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We study nuclear reactions in collisions of unstable projectiles with heavy targets. For this purpose, we use
a simple approximation for the breakup channel and treat two-neutron halos as a single particle. We then
evaluate cross sections for collisions of6He projectiles with targets of238U and209Bi. Comparing our results
with recently measured fusion cross sections, we conclude that the large enhancement observed in6He+238U
fusion at sub-barrier energies cannot be explained by the coupling with the breakup channel. The effects of the
halo on other reaction channels are also investigated. Coulomb-nuclear interference in the breakup channel is
discussed.

1 Introduction

The influence of channel-coupling on fusion reactions has
been studied by several authors [1, 2, 3]. In collisions of
stable nuclei, the main conclusion of these studies is that
the coupling leads to a strong enhancement of the fusion
cross section at sub-barrier energies. The discovery that
some neutron-rich unstable nuclei, such as11Li or 6He, ex-
hibit a neutron halo renewed the interest in this theme [4].
The presence of a halo in the nuclear density contributes
to the reduction of the Coulomb barrier and, therefore, to
an increase of the fusion cross section. This is an effect of
static nature. On the other hand, there are important dy-
namic effects. The weak binding of the halo neutrons leads
to a strong coupling between the elastic and breakup chan-
nels, which strongly affects the fusion process. In the first
place, the concept of fusion becomes ambiguous. There is
the possibility of fusion through the formation of a com-
pound nucleus containing all the projectile’s and target’s
nucleons, like in collisions of strongly bound nuclei. This
process is called complete fusion and we denote the cor-
responding cross section byσCF . However, there is also
the possibility that fusion follows the breakup process. In
this case, one or more of the fragments may emerge from
the interaction region, with the compound nucleus being

formed by the target and the remaining projectile’s frag-
ments. This process is named incomplete fusion and we
denote the cross section associated to it byσICF . For in-
stance, in the6He + 238U collision the fragmentation of the
6He (6He−→2n+4He) can be followed by the incomplete
fusion reaction4He+238U−→242Pu.

The first theoretical works in the area of fusion with un-
stable nuclei [5, 6, 7, 8] have appeared in the beginning of
the last decade, for collisions involving11Li. These works
were based on schematic models that focused different as-
pects of the problem. For this reason, they led to conflicting
conclusions. Husseinet al. [6] and Takigawaet al. [7] took
into account the effects of the breakup on the elastic chan-
nel through a polarization potential. These authors made
the hypothesis that the breakup was a direct (not a reso-
nant) process and that this channel would only contribute
to incomplete fusion. Its contribution to the complete fu-
sion cross section would come from a sequential process of
higher order and for this reason it could be neglected. In
this way,σCF would be determined exclusively by the elas-
tic wave function. Compared with the fusion cross section
in the absence of channel-coupling, the results of this model
showed a strong reduction above and in the neighborhood
of the Coulomb barrier and a pronounced enhancement at
energies much below the barrier. If the polarization poten-
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tial had been calculated in an exact way, the results obtained
with this model would be identical to those of the coupled-
channels method. However, their polarization potential [11]
contained several approximations. Among them was the ne-
glect of the real part of the potential, which produces a re-
duction of the fusion barrier and, consequently, an increase
of the cross section at sub-barrier energies. Although this
effect has been taken into account in an approximate way,
the adopted procedure is unsatisfactory at energies close
to the Coulomb barrier. The model of Dasso and Vitturi
[8] is of a diametrically opposite nature. These authors
treated the breakup channel as a bound channel and cal-
culated the fusion cross section adding contributions from
all channels. If the breakup process is direct and the se-
quential complete fusion can be neglected, as assumed in
[6, 9, 7], the cross section of [8] corresponds to the total
fusion σTF = σCF + σICF and, therefore, should not be
compared withσCF . On the other hand, if the breakup oc-
curs through a resonance of much larger half-life than the
collision time, incomplete fusion does not exist. In this
case,σTF = σCF and the comparison would be appro-
priate. Some of these questions found answers in the re-
cent calculations by Haginoet al. [12] and Diaz-Torreset
al. [13, 14]. These calculations use the coupled-channels
method, approximating the breakup channel by a finite set of
states in the continuum. This procedure is known as Contin-
uum Discretized coupled-channels (CDCC). Its implemen-
tation has as starting point the FRESCO code [15] and the
continuum discretization method described in [16]. There
are two differences between the calculations of refs. [12]
and [13]. The first one is that Diaz-Torres and Thompson use
a wider continuum discretization mesh, reaching higher en-
ergies. The second is that these authors take into account the
coupling among continuum states, which has been neglected
in [12]. In this way, the results of ref.[13] are the most ac-
curate presently available. They lead to two important con-
clusions. The first is that in collisions with heavy targets
the coupling with the breakup channel leads to a substantial
increase of the complete fusion cross section at sub-barrier
energies and to a strong suppression above the barrier. The
second conclusion is that the results are very sensitive to the
set of states used to describe the continuum and also to the
continuum-continuum coupling. It is important to observe,
however, that the CDCC method still presents limitations.
It has not been implemented in the case of halos with more
than one nucleon. Therefore, it cannot be applied to impor-
tant cases such as fusion reactions induced by11Li and 6He
beams.

Several experimental studies of reactions with unstable
beams have been carried out in the last few years. Fu-
sion cross sections have been measured in experiments with
beams of11Be [17, 18, 19, 20],6He [21, 22],17F [24] and
28S [25]. The experimental separation ofσCF andσICF

presents difficulties, specially when uncharged fragments
are produced in the breakup of the projectile. For this rea-
son, most of the experimental works ignore the distinction
betweenσCF andσICF and measure the total fusion cross
section,σTF = σCF + σICF . Some authors use a differ-
ent concept of complete fusion, defining it as the process

where the compound nucleus contains the total charge of
projectile and target. In some cases, as in the fusion after
the breakup6Li −→4He + d, the two definitions are equiv-
alent. However, after breakups like6He −→4He + 2n or
11Li −→9Li + 2n the two definitions are different. There-
fore, for comparisons between experimental data and the-
oretical predictions it is important to make sure that corre-
sponding cross sections are being taken. A good summary
of the current experimental situation is presented by Ala-
manoset al. [23]. The fusion cross sections for collisions of
6He and11Be are compared with results for the correspond-
ing stable isotopes and the same targets. This comparison
leads to two conclusions. The first is that the cross sections
for the unstable projectiles present pronounced differences
with respect to the results for the corresponding stable iso-
topes. The second is that it is not possible to establish a
pattern for these differences. In the6He+238U collision at
sub-barrier energies the observed cross section is dramati-
cally larger than that for4He+238U [22]. At energies above
the barrier the cross section for the6He+238U system re-
mains higher but the difference is not so large. In collisions
of the same projectiles on a209Bi target [21] a similar be-
havior is observed below the barrier. However, the6He and
4He cross sections are approximately the same at energies
above the barrier. For9,11Be beams and209Bi targets the
situation is very different [19]. Above the Coulomb bar-
rier, the cross section for the unstable isotope11Be is larger
than that for the stable one,9Be. On the other hand, these
cross sections are very similar at energies below the barrier.
The total fusion cross sections measured in the38S+181Ta
collisions [25] (neutron-rich projectile) and17F+208Pb [24]
(proton-rich projectile) did not show significant differences
when compared with results obtained for stable projectiles.

From the above discussion, it is clear that further theoret-
ical and experimental studies are needed for an appropriate
understanding of the nuclear reactions induced by unstable
beams. In the present paper we use a simple approxima-
tion for the breakup channel proposed in a previous paper
[26] to carry out coupled-channel calculations for fusion,
breakup, reaction and elastic cross sections. In particular,
we calculate the fusion cross sections for the4,6He +238U
and4,6He +209Bi systems, which have recently been mea-
sured [22, 21]. The rest of this paper is organized as fol-
lows. In section 2 we derive optical potentials by the folding
method and present the details of our coupled-channel cal-
culations. In section 3 we perform numerical calculations
for the6He +238U and6He +209Bi systems and discuss the
importance of the static and the dynamic effects of the6He
halo. Finally, in section 4 we present the conclusions of this
work.

2 Coupled-channel calculations in the
schematic model

Our calculations for the6He+238U and6He+238U systems
follow three steps: (a) calculation of optical potentials, (b)
choice of the intrinsic states for the coupled-channel equa-
tions and (c) calculation of coupling matrix-elements and
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solution of the coupled radial equations.

2.1 The optical potential

The optical potential for a nuclear collision can be deter-
mined with the help of some theoretical model or by a phe-
nomenological procedure. In the present work we use the
single folding method [27], where the real part of the optical
potential is given by the integral

VN (r) =
∫

vn−AT
(r− r′) ρ(r′) d3r′. (1)

Above, vn−AT is an appropriate nucleon-target interaction
andρ(r′) is the projectile’s density. Firstly, we look for a
nucleon-target interaction that leads to a good description of
the reactions with the stable4He projectiles. The static ef-
fects of the halo are then introduced into the optical potential
through the folding of this interaction with a realistic density
for 6He.

The full optical potential is

U(r) = VN (r) + VC(r)− iW (r), (2)

whereVC(r) is the Coulomb potential

c

VC(r) =





Z1Z2 e2

2RC

(
3− r2

R2
C

)
, r ≤ RC = 1.2(A1/3

1 + A
1/3
2 )

Z1Z2 e2

r
, r ≥ RC

(3)

d

and W (r) is the absolute value of a strongly absorptive
imaginary potential with small radius and diffusivity. We
use a Woods-Saxon parametrization withW0 = 50 MeV,
ri = 1.0 fm andai = 0.10 fm.

In the calculation of the folding potential we use the
nucleon-target interaction of Madland and Young [28]
(dropping the spin-orbit part),

vn−AT (r− r′) = −V0 fr(x), (4)

wherex = |r− r′| ,

V0 =
[
50.378− 27.073

(
N − Z

A

)
− 0.354ELab

]
(MeV)

(5)
and

fr(x) =
1

1 + exp [(x−Rr) /ar]
. (6)

The interaction parameters are

Rr = 1.264 A
1/3
T fm e ar = 0.612 fm.

However, as we will discuss below, we leave room for slight
adjustments of these parameters in order do get a good de-
scription of the fusion cross sections for collisions of the
stable isotope4He with the238U and209Bi targets.

For 4He projectiles, we use the Gaussian form factor

ρ(r) = C exp(−r2/γ2). (7)

The parametersC andγ are obtained by the condition that
the norm and the r.m.s radius have the correct values. That
is

∫
ρ(r)d3r = N ;

1
N

∫
r2ρ(r)d3r = r2

rms. (8)

In the present case we setN = 4 andrrms = 1.49 fm [29].
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Figure 1. Fusion cross sections in collisions of4He with (a) 238U
and (b)209Bi. The solid lines represent calculations with the op-
tical potentials given by the folding model. The squares and cir-
cles are the experimental data of [34] (open squares), [22] (solid
squares), [35] (open circles) and [36] (solid circles).

In Fig. 1 the calculated fusion cross sections for the
4He+238U (Fig. 1(a)) and4He+209Bi (Fig. 1(b)) collisions
are compared with the experimental values. In both cases
the folding potentials lead to very accurate description of
the data. For the4He+238U collision, the calculations were
performed without any modification of the original parame-
ters of the Madland and Young interaction. For the209Bi the
radius parameter was slightly modified, as indicated below

Rr = 1.264 A
1/3
T fm −→ Rr = 1.220 A

1/3
T fm.
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We now consider the collisions of6He projectiles with
the same targets. If all the6He nucleons where strongly
bound, like in4He, the density would be given by a Gaus-
sian parametrization with new values of the constantsC and
γ. They would be given by eq.(8) with

N = 6; rrms

(
6He

)
= rrms

(
4He

)×
(

6
4

)1/3

= 1.71 fm.

(9)

However, the Gaussian shape is not appropriate for a
halo nucleus. One should use instead a realistic parametriza-
tion, consistent with the halo of6He [29]. This parametriza-
tion is based on the symmetrized Fermi distribution of [30],

c

ρSF (r) = ρ0

[(
1 + exp

(
r −R

a

))−1

+
(

1 + exp
(−r −R

a

))−1

− 1

]
, (10)

d

with

ρ0 =
3A

4πR3

[
1−

(πa

R

)2
]−1

,

A = 6, R = 1.23 A1/3 fm and a = 0.57 fm. This
parametrization leads to the r.m.s. radiusrrms = 2.30 fm,
which is appreciably larger than the one in eq.(9), obtained
without the halo. In this way, one obtains a lower barrier as
shown in table I.

2.2 The channel space in the schematic model

Including the breakup channel in coupled-channel calcula-
tions is a very hard task. The difficulty arises from the fact
that the breakup channel is represented by an infinite set of
three or more particles in the continuum. For practical pur-
poses it is necessary to represent the continuum by a finite
set of states. In the case of one neutron halos, this can be
done by the CDCC method [12, 13, 14]. However, the im-
plementation of this procedure is very complicated. In the
present work we use a qualitative model based on two ap-
proximations. The first one is to replace the two neutrons of
the 6He halo by a single particle, thedi-neutron. This ap-
proximation, which lead to reasonable results in the breakup
of 11Li [31], amounts to neglecting the relative motion be-
tween the two neutrons. The second approximation consists
of replacing the infinite set of breakup states by a single
channel, which represents them in an effective way [32].
Since the coupling is dominated by the electric dipole term,
and the6He ground state has spin zero, we assume that the

effective channel has spin 1. We neglect the relative energy
of the fragments in the breakup channel and adopt for the
effective channel the breakup threshold energy,ε1 = 0.975
MeV.

The approximation of the continuum by a single effec-
tive channel would be fully justified in the case of breakup
through a sharp resonance, with a lifetime much longer than
the collision time. However, for direct breakup, this ap-
proximation would not be justified and it would lead to
wrong predictions forσCF . In this case, the effective chan-
nel would dominantly contribute to the incomplete fusion
cross section. An approximate way to take this into account
is to use the effective channel approximation but neglect-
ing its contribution toσCF . Using the notationσ(α)

F for the
contribution from channel-α to the fusion cross section, this
procedure yields

σCF ' σ
(0)
F . (11)

On the other hand, the consequences of this approximation
on σTF should be less important since the contributions
from all channels are summed, independently of the reaction
mechanism. This is the cross section that will be compared
with the experimental data of [22] and [21].

2.3 The radial equations and the coupling
matrix-elements

The coupled radial equations are

c

[
Eα +

~2

2µ

(
d2

dr2
− l(l + 1)

r2

)
−U(r)

]
uJ

αl,α0l0(kα, r)

=
∑

α′l′
UJ

αl,α′l′(r)u
J
α′l′,α0l0(kα′ , r), (12)
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whereα takes the values 0 (elastic channel) and 1 (effective
breakup channel). We use the same optical potential of the
previous sections for both channels.

The large values of the breakup cross section in colli-
sions of halo nuclei with heavy targets indicate that the long

range electric dipole coupling dominates. In our calcula-
tions we take into account both the Coulomb and the nuclear
couplings and approximate them by their dipole terms. The
electric dipole matrix elements are given by [27]

c

UJ
1l,0l0(r) = (−)J+1 il−l0 l̂ l̂0

√
4π

3
FC(r)

(
l 1 l0
0 0 0

){
J 1 l
1 l0 0

}
, (13)

d

with the notation̂l =
√

2l + 1
(
l̂0 =

√
2l0 + 1

)
. The elec-

tric dipole form factor is approximated as

FC(r) =





A
r

R3
C

(
4− 3r

RC

)
, r < RC

A
1
r2

, r ≥ RC .

(14)

Above,

(
l 1 l0
0 0 0

)
and

{
J 1 l
1 l0 0

}
are the usual 3J

and 6J symbols [33] and the strengthA is

A = e ZT

√
B(E1, 0 → 1). (15)

In this way, the matrix-elementsUJ
1l,0l0

(r) are completely
determined in terms of the reduced transition probability
B(E1, 0 → 1). We adopt theB(E1, 0 → 1) value of the
cluster model,

B(E1, 0 → 1) =
3~e2

16πε1µ2n−4He
= 1.37 e2fm2. (16)

Above, ε1 is the breakup threshold for6He andµ2n−4He

is the reduced mass for the relative motion between the di-
neutron and the4He-core.

Recently, Haginoet al. [12] pointed out that the nu-
clear coupling to the breakup channel plays a very impor-
tant role in the fusion of weakly bound nuclei. However,
the inclusion of the corresponding nuclear matrix-elements
in our schematic model presents some difficulties. Since
we neglect the kinetic energy of the fragment-fragment mo-
tion, the normalization factor of the effective channel goes
to zero. Therefore, the matrix-elements between the elas-
tic and the effective channel vanish. To avoid this problem
we follow the procedure introduced in ref. [26], which is
described below. The nuclear part of the coupling interac-
tion,V, is obtained by summing the interaction between the
4He fragment and the target (V4He) with that between the di-
neutron and the target (V2n) and subtracting the projectile-
target potential,VN (r). That is

V(r,x) = V4He(r−x/3)+ V2n(r− 2x/3)−VN (r), (17)

wherex is the vector going from the di-neutron to the4He-
core. The potentialV2n is the nucleon-target interaction
multiplied by two whileV4He and VN (r) ≡ V6He are re-
spectively the folding potentials for4He and6He, discussed
in the previous sub-section. Carrying out partial-wave ex-
pansions and keeping only the dipole term (as we did for the
Coulomb coupling), we get

V(r,x) =
∑

µ

Y1µ(r̂)Y ∗
1µ(x̂)V1(r, x). (18)

The matrix-element between the projectile statesφi(x) and
φj(x) may be calculated with the help of Wigner-Eckart’s
theorem. We are interested in the case where one of these
states is the ground state, with angular momentum 0 and in-
trinsic wave functionugs(x). The other is some state in the
continuum with angular momentum 1, energyε and radial
wave functionuε(x). The desired matrix-element is given
in terms of the nuclear form factor

FN (ε, r) =

∞∫

0

dr ugs(x) V1(r, x) uε(x). (19)

The radial wave functionsugs anduε are solutions of the ra-
dial equation associated with the absolute value of the vector
x. The depth of the potential well giving the interaction be-
tween the fragments is determined by the condition that its
second S-state (the first is excluded by Pauli’s principle) has
binding energy−0.975 MeV. Owing to the normalization of
uε(x), the form factor goes to zero in the limitε → 0, which
was assumed for the effective breakup channel. To avoid
this difficulty, we adopt the radial dependence obtained in
eq.(19) but treat its normalization as a free parameter. That
is

FN (r) = F0 g(r) (20)

with

g(r) = lim
ε→0

[
FN (ε, r)
FN (ε, 0)

]
. (21)

To estimate the strengthF0, we adopt the following proce-
dure. Firstly, we evaluate the electric dipole form factor us-
ing the analog of eq.(19) for the Coulomb interaction. The
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resulting Coulomb form factor is then compared with the
nuclear one. For the6He+238U system, the two form fac-
tors have the same strength atr ' 16 fm. In our coupled-
channel calculations we use the Coulomb form factor given
by eqs.(14) to (16) and chooseF0 by imposing that the nu-
clear and the Coulomb form factors have the same value at
r ' 16 fm. Further details of this procedure are given in
ref. [26]. Since the nuclear form factor for the6He+209Bi
system should be very similar to that for6He+238U, we use
the same nuclear form factors in both calculations.

Solving the coupled-channel equations, we evaluate the
scattering amplitudes̄fα(θ), for α = 0 and 1. The elastic
and the breakup cross sections are then given by

dσel(θ)
dΩ

=
∣∣fC(θ) + f̄0(θ)

∣∣2 (22)

dσBup(θ)
dΩ

=
k1

k0

∣∣f̄1(θ)
∣∣2 . (23)

The total fusion cross section can be written

σTF = σ
(0)
F + σ

(1)
F (24)

with1

σ
(α)
F = (2π)3

k0

E

〈
ψ(+)

α |Wα|ψ(+)
α

〉
, (25)

for α = 0, 1.

3 Application: study of the 6He+238U

and 6He+209Bi collisions

3.1 Fusion cross sections

In Fig. 2, we present fusion cross sections for collision of
6He projectiles with238U (a) and209Bi (b) targets. The
lines were obtained with our schematic model with different
approximations. These results are compared with the data
of Trottaet al.[22] (squares) and Kolataet al.[21] (circles).
The dotted and the dashed lines are results of optical model
calculations, without channel-coupling. In the former, the
optical potential is calculated by the folding method with a
density without the halo. In the latter, the density includes
the6He halo. The dot-dashed and the solid lines are results
of coupled-channel calculations with the optical potential
containing the static effects of the halo. In the former the
coupling is purely Coulomb while the latter includes both
the Coulomb and the nuclear couplings, as discussed in the
previous section.
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Figure 2. Experimental and theoretical fusion cross sections in the
collisions of6He projectiles with (a)238U and (b)209Bi. The data
are from [22] (squares) and [21] (circles). The results obtained
without channel-coupling are represented by dotted (optical poten-
tial without halo) and dashed (optical potential with halo) lines.
The results from coupled-channel calculations are represented by
dot-dashed (Coulomb coupling) and solid (Coulomb plus nuclear
coupling) lines.

The trends of the calculations for the two targets (figures
2(a) and 2(b)) are basically the same. Comparing the optical
model calculations without (dotted line) and with (dashed
lines) the static effects of the halo, we conclude that the halo
produces large enhancements of the fusion cross sections
above and below the Coulomb barrier. The dynamic effects
arising from channel-coupling lead to further enhancements,
specially at sub-barrier energies.

Comparing the calculations with the experimental data,
we reach different conclusions for the238U and the209Bi
targets. In the case of238U, the optical model calculation
without effects of the halo (dotted line) yields results much
below the data, in the whole energy range. The three re-
maining calculations are much closer to the experiment at
above barrier energies. However, none of these calculations
provides a good description of the data at sub-barrier ener-
gies. The result of the coupled-channel calculation with the
Coulomb plus nuclear couplings is close to the sub-barrier
data point at∼ 17 MeV but it is much lower than the one at
∼ 15 MeV. Since our model tends to overestimate the fusion
cross section, this result suggests that the large enhancement
of the experimental data at these energies cannot arise from
the6He halo. We should also call attention to the possibility
of these data being inaccurate, owing the experimental tech-
nique used in the experiment of ref.[22]. Since fission is the
only relevant channel in the decay of the coupound nucleus,
the fusion cross section was measured through the detection
of fission events. However, the 1n- and 2n-transfer channels
also lead to fission. Trottaet al. tried to eliminate the con-
tributions from these processes through an anti-coincidence
with the alpha-particle produced in the transfer processes.
However, some residual contributions from these processes,
which would be relevant at very low energies, may have
been left out. In this way, the high cross sections observed at

1We assume thatψ(+)
α is defined with the normalization factorA = (2π)−3/2. ForA = 1, the factor(2π)3 in in eq.(25) should be dropped.
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very low energies may correspond to transfer-fission rather
than fusion-fission events. This possibility is presently being
investigated by these authors [37].

We now consider the fusion cross section for the209Bi
target. In this case the data set [21] does not include ener-
gies much below the barrier, as does that of [22]. Fig. 2(b)
indicates that the agreement between theory and experiment
is much poorer. In this case the results of the optical model
calculation without any halo effect (dotted line) are close to
the data at above-barrier energies. However, they fall much
below the data at energies near and below the barrier. The re-
maining three calculations, which include halo effects, over-
estimate the data at above barrier energies. At lower ener-
gies the best results are obtained with the optical model cal-
culations with static effects of the halo. The results of our
best calculation - the coupled-channel calculations with the
Coulomb plus nuclear coupling - are much above the data in
the whole energy region.

We should emphasize that our schematic model overes-
timates the total fusion cross section. Firstly because it can-
not include continuum-continuum coupling, which reduces
it substantially [13]. Furthermore, the contribution from the
breakup channel to the fusion cross section may be overesti-
mated, specially if the projectile breakup is a direct process.
In this case, fusion following breakup will be dominantly the
incomplete fusion of the4He fragment with the target. The
cross section for incomplete fusion should be much smaller
than that for the complete fusion of the6He projectile. The
4He fragment faces a higher barrier (this is illustrated in
Table I) while it carries only a fraction of the collision en-
ergy (about 2/3, if the relative energy of the fragments is ne-
glected). Since in our model the effective channel is bound,
the contribution from this channel is evaluated as complete
fusion and, therefore, is overestimated. It may be a better
procedure to neglect the contribution of the effective chan-
nel to the total fusion cross section and writeσTF ' σ

(0)
F .

Since we do not have reliable information about the breakup
mechanism (direct or resonant) our model can only predict
that the total fusion cross section should be within the range

σ
(0)
F + σ

(1)
F & σTF & σ

(0)
F .

In Fig. 3 we compare the data with the curves giving the
upper and the lower limits indicated in the above equation.
The results for the238U target, shown in figure 3(a), are
consistent with the data, except for the lowest data point,
where the theoretical prediction is much smaller than the
experimental value. In the case of the209Bi target, the sit-
uation is worse. Only the data points at the highest ener-
gies fall within the predicted limits. This may be a limi-
tation of our schematic model since it does not contain the
continuum-continuum coupling which would substantially
reduce the complete fusion cross section [13]. In this way,
the dashed line in Fig. 3(b) would be moved down and the
agreemente with the data would be better. We should re-
mark that there is an additional discrepancy between theory
and the experiment, which occurs for both targets. The ex-
perimental slopes of the fusion cross section at low energies
are always smaller than the theoretical predictions. In this
case, it is unlikely that the discrepancy can be traced back to

the limitations of our model. The inclusion of continuum-
continuum coupling does not seem to reduce this slope [13].

15 20 25 30
E

c.m.
 (MeV)

10
1

10
2

10
3

σ F 
(m

b)

Data of Trotta et al.

20 25 30
E

c.m.
 (MeV)

10
1

10
2

10
3

Data of Kolata et al.
σ

CF
σ

TF

6
He + 

238
U 6

He + 
209

Bi

(a) (b)

↓ ↓

Figure 3. Upper (solid line) and lower (dashed line) limits pre-
dicted by our coupled-channel calculations in comparison with the
data of [22] (squares) and [21] (circles).

3.2 Breakup and reaction cross sections

In Fig. 4 we show angular distributions for the breakup of
6He in collisions with a238U target. Since the results for the
209Bi target are basically the same, we do not show them in
this section. These angular distributions are functions of the
deflection angle for the center of mass of the projectile. Usu-
ally, this angle must be expressed in terms of the momenta
of the fragments. However, the situation is simpler in the
present calculation since the breakup channel is treated as a
bound state. The calculations were performed for a collision
energy about 30% above the Coulomb barrier. Since there
are no data available, we compare results obtained with dif-
ferent approximations.
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Figure 4. Breakup cross sections in the4He +238 U collision. The
lines are results of coupled-channel calculations with different cou-
plings. For details, see the text.
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The dashed, dot-dashed and solid lines correspond re-
spectively to coupled-channel calculations with Coulomb,
nuclear and Coulomb plus nuclear couplings. A compar-
ison of these curves gives relevant information about the
roles of these couplings. Firstly, we notice that Coulomb
breakup is important over a broad angular region. A sec-
ond interesting point is that nuclear breakup is negligible
at small angles. These angles are associated with distant
collisions, for which the short range nuclear form factor is
vanishingly small. Nuclear breakup reaches a maximum at
the grazing angleθ ' 60◦ and falls off slowly above, ow-
ing to fusion absorption. The dashed and the dash-dotted
lines cross atθ ' 60◦. Nuclear breakup dominates above
this angle and Coulomb breakup dominates below. Compar-
ing the cross sections for each of these processes with that
for the coulomb plus nuclear couplings (solid line) one con-
cludes that there is constructive interference below∼ 50◦
and destructive interference above. It is important to remark
that Coulomb breakup completeley dominates the angle-
integrated cross section. Owing to the factor(2l + 1) , ap-
pearing in the partial-wave expansion, the main contribu-
tions forσBup come from large partial-waves, where nuclear
breakup is very small.

In our two-channel calculations, the reaction cross sec-
tion is given by

σR = σTF + σBup.

It can be expanded in partial-waves as

σR =
∑

l

σR(l), (26)

with
σR(l) =

π

k2
(2l + 1)

[
1−

∣∣Sl
0l,0l

∣∣2
]
. (27)

In Fig. 5 we showl − projected cross sections,σR(l), as
functions of l. They were obtained with the different ap-
proximations discussed in the previous section. The dotted
line gives the results of an optical model calculation with the
optical potential including the static effects of the halo. In
this case there is no coupling with the breakup channel so
that the only contribution toσR comes from fusion. For this
reason,σR(l) is only relevant at low partial-waves. These
waves are associated with close collisions, where the pro-
jectile is absorbed by the imaginary potential. In this way,
the partial-wave summation of eq.(26) may be truncated at
lmax ' 20. The dot-dashed line are the results of a coupled-
channel calculation with only nuclear coupling. Now, the re-
action cross section has also contributions from the nuclear
breakup. Although the nuclear form factor has a short range,
it reaches further than the imaginary potential. The sum
in eq.(26) should then include contributions from higher
partial-waves, with the truncation value being extented to
lmax ' 50. The dashed line corresponds to a couple-channel
calculation with only Coulomb coupling. Now the partial-
wave expansion converges very slowly. The cut-off angu-
lar momentum should be aboutlmax ' 500. The solid line
was obtained with a coupled-channel calculation with both
Coulomb and nuclear couplings. Comparing this curve with
those for Coulomb and nuclear coupling separately, we find

destructive interference for angular momenta in the range
15 . l . 25 and constructive interference for angular mo-
mental & 25. Since large angular momenta are associ-
ated with small deflection angles and the other way around,
these conclusions are consistent with those reached through
Fig. 4.
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Figure 5. Partial-wave components of the reaction cross section.
The dotted line was obtained with an optical model calculation
while the remaining lines are results of coupled-channel calcula-
tions with different couplings. For details see the text.

We now show, in Fig. 6, the excitation functions ob-
tained by integration of the different contributions shown
in Fig. 5. We notice that while the Coulomb breakup is
the main contributor to the reaction cross section, there is
a cross-over between the fusion and nuclear breakup terms.
For the optical model parameters and the nuclear coupling
strength employed in this calculation, breakup dominates at
energies below' 32 MeV. Two points are worth emphasiz-
ing here. One is that for systems for which the Coulomb
breakup contribution is small, these two excitation curves
indicate the regions where breakup dominates over fusion,
or viceversa. Such systems are those for which the dipole
contribution to the Coulomb potential is zero,e.g.6Li→4He
+ 2H. The second point is that the cross-over does not take
place at the Coulomb barrier, but a value of the energy which
depends on the system, in particular on the binding energy of
the fragmenting nucleus, the optical model parameters and
the nuclear coupling strength.

3.3 Elastic Scattering

In Fig. 7 we present the elastic scattering cross sections cal-
culated with the different approximations discussed in the
text. The collision energy is 30% above the Coulomb barrier
and the results are normalized with respect to the Ruther-
ford cross section. Since the cross section for the238U tar-
get turned out to be very similar to that for209Bi, we only
show the former. Results of optical model calculations with
the optical potential not including static effects of the halo
and including them are respectively represented by the dot-
ted and the dashed lines. The dot-dashed line was obtained
with a coupled-channel calculation with Coulomb coupling.
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The solid line corresponds to a coupled-channel calculations
including both Coulomb and nuclear couplings.
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Figure 7. Elastic angular distribution in the6He+238U collision.
The collision energy is 26 MeV and the results are normalized with
respect to the Rutherford cross section. For details, see the text.

The two optical model calculations show some differ-
ences. Firstly, the cross section obtained with the halo is
smaller at large angles. This results from the reduction of
the Coulomb barrier when the halo is taken into account
(see table I). A lower Coulomb barrier leads to larger fu-
sion absorption at low partial-waves (large scattering angles)
and, thus, to smaller elastic cross sections. The two curves
also show differences at smaller angles, between20◦ and the
main maximum atθ ' 60◦, where the cross sections oscil-
late. Since the potential with the halo has a longer range the

main maximum is shifted to a smaller angle and the interfer-
ence between trajectories is slightly intensified.

We now consider the dynamic effects of the halo con-
tained in the coupled-channel calculations. Due to the long
range of the electric dipole coupling, the convergence of the
calculations requires a very large matching radius (∼ 360
fm) and the inclusion of very high partial waves (lmax ∼
800). We notice that the electric dipole coupling leads to a
strong reduction of the elastic cross section, even at small
angles. A similar reduction, although less pronounced, is
encountered in collisions of deformed nuclei with heavy col-
lision partners [38]. In this case, the loss of flux in the elastic
channel arises from Coulomb excitation of rotational states
through the electric quadrupole coupling. Comparing the
solid and the dot-dashed lines, we conclude that the nuclear
coupling leads to further reduction of the cross section over
a broad angular region. In spite of its short range, this effect
is very important even at angles as low as50◦.

We should mention that elastic scattering measurements
of 6He on209Bi [39] and208Pb [40] have recently been re-
ported. The trend of these data follow the one shown in
Fig. 7, namely a reduction of the elastic scattering cross sec-
tion from Rutherford even at small angles. The energies
at which these measurement were taken are, respectively
Elab =22.5 MeV and 29.6 MeV respectively. These en-
ergies correspond to 1.2Eb and 1.39Eb is the barrier height
of the system under study. The data in fact show that at,
sayθCM = 25◦, σ/σR = 0.6 in the case of6He+ Pb, to
be compared to about unity for the similar, non-exotic sys-
tem,6Li + 208Pb. In the case of6He + 209Bi at the lower of
the energies cited above, the corresponding ratio is about 0.9
compared to unity for6Li + 209Bi. It is important to men-
tion that the analyses of the above data were performed with
the full CDCC. It is gratifying that our schematic calcula-
tion seems to capture the essential physics of the scattering
of exotic nuclei.

4 Conclusions

We have used the schematic model of ref.[26] to investigate
the importance of static and dynamic effects of the6He halo
in collisions with heavy targets. In this model, the two neu-
trons in the6He halo are treated as a single particle, the di-
neutron, and the breakup channel is approximated by a sin-
gle effective state. Although this model leads to an overesti-
mation of the fusion cross section, it can be used in a qual-
itative analysis. The coupled-channel calculations used op-
tical potentials derived by the folding method and included
Coulomb and nuclear couplings within the dipole approxi-
mation.

We have performed calculations of fusion, breakup, re-
action and elastic cross sections. In the case of fusion, our
results were compared with recent experimental data. Since
there are no data available for the remaining cross sections,
we have compared results of the different approximations
discussed in the text.
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• TABLE I: Potential barriers in the collisions4,6He+238U and4,6He+209Bi. In the case of6He the table shows the potential barriers
for the folding potential with gaussian density (no halo) and with a density that includes a contribution from the halo (with halo).

System 4He +238 U 6He +238 U (no halo) 6He +238 U (with halo)
VB (MeV) 21.8 21.4 20.1

System 4He +209 Bi 6He +209 Bi (no halo) 6He +209 Bi (with halo)
VB (MeV) 21.2 20.1 19.2

The static effects of the halo on the fusion cross sec-
tion were shown to be very important above and below
the Coulomb barrier. The dynamic effects associated with
channel-coupling are more important at sub-barrier ener-
gies. Comparing theoretical fusion cross sections with data
for the 6He +238U system, we found that the experimental
results are consistent with the upper and lower limits deter-
mined in our calculation, except at a very low energy, where
the experimental value is much larger that predicted by the
theory. In the case of the6He +209Bi system, the agree-
ment is worse. The experimental results fall below our lower
limit except for energies well above the barrier. We believe
that this disagreement is a consequence of the absence of
continuum-continuum coupling in our model.

Our calculations of the breakup cross section have
shown that Coulomb breakup dominates at angles below
∼ 60◦ while the nuclear coupling is more important above
this angle. We have also shown that Coulomb-nuclear inter-
ference is constructive below∼ 50◦ and destructive above
this angle. In the case of elastic scattering, the dynamic ef-
fects of the halo were shown to be much more important
than the static ones.
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