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We discuss some properties of noncommutative supersymmetric �eld theories which do not involve
gauge �elds. We concentrate on the renormalizability issue of these theories.

I Introduction

Although string theory is quite well understood in the
perturbative regime its formulation in a background in-
dependent way is almost unknown. There are many
reasons for that. String theory has too many degrees
of freedom. It is quite diÆcult to handle all of them
together. It also includes the gravitational �eld which
may have quantum 
uctuations. And there are many
sources for nonlocality which is also troublesome in any
theory. One way out of these diÆculties is to consider
limits of string theory which have some of the troubles
raised above but not all of them. This may allow us to
understand better some aspects of string theory with-
out the complications of the full theory.

One such a limit is the zero slope limit of the D3-
brane in the presence of a constant NS-NS �eld [1]. The
low energy e�ective theory is a quantum �eld theory de-
formed in terms of the Moyal product over space-time.
In noncommutative �eld theories the usual product of
�elds is replaced by the Moyal product of �elds giving
rise to nonlocal �eld theories [2]. Usually nonlocal �eld
theories turn out to be not well de�ned but the nonlo-
cality induced by the Moyal product is still tractable. It
was found that the main characteristic of noncommuta-
tive �eld theories is the mixing of ultraviolet (UV) and
infrared (IR) divergences due to its nonlocal structure
[3]. As a consequence it is not clear that the proper-
ties of the usual commutative �eld theories are kept,
without modi�cations, in their noncommutative coun-
terparts. This gave rise to an intensive research of non-
commutative �eld theories in Euclidean or Minkowski
space-time.

One of the manifestations of the UV/IR mixing in
the ��4 theory is as an infrared quadratic singularity in
the propagator at one loop [3]. Although renormaliz-
able up to two loops [4] it becomes non-renormalizable
at higher loop orders. Models involving a complex
scalar �eld may be non-renormalizable even at one loop
[5]. So, noncommutativity seems to destroy the main

characteristic of commutative �eld theories, i.e., their
renormalizability.

In what follows we will discuss the inclusion of su-
persymmetry in such models and how it restores the
renormalizability. We will concentrate on the Wess-
Zumino model in 3 + 1 dimensions [6] and the super-
symmetric non-linear sigma model in 2 + 1 dimensions
[7]. In this last case we will see that the noncommuta-
tivity also destroys the mechanism for dynamical mass
generation of the fermionic sector, and we will show
how supersymmetry helps to �x it.

II Noncommutative Spaces

In quantum mechanics we have the usual commutation
relations

�
q̂i; p̂j

�
= i~gij ; (1)�

q̂i; q̂j
�

=
�
p̂i; p̂j

�
= 0: (2)

It is natural to consider noncommutative coordinates
with commutation relations

�
q̂i; q̂j

�
= i�ij ; (3)

where �ij is a constant of dimension L2 which de�nes
a noncommutativity scale. This breaks rotational (or
Lorentz) symmetry but in the limit � ! 0 the symmetry
is recovered. This is an example of a noncommutative
space. It can be extended to space-time but we will
consider noncommutativity only in the spatial coordi-
nates since otherwise there are problems with unitarity
[8].

We can understand heuristically how the UV and
IR physics gets mixed. From Eq.(1) it follows that
�q̂i�p̂j � igij . In a similar way, from Eq.(3) it fol-
lows that �q̂i�q̂j � i�ij so we expect that �q̂ � ��p̂.
This means that high energy modes have drastic e�ects
at large distances (or small energy processes). As we
shall see, in quantum �eld theory this mixing manifests
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itself already at one loop level in the propagator of the
�elds.

Fields de�ned on such spaces are operator valued
objects. It turns out to be more convenient to use
�elds which are not operator valued objects but just
functions. This can be achieved through the use of the
Weyl-Moyal correspondence [2]

�̂(q̂)! �(x): (4)

We associate to the operator valued �eld �̂(q̂) a clas-
sical function �(x) through its Fourier transform ~�(p)
as

�̂(q̂) =

Z
dp eipq̂ ~�(p): (5)

The operator valued �eld �̂ satis�es

c

�̂1(q̂)�̂2(q̂) =

Z
dp1 dp2 e

i(p1+p2)q̂�
1

2
p�
1
p�
2
����1(p1)�2(p2); (6)

hence
�̂1(q̂)�̂2(q̂)$ (�1 ? �2) (x); (7)

where
(�1 ? �2) (x) �

h
ei

1

2
��� @

@x�
@
@y� �1(x)�2(y)

i
y=x

; (8)

is the Moyal (or star) product. Then we can work on a commutative space in which the usual product of �eld
is replaced by the Moyal product. Notice that the derivatives in the de�nition Eq.(8) makes the Moyal product
non-local. Also, the Moyal commutator of the commutative coordinates x� gives

[x�; x� ]MB = x� ? x� � x� ? x� = i��� : (9)

It can be easily veri�ed the following properties of the Moyal product:

a) eikx ? eiqy = ei(k+q)xe�ik^q ; (10)

where k ^ q = 1
2k

����q
� .

b) (f ? g)(x) =

Z
dk dq ~f(k)~g(q)e�ik^qei(k+q)x; (11)

where ~f and ~g are the Fourier components of f and g, respectively.

c) [(f ? g) ? h] (x) = [f ? (g ? h)] (x): (12)

d)

Z
dx (f ? g)(x) =

Z
dx (g ? f)(x) =

Z
dx f(x)g(x): (13)

e)

Z
dx (f1 ? f2 ? : : : fn)(x) =

Z
dx (fn ? f1 ? : : : fn�1)(x): (14)

f) (f ? g)� = g� ? f�: (15)

III Noncommutative Scalar Field Theory

Let us consider the massive scalar �eld in D = 3 + 1 dimensions
[3], whose action is

S =

Z
d4x

�
1

2
@�� ? @

���
m2

2
� ? ��

g2

4!
� ? � ? � ? �

�
: (16)

Using property d) it is seen that the propagator is not a�ected by the Moyal product. This is a generic property of
noncommutative �eld theories. The vertex, however, must be symmetrized . In momentum space we have

�
g2

2

Z
d4x � ? � ? � ? � = �

g2

6

Z
dk1dk2dk3dk4 Æ(k1 + k2 + k3 + k4)�

[cos(
1

2
k1 ^ k2) cos(

1

2
k3 ^ k4) + cos(

1

2
k1 ^ k3) cos(

1

2
k2 ^ k4) +

cos(
1

2
k1 ^ k4) cos(

1

2
k2 ^ k3)] �(k1)�(k2)�(k3)�(k4): (17)
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Then, the one loop correction for the two-point function is

g2

3(2�)4

Z
d4k

�
1 +

1

2
cos(k ^ p)

�
1

k2 +m2
: (18)

The �rst term is the usual one loop mass correction of the commutative theory (up to a factor 1=2) which is
quadratically divergent. The second term is not divergent due to the oscillatory nature of cos(k ^ p). This shows
that the nonlocality introduced by the Moyal product is not bad and leaves us with the same divergence structure
of the commutative theory. To take into account the e�ect of the second term we regularize the integral using the
Schwinger parametrization

1

k2 +m2
=

Z
1

0

d� e��(k
2+m2)e�

1

�2� ; (19)

where a cuto� � was introduced. We �nd

�(2) =
g2

48�2
[(�2 �m2 ln(

�2

m2
) + : : :) +

1

2
(�2

eff �m2 ln(
�2
eff

m2
) + : : :)]; (20)

where

�2
eff =

1
1
�2 + ~p2

; ~p� = ���p� : (21)

Note that when the cuto� is removed, �!1, the noncommutative contribution remains �nite providing a natural
regularization. Also �2

eff =
1
~p2 which diverges either when � ! 0 or when ~p! 0.

The one loop e�ective action is then

Z
d4p

1

2
(p2 +M2 +

g2

96�2(~p2 + 1=�2)
�
g2M2

96�2
ln

�
1

M2(~p2 + 1=�2)

�
+ : : :)�(p)�(�p); (22)

where M is the renormalized mass. Let us take the limits �!1 and ~p! 0. If we take �rst ~p! 0 then ~p2 << 1
�2

and �eff = � showing that we recover the e�ective commutative theory

Z
d4p

1

2

�
p2 +M 02

�
�(p)�(�p): (23)

If, however, we take �!1 then ~p2 >> 1
�2 and �2

eff =
1
~p2 and we get

Z
d4p

1

2

�
p2 +M2 +

g2

96�2~p2
�
g2M2

96�2
ln

�
1

M2~p2

�
+ : : :

�
�(p)�(�p); (24)

d

which is singular when ~p ! 0. This shows that the
limit � ! 1 does not commute with the low momen-
tum limit ~p ! 0 so that there is a mixing of UV and
IR limits.

The theory is renormalizable at one loop order if we
do not take ~p ! 0. What about higher loop orders?
Suppose we have insertions of one loop mass correc-
tions. Eventually we will have to integrate over small
values of ~p which diverges when � ! 1. Then we
�nd an IR divergence in a massive theory. This com-
bination of UV and IR divergences makes the theory
non-renormalizable.

There are also examples of non-renormalizable the-
ories already at one loop order [5]. For a complex scalar
�eld with interaction �� ? �� ? � ? � it is found that the

theory is one-loop non-renormalizable while ��?�?��?�
gives a one loop renormalizable model.

Then the question is whether it would be possible
to �nd a theory which is renormalizable to all loop or-
ders. Since the UV/IR mixing appears at the level of
quadratic divergences a candidate theory would be a
supersymmetric theory because it does not have such
divergences [9, 10]. As we shall see this indeed happens.

IV Noncommutative Wess-

Zumino model

The noncommutative Wess-Zumino model in 3 + 1 di-
mensions [6] has the action
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c

L0 =
1

2
@�A@�A+

1

2
@�B@�B +

1

2
 i 6@ ; (25)

Lm =
1

2
F 2 +

1

2
G2 +mFA+mGB �

1

2
m  ; (26)

Lg = g(F ? A ? A� F ? B ? B +G ? A ? B +G ? B ? A�

 ?  ? A�  ? i
5 ? B); (27)

d

where A and B are bosonic �elds, F and G are aux-
iliary �elds and  is a Majorana spinor. The action
is invariant under the usual supersymmetry transfor-
mations. They are not modi�ed by the Moyal product
since they are linear in the �elds. The elimination of
the auxiliary �elds through their equations of motion
produces quartic interactions. In terms of the complex
�eld � = A + iB we get �� ? �� ? � ? � which is non-
renormalizable in the noncommutative case. This casts
doubts about the renormalizability of the model but as
we shall see supersymmetry saves the day.

As usual, the propagators are not modi�ed by non-
commutativity due to the property d). They are given
by

�AA(p) = �(p) �
i

p2 �m2 + i�
; (28)

�FF (p) = p2�(p); (29)

�AF (p) = �FA(p) = �m�(p); (30)

S(p) =
i

6p�m
: (31)

Taking into account the symmetries the vertices are

FA2 vextex: ig cos(p1 ^ p2); (32)

FB2 vextex: �ig cos(p1 ^ p2); (33)

GAB vertex: 2ig cos(p1 ^ p2); (34)

  A vertex: �ig cos(p1 ^ p2); (35)

  B vertex: �ig
5 cos(p1 ^ p2): (36)

The degree of super�cial divergence for a generic 1PI
graph 
 is then

c

d(
) = 4� IAF � IBF �NA �NB � 2NF � 2NG �
3

2
N ; (37)

d

where NO denotes the number of external lines associ-
ated to the �eld O and IAF and IBF are the numbers
of internal lines associated to the mixed propagators
AF and BF , respectively. In all cases we will regular-
ize the divergent Feynman integrals by assuming that
a supersymmetric regularization scheme does exist.

The one loop analysis can be done in a straight-
forward way. As in the commutative case all tadpoles
contributions add up to zero. We have veri�ed this ex-
plicitly. The self-energy of A can be computed and the
divergent part is contained in the integral

16g2
Z

d4k

(2�)4
(1 +

1

2
cos(k ^ p))

(p � k)2

(k2 �m2)3
: (38)

The �rst term is logarithmically divergent. It di�ers
by a factor 2 from the commutative case. As usual,

this divergence is eliminated by a wave function renor-
malization. The second term is UV convergent and for
small p it behaves as p2 ln(p2=m2) and actually vanishes
for p = 0. Then there is no IR pole. The same analysis
can be carried out for the others �elds. For F we �nd
that the divergent part is

4g2
Z

d4k

(2�)4
(1 +

1

2
cos(k ^ p))

1

(k2 �m2)2
: (39)

The �rst term is logarithmically divergent and can also
be eliminated by a wave function renormalization. The
second term diverges as ln(p2=m2) as p goes to zero.
However its multiple insertions is harmless. For the
fermion �eld the divergent part is similar to the former
results and needs also a wave function renormalization.
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The term containing cos(k ^ p) behaves as 6p ln(p2=m2)
and vanishes as p goes to zero. Therefore, there is no
UV/IR mixing in the self-energy as expected.

To show that the model is renormalizable we must
also look into the interactions vertices. The A3 ver-
tex has no divergent parts as in the commutative case.
The same happens for the other three point functions.
For the four point vertices no divergence is found as
in the commutative case. Hence, the noncommutative
Wess-Zumino model is renormalizable at one loop with
a wave-function renormalization and no UV/IR mixing.

To go to higher loop orders we proceed as in the
commutative case [11]. We derived the supersymmetry
Ward identities for the n-point vertex function. Then
we showed that there is a renormalization prescription
which is consistent with the Ward identities. They are
the same as in the commutative case. And �nally we
�xed the primitively divergent vertex functions. Then
we found that there is only a common wave function
renormalization as in the commutative case. In general
we expect

'R = Z�1=2'; mR = Zm+ Æm; gR = Z3=2Z 0g:
(40)

At one loop we found Æm = 0 and Z 0 = 1. We showed
that this also holds to all orders and no mass renormal-
ization is needed.

Being the only consistent noncommutative quan-
tum �eld theory in 3 + 1 dimensions known so far
it is natural to study it in more detail. As a �rst
step in this direction we considered the nonrelativistic
limit of the noncommutative Wess-Zumino model [12].
We found the low energy e�ective potential mediating
the fermion-fermion and boson-boson elastic scattering
in the nonrelativistic regime. Since noncommutativity
breaks Lorentz invariance we formulated the theory in
the center of mass frame of reference where the dynam-
ics simpli�es considerably. For the fermions we found
that the potential is signi�catively changed by the non-
commutativity while no modi�cation was found for the
bosonic sector. The modi�cations found give rise to an
anisotropic di�erential cross section.

V Noncommutative Gross-

Neveu and Nonlinear Sigma

Models

Another model where nonrenormalizability is spoiled by
the noncommutativity is the O(N) Gross-Neveu model.
This model is perturbatively renormalizable in 1+1 di-
mensions and 1=N renormalizable in 1 + 1 and 2 + 1
dimensions. In both cases it presents dynamical mass
generation. It is described by the Lagrangian

L =
i

2
 i 6@ i +

g

4N
( i i)( j j); (41)

where  i; i = 1; : : : N , are two-component Majorana
spinors. Since it is renormalizable in the 1=N expan-
sion in 1+1 and 2+1 dimensions we will consider both
cases. As usual, we introduce an auxiliary �eld � and
the Lagrangian turns into

L =
i

2
 i 6@ i �

�

2
( i i)�

N

4g
�2: (42)

Replacing � by � + M where M is the VEV of the
original � we get the gap equation (in Euclidean space)

M

2g
�

Z
dDk

(2�)D
M

k2E +M2
= 0: (43)

To eliminate the UV divergence we need to renormalize
the coupling constant by

1

g
=

1

gR
+ 2

Z
dDk

(2�)D
1

k2E + �2
: (44)

In 2 + 1 dimensions we �nd

1

gR
=
�� jM j

2�
; (45)

and therefore only for � 1
gR

+ �
2� > 0 it is possible to

have M 6= 0, otherwise M is necessarily zero. No such
a restriction exists in 1 + 1 dimensions. In any case,
we will focus only in the massive phase. The propaga-
tor for � is proportional to the inverse of the following
expression

c

�
iN

2g
� iN

Z
dDk

(2�)D
k � (k + p) +M2

(k2 �M2)[(k + p)2 �M2]
; (46)

which is divergent. Taking into account the gap equation the above expression reduces to

(p2 � 4M2)N

2

Z
dDk

(2�)D
1

(k2 �M2)[(k + p)2 �M2]
; (47)

which is �nite. Then there is a �ne tuning which is responsible for the elimination of the divergence and which
might be absent in the noncommutative case due to the UV/IR mixing.
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The noncommutative model is de�ned by

SGN =

Z
dDx

�
i

2
 6@ �

M

2
  �

1

2
� ? ( ?  )�

N

4g
�2 �

N

2g
M�

�
: (48)

d

Elimination of the auxiliary �eld results in a four-
fermion interaction of the type  i? i? j ? j . However
a more general four-fermion interaction may involve a
term like  i ?  j ?  i ?  j . This last combination does
not have a simple 1=N expansion and we will not con-

sider it. The Moyal product does not a�ect the propa-
gators and the trilinear vertex acquires a correction of
cos(p1^p2) with regard to the commutative case. Hence
the gap equation is not modi�ed, while the propagator
for the � is now proportional to the inverse of

c

�
iN

2g
�N

Z
dDk

(2�)D
cos2(k ^ p)

k � (k + p) +M2

(k2 �M2)[(k + p)2 �M2]
: (49)

d

Now the divergent part is no longer canceled and this
turns the model into a nonrenormalizable one.

On the other side, the nonlinear sigma model also
presents troubles in its noncommutative version. The
noncommutative model is described by

L = �
1

2
'i(@

2 +M2)'i +
1

2
� ? 'i ? 'i �

N

2g
�; (50)

where 'i, i = 1; : : : ; N , are real scalar �elds, � is the
auxiliary �eld and M is the generated mass. The lead-
ing correction to the ' self-energy is

� i

Z
d2k

(2�)2
cos2(k ^ p)

(k + p)2 �M2
��(k); (51)

where �� is the propagator for �. As for the case of
the scalar �eld this can be decomposed as a sum of
a quadratically divergent part and a UV �nite part.
Again there is the UV/IR mixing destroying the 1=N
expansion.

VI Noncommutative Super-

symmetric Nonlinear Sigma

Model

The Lagrangian for the commutative supersymmetric
sigma model is given by

c

L =
1

2
@�'i@�'i +

i

2
 i 6@ i +

1

2
FiFi + �'iFi +

1

2
�'i'i �

1

2
� i i � � i'i �

N

2g
�; (52)

where Fi, i = 1; : : : ; N , are auxiliary �elds. Furthermore, �; � and � are the Lagrange multipliers which implement
the supersymmetric constraints. After the change of variables �! �+2M�, F ! F �M' where M =< � >, and
the shifts � ! � +M and �! �+ �0, where �0 =< � >, we arrive at a more symmetric form for the Lagrangian

L = �
1

2
'i(@

2 +M2)'i +
1

2
 i(i 6@ �M) i +

1

2
F 2
i +M2'2i +

1

2
�0'

2
i

+
1

2
�'2i + �'iFi �

1

2
� i i � � i'i �

N

2g
��

N

g
M�: (53)

Now supersymmetry requires �0 = �2M2 and the gap equation is

Z
dDk

(2�)D
i

k2 �M2
=

1

g
; (54)
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so a coupling constant renormalization is required. We now must examine whether the propagator for � depends
on the this renormalization. We �nd that the two point function for � is proportional to the inverse of

(p2 � 4M2)N

2

Z
dDk

(2�)D
1

(k2 �M2)[(k + p)2 �M2]
; (55)

which is identical to the Gross-Neveu case. Notice that the gap equation was not used. The �niteness of the above
expression is a consequence of supersymmetry.

The noncommutative version of the supersymmetric nonlinear sigma model is given by

L = �
1

2
'i(@

2 +M2)'i +
1

2
 i(i 6@ �M) i +

1

2
F 2
i +

�

2
? 'i ? 'i

�
1

2
Fi ? (� ? 'i + 'i ? �)�

1

2
� ?  i ?  i �

1

2
(�� ?  i ? 'i + �� ? 'i ?  i)

�
N

2g
��

NM�

g
: (56)

Notice that supersymmetry dictates the form of the trilinear vertices. Also, the supersymmetry transformations
are not modi�ed by noncommutativity since they are linear and no Moyal products are required.

The propagators are the same as in the commutative case. The vertices have cosine factors due to the Moyal
product

�'2 vertex:
i

2
cos(p1 ^ p2); (57)

�'F vertex: �i cos(p1 ^ p2); (58)

  � vertex: �
i

2
cos(p1 ^ p2); (59)

� ' vertex: �i cos(p1 ^ p2): (60)

We again consider the propagators for the Lagrange multiplier �elds. Now the � propagator is modi�ed by the
cosine factors and is proportional to the inverse of

(p2 � 4M2)N

2

Z
dDk

(2�)D
cos2(k ^ p)

(k2 �M2)[(k + p)2 �M2]
: (61)

It is well behaved both in UV and IR regions. The propagators for � and � are proportional to the inverse of

N

2

Z
dDk

(2�)D
cos2(k ^ p)

1

[(k + p)2 �M2][k2 �M2]
; (62)

and

N
( 6p+ 2M)

2

Z
dDk

(2�)D
cos2(k ^ p)

1

[(k + p)2 �M2][k2 �M2]
; (63)

respectively. They are also well behaved in UV and IR regions.
The degree of super�cial divergence for a generic 1PI graph 
 is

d(
) = D �
(D � 1)

2
N �

(D � 2)

2
N' �

D

2
NF �N� �

3

2
N� � 2N�; (64)

d

where NO is the number of external lines associated to
the �eld O. Potentially dangerous diagrams are those
contributing to the self{energies of the ' and  �elds
since, in principle, they are quadratic and linearly di-
vergent, respectively. For the self-energies of ' and  
we �nd that they diverge logarithmically and they can
be removed by a wave function renormalization of the

respective �eld. The same happens for the auxiliary
�eld F . The renormalization factors for them are the
same so supersymmetry is preserved in the noncom-
mutative theory. This analysis can be extended to the
n-point functions. In 2 + 1 dimensions we �nd noth-
ing new showing the renormalizability of the model at
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leading order of 1=N . However, in 1 + 1 dimensions
there some peculiarities. Since the scalar �eld is di-
mensionless in 1 + 1 dimensions any graph involving
an arbitrary number of external ' lines is quadratically
divergent. In the four-point function there is a par-
tial cancellation of divergences but a logarithmic diver-
gence still survives. The counterterm needed to remove
it can not be written in terms of

R
d2x 'i ? 'i ? 'j ? 'j

and
R
d2x 'i ? 'j ? 'i ? 'j . A possible way to remove

this divergence is by generalizing the de�nition of 1PI
diagram along the lines suggested in [13] for the com-
mutative nonlinear sigma model. However the cosine
factors do not allow us to use this mechanism which
casts doubt about the renormalizability of the noncom-
mutative supersymmetric O(N) nonlinear sigma model
in 1 + 1 dimensions.

VII Conclusions

We have shown that it is possible to build consistent
quantum �eld theories in noncommutative space. It
seems that supersymmetry is an essential ingredient for
renormalizability. The models studied here do not in-
volve gauge �elds and this considerably simpli�es the
situation. All vertices are deformed in the same way
by the Moyal product and this was essential to analyze
the amplitudes. With gauge �elds the situation is much
more complicated because the vertices are deformed in
di�erent ways. However, supersymmetric gauge theo-
ries may still have a better behavior.
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