,
ρ0

m/ρ0
φ, k, χ andα have the following interpretation: (a)wφ

andwm represent the ratios between the pressures and the
energy densities of the scalar field and matter fields, respec-
tively; (b) ρ0

m/ρ0
φ gives the ratio between the initial amount

of the energy density of the matter field with respect to that
of the scalar field; (c)k andχ are related with the space-
time geometry; and (d)α is connected with the relevancy
of the irreversible processes that correspond to the particle
production.

3 Results and Discussions

We have solved the system of differential equations (14) and
(15) numerically by considering the following initial condi-
tions: a(0) = 1 for the cosmic scale factor,H(0) = 1 for
the Hubble parameter and$(0) = 0 for the non-equilibrium
pressure. There still remains much freedom to find the so-
lution of the two systems of differential equations, since
they do depend on the parameterswφ, wm, ρ0

m/ρ0
φ, k, χ

andα. The Figs. 1 and 2 were obtained by choosing: (a)
wφ = −0.45 andwm = 1/3 for the ratios between the pres-
sures and the energy densities of the scalar field and of the
matter fields, respectively; (b)ρ0

m/ρ0
φ = 0, i.e., a vanishing

initial amount of the energy density of matter field since the
particles are created through the irreversible process of en-
ergy transfer from the gravitational field to the matter field;
(c) χ = 3 and k = 0, +1,−1 for the importance of the
space-time geometry and (d)α = 0.3 for the influence of
the irreversible processes in the particle production. We call
attention to the fact thatwm = 1/3 refers to a radiation
field and the conditionwφ = −0.45 satisfies the restriction
for the quintessencewφ < −1/3 (see e.g. [20]). Below we
shall comment how the change of these parameters affect
the solution of the system of differential equations.

We have plotted in Fig. 1 the time evolution of the ac-
celeration field whereas in Fig. 2 it is shown the time evo-
lution of the energy densities for the scalar and matter fields
in the cases of closed (straight line), flat (dashed line) and
open (dotted line) Universes. These figures follow from the
numerical solution of the system of differential equations
(14) and (15) for the cosmic scale factor and for the non-
equilibrium pressure and from the equations (16) and (17)
for the energy densities. One can infer from Figs. 1 and
2 that there exist three distinct periods: (a) an accelerated
epoch where the energy density of the scalar field prevails
over the matter field, (b) a past decelerated period where the
energy density of the matter field becomes more predomi-
nant than that of the scalar field, and (c) a present accelerated
phase where the scalar field energy density overcomes the
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Figure 1. Acceleration̈a vs time t for closed (straight line), flat
(dashed line) and open (dotted line) Universes.
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Figure 2. Energy densities of scalarρφ and matterρm fields vs
time t for closed (straight lines), flat (dashed lines) and open (dot-
ted lines) Universes.

energy density of the matter field. Hence, the transition from
the early accelerated period to the decelerated epoch is con-
nected with the transition from a scalar field to a matter field
dominated Universe, whereas the transition from the decel-
erated phase to the present accelerated epoch is connected
with the transition from a matter field to a scalar field dom-
inated Universe. In the first accelerated period the closed
Universe has the largest value for the acceleration field fol-
lowed by the flat and the open Universes. One can under-
stand this behavior by recognizing from the equation for the
non-equilibrium pressure (15) that$ has the largest nega-
tive value for the closed Universe followed by the flat and the
open Universes which implies that the acceleration, given by

ä

a
= −4πG

3
(ρ + 3p + 3$), (18)

becomes the largest also for the closed Universe. The decel-
eration is the largest for the closed Universe since more mat-
ter is created in a closed Universe (see Fig. 2). This behavior
is a direct consequence of the fact that the non-equilibrium
pressure is the responsible for the creation of the matter field
and it is larger in a closed Universe. The present accelera-
tion is attained first by the open Universe followed by the flat
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and closed Universes since the energy density of the scalar
field decays more slowly and lesser matter field is created in
the case of the open Universe than the two others.

We have the following remarks concerning the change
of the parameters: (a) by decreasing the values of the pa-
rameter for the scalar fieldwφ the energy density of the
scalar field decays more slowly (see equation (16)) so that
the initial accelerated period increases and the deceleration
period decreases; (b) when the value of the parameterwm

for the matter field is increased in the interval between radi-
ation and non-relativistic matter1/3 ≤ wm ≤ 2/3 the en-
ergy density of the matter field decreases (see equation (7))
so that there exists a smaller decelerated period; (c) when
wm is decreased in the interval between dust and radiation
0 ≤ wm ≤ 1/3 this behavior reverses; (d) by decreasing
the value of the parameterχ – which refers to the impor-
tance of the space-time geometry – the period of past decel-
eration becomes larger for the closed Universe and smaller
for the open Universe, since for the former case the non-
equilibrium pressure becomes more negative than that of the
latter (see equation (15)) ; (e) by increasing the value of the
parameterα – which is liable for the significance of irre-
versible processes – the period of past deceleration becomes
larger for the closed Universe and smaller for the open Uni-
verse, which confirms that the irreversible processes are con-
nected with the particle production and that the energy den-
sity of the matter field answer for the decelerated period.
From the above remarks we infer that the behavior of the
solutions found here for the acceleration field and for the
scalar and matter energy densities is also valid by changing
the values of the parameterswφ, wm, ρ0

m/ρ0
φ, k, χ andα

within specified ranges.
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