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A fluid of domain walls may have an effective equation of statepw = − 2
3
ρw. This equation of state is

qualitatively in agreement with the supernova type Ia observations. We exploit a cosmological model where
the matter content is given by a dust fluid and a domain wall fluid. The process of formation of galaxies is
essentially preserved. On the other hand, the behaviour of the density contrast in the ordinary fluid is highly
altered when domain walls begin to dominate the matter content of the Universe. This domain wall phase occurs
at relative recent era, and its possible consequences are discussed, specially concerning the Sachs-Wolfe effect.

One of the most surprising observational results in cos-
mology in the end of this century is due to the use of the
Supernova type Ia as standard candles in the evaluation of
luminosity distance as function of the redshiftz. The two
groups consecrated to this program [1, 2] arrived at the same
conclusion: the Universe is now in an accelerated phase.
The inflationary paradigm, initially restricted to the very
early Universe, was transferred to the Universe today with
strinking consequences, for example, for the age of the Uni-
verse and many other cosmological parameters [3, 4]. The
most accepted results [5] indicate that the value of the de-
celerating parameter today is given byq = − äa

ȧ2 ∼ −0.66.
If a Universe filled by a perfect fluid is considered, with an
equation of statep = αρ, the evolution of the scale factor is
given bya ∝ t

2
3(1+α) and the decelerating parameter reads

q = 1+3α
2 . In this case,q ∼ −0.66 implies α ∼ −0.77.

Hence, the Universe today should be dominated by a fluid
with negative pressure such that the strong energy condition
is violated.

One of the main issues related to this observational re-
sults, is the nature of this negative pressure fluid. The
position of the first acoustic peak in the spectrum of the
anisotropy of cosmic microwave background radiation is re-
lated to the total density of the Universe. In spite of the fact
that there is not until now doubtless observational results
indicating where precisely this first acoustic peak is located,
the recent data coming from BOOMERANG and MAXIMA
projects indicate that the density of the Universe is near the
critical density [6, 7]. Hence, it can be assumed that the Uni-
verse is spatially or nearly spatially flat. On the other hand,
the clustered mass is responsable for0.3 ∼ 0.4 of the crit-
ical density. Consequently, from this data it is possible to
conclude that0.7 ∼ 0.6 of the total matter of the Universe is
a smooth component which is generally called dark energy.

A fluid of negative pressure violating the strong energy
condition does not cluster at large scale. In particular, a cos-
mological constant, which can be represented by an equation
of statep = −ρ, remains perfectly smooth, since its density

fluctuations are exactly zero. However, the above mentioned
results for the deceleration parameter suggest a fluid differ-
ent from the cosmological constant. A very popular model
to describe this dark energy is the so-called “quintessence”,
a scalar field with an appropriate potential term such that
the effective equation of state evolves from a typical radia-
tion equation of state (p = ρ

3 ) to a negative equation of state
[8-11]. But, it is difficult from the avaliable data to exclude
others possibilities.

In this work, we will study a ”domain wall” cosmo-
logical model. Domain walls are topological defects that
appear in phase transitions in the early Universe, like oth-
ers kind of topological defects such as monopoles, cos-
mic strings and textures. When the topology of the vac-
uum manifold exhibits disconnected regions we are facing
domain walls: this comes out, generally, from a breaking
of a discrete symmetry group in the underline field model.
Domain walls are characterized by theπ0 homotopy group
[12] and its energy-momentum tensor is given byTµν =
diag(ρ, 0, ρ, ρ). Hence, the equation of state along they
andz spatial components isp = −ρ. A network of domain
walls at rest may be represented by an isotropic equation of
statep = − 2

3ρ.

Even if we will be specifically interested on the evolu-
tion of density perturbations in a Universe containing two-
dimensional topological defects, our study may have some
relevance for the so-called brane cosmology [13]. In this
scenario, matter and fields are confined on a three dimen-
sional brane in a five-dimensional space-time. This config-
uration has some similarities with the model to be studied
here, since the energy-momentum tensor for it is given by
Tµν = diag(ρ, p, p, p, 0)δ(y), wherey is the coordinate
associated with the fifth dimension. Whenp = −ρ, this
energy-momentum tensor is very close to the one studied
here. But, it must be remarked that in brane cosmology
the dynamics is driven by modified Einstein equations: the
source is quadratic in the matter term in the right hand side
of the equations of motion [14].
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In general, domain walls are generated at rest in the very
early universe at rest, with a curvature of the order of the
characteristic scale at that moment. They are accelerated
later if their interaction with other types of matter is small.
When they are moving, their effective equation of state be-
comes [12, 15]

p =
(

~v2 − 2
3

)
ρ . (1)

Hence, the effective equation of state of a network of domain
walls evolves from the rest case,p = − 2

3ρ, to the relativistic
casep = ρ

3 . When the domain walls reach the relativis-
tic regime, their characteristic length becomes comparable
to the the Hubble radius. In many weak interacting domain
walls model, the relativistic regime is reached when domain
walls begin to dominate the matter content of the Universe
[12].

However, domain walls must feel a friction force, pro-
portional to their velocity, due to their interaction with the
other components of the matter content of the Universe.
Generally, this leads to a damping effect; if the interaction
is weak, this damping effect is not enough to keep domain
walls in their initial rest state. Moreover, if this damping is
due to interaction with the background radiation, it can lead
to unacceptable large distortion in the cosmic microwave
background radiation. So, the balance between the repulsive
gravity effect, driving the acceleration of the domain walls,
and the friction force, implying a damping in their motion
and avoiding them to reach a relativistic regime, is not eas-
ily achieved. In many cases where this balance is achieved,
undesirable consequences appear.

In some specific cases it is possible to obtain a domain
wall model where these topological defects remain essen-
tially at rest with respect to the co-moving coordinate sys-
tem. As an example, there is the model exploited in [16],
where the domain walls interact with a dark matter gas, with
a reflexion coefficient of order of unity. In that case, the mo-
tion of the domain walls is strongly damped without lead-
ing to extremely large distortions in the microwave back-
ground radiation. Moreover, the domain walls characteris-
tic scale remains much smaller than the Hubble radius, but
sufficiently large to be considered essentially as flat walls.
In such a case, a network of domain wall, represented by
a perfect fluid model with an equation of statep = − 2

3ρ,
becomes a good approximation. However, in the toy model
exploited in [16] the domain wall network contributes to the
total density of the Universe but never dominates its matter
content. It is not excluded that some other models of this
kind may lead to a network of domain walls that follows the
Hubble flow and may eventually dominate the matter con-
tent of the Universe.

On the other hand, non-abelian domain wall networks
have a more complex structure, and may couple them-
selves through junction lines. Examples were developed in
[17, 18]. In these cases, simulations of the domain wall
network reveal that it can follow the Hubble flow, with a
mean domain wall separation of some tens of parsecs. The
effective equation of state isp = − 2

3ρ. They may domi-

nate asymptoticaly the matter content of the Universe. Such
models are very appealing in view of the possible acceler-
ated regime of the Universe today. It is these type of mod-
els, together with some possible variations of the friction-
dominated model described before, that we will consider
here on.

From now on, we will not concentrate on a fundamental
description of a network of domain walls but, instead, we
will consider a phenomenological description of this net-
work. Hence, the main point which will interest us is that
this network of domain walls may be described by the above
mentioned equation of state which is in the allowed range of
possible values determined by the supernova results. There
are also claims that the range of allowed values forα may
be much more narrow [11]. However, it seems that, in the
present state of art, it is not possible to exclude a network of
domain walls as one of the possible realizations of the dark
energy.

In reference [19, 20] a domain wall dominated Universe
has been studied using the so-called solid dark matter model
(SDM). In [19], the implications for the anisotropy of cos-
mic background radiation has been addressed, using some
modifications of the CMBFAST code. Some specific signs
of such SDM model have being identified. In the present
work, we return back to this problem, but trying to develop
as far as possible an analytical model. In this way, we intend
to identify until which extent a domain wall phase will affect
some observable quantities. Our goal is to control explicitly
some physical inputs concerning this domain wall phase.

We will couple a domain wall fluid with a pressurelless
fluid. Hence, the effective equation of state of this two fluid
model evolves fromα = 0 to α = − 2

3 . In this sense, this
phenomenological model exhibits some similarities with the
quintessence one. However, the fact that we are exploiting
a hydrodynamical description will allow us to find exact so-
lutions. Moreover, we will perform a perturbative study of
such model where both fluids fluctuate (what seems to be the
correct way to treat the problem). Then, the consequence of
the existence of the domain wall fluid for the evolution of
density perturbations will be analyzed. In fact, in principle
the consequence of the existence of this negative pressure
fluid is profound, even with respect to the evolution of den-
sity perturbations in the ”ordinary” fluid: density contrast in
the ordinary fluid stops to increase when the domain wall
fluid begins to determine the evolution of the Universe. But,
comparison with some observational data shows that actu-
ally the implications of the existence of that ”exotic” fluid
for the formation of structure and the anisotropy of the cos-
mic microwave background radiation deserves a much more
detailed analysis due to the fact that this fluid dominates the
matter content of the Universe quite recently.

We consider a two-fluid model where besides the do-
main wall component there is also dust whose equation of
state ispd = 0. A dust-dominated phase must have ocurred
prior to the accelerated phase in order to allow gravitational
instability to generate local structures. Hence, the field



836 Brazilian Journal of Physics, vol. 33, no. 4, December, 2003

equations are

Rµν − 1
2
g

µν
R = 8πG

[
d

T µν
+

w

T µν

]
, (2)

d

T
µν

;µ
= 0 ,

w

T
µν

;µ
= 0 , (3)

where
d

Tµν = ρduµuν and
w

Tµν = (ρw + pw)uµuν − pwgµν

are the energy-momentum tensor for the dust and domain
wall fluids, respectively.

An isotropic and homogeneous Universe is represented
by the Friedmann-Robertson-Walker metric:

ds2 = dt2−a2(t)
[

dr2

1− εr2
+r2(dθ2+sin2 θdφ2)

]
, (4)

whereε = 0,+1,−1 describe a flat, closed and open spatial
section respectively. The corresponding equations of motion
are

(
ȧ

a

)2

+
ε

a2
=

8πG

3

(
ρd + ρw

)
, (5)

ρ̇d + 3
ȧ

a
ρd = 0 , ρ̇w +

ȧ

a
ρw = 0 . (6)

Since (6) implyρd = ρd0
a3 andρw = ρw0

a , there is just one
equation to be solved:

(
a′

a

)2

= c1a + c2a
3 , (7)

wherec1 = 8πGρd0
3 , c2 = 8πGρw0

3 and the primes mean
derivatives with respect to the conformal timeη defined
as dt = adη. We have fixed alsoε = 0 (since this
value seems to be favoured by the observations). Defin-

ing sinh θ =
√

c1
c2

a, this non-linear differential equation

reduces to ∫
dθ√
sinh θ

= (c1c2)1/4η . (8)

The final solution for the scale factor is given as

a =
√

c1

c2
tan2

(
x(η)

2

)
, x(η) = am

(
(c1c2)1/4η

)
, (9)

where am(z) is the Jacobi amplitude function.

The scale factor has two asymptotic regime. For small
values of the cosmic timet → 0, a ∝ t2/3 ∝ η2 (0 <
η < ∞); for large values of the cosmic time,t → ∞,
a ∝ t2 ∝ 1

η2 (−∞ < η < 0). The effective equation

of state evolves frompeff ∼ 0 to peff ∼ − 2
3ρeff , where

ρeff = ρd + ρw. In fact, the deceleration parameter evolves
from 1

2 to− 1
2 . There is an initial dust dominated phase fol-

lowed by a domain wall dominated phase.

Since the model developed above displays a superlumi-
nal expansion for large values of the cosmic timet, an im-
portant question is how fluctuations in the ordinary and in
the exotic fluid behave. Fluctuations in the dust fluid are
affected in two ways: first by the fact that the scale factor
changes its behaviour; second, by the fact that fluctuations
in the dust are coupled to fluctuations in the domain wall
fluid. Since this two-fluid model is coupled through geome-
try, we will allow all fluids to fluctuate.

As usual, let us introduce small fluctuations around the
background solutions found before. In the equations (2,3) it
is introduced the quantities̃gµν = gµν +hµν , ρ̃d = ρd+δρd,
ρ̃w = ρw+δρw, ũµ

d = uµ
d +δuµ

d andũµ
w = uµ

w+δuµ
w, where

in each of these expressions, the right-hand side represents
a sum of the background solution and a fluctuation around
it. Note that the four-velocity for each fluid may fluctuate
independently.

The derivation of the equations which determine the evo-
lution of these quantities is standard [21]. We choose to fix
the synchronous coordinate conditionhµ0 = 0. In this case,
the final equations are, in the conformal time coordinate,

c

h′′ +
a′

a
h′ = −3

2

[
2
a′′

a
− 3

(
a′

a

)2]
∆d − 3

2

[
2
a′′

a
−

(
a′

a

)2]
∆w , (10)

∆′
d + Ψ− h′

2
= 0 , (11)

∆′
w + Θ− h′

2
= 0 , (12)

Ψ′ +
a′

a
Ψ = 0 , (13)

Θ′ + 3
a′

a
Θ + 2n2∆w = 0 . (14)

In deriving these equations we have made the following re-
definitions: h = hkk

a2 , ∆d = δρd

ρd
, ∆w = δρw

ρw
, Ψ =

aδui
d,i, Θ = aδui

w,i. Moreover, the spatial dependence of

each quantity is such that the Helmhotz equation is obeyed:
∇2Q(~x, t) = −n2Q(~x, t)

Equations (10,11,12,13,14) seems to admit no exact so-
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lution, not only because of the coupling between all quan-
tities, but mainly because of the complicated form of the
background expression for the scale factor. However, it
is possible to obtain analytical solutions in the asymptotic
regimes. Before to determine these analytical solutions, we

remark that it is possible to setΨ = 0, since this quantity
decouples from the others, and it contribute only through a
decreasing inhomogeneous term. Hence, we can reduce the
above system of equations to just two coupled equations:

c

∆′′
d + 3

a′

a
∆′

d = 3∆′′
w + 9

a′

a
∆′

w − 2n2∆w , (15)

∆′′
d +

a′

a
∆′

d +
3
4

[
2
a′′

a
− 3

(
a′

a

)2]
∆d = −3

4

[
2
a′′

a
−

(
a′

a

)2]
∆w . (16)

d

First, let us solve the perturbed equations for the dust
phase. In this case,a ∝ η2 and equation (16) reduces to

∆′′
d + 2

∆′
d

η
− 6

∆d

η2
= 0 , (17)

leading to the well known solution for the evolution of the

density contrast in a pure dust Universe:∆d ∝ η2. Hence,
in the begining the domain wall fluid do not influence ei-
ther the background and the perturbed quantities. We can
solve also the homogeneous equation for the fluctuation in
the domain wall fluid, obtaining

c

∆w = η−5/2

{
C1I5/2

(√
2
3
nη

)
+ C2K5/2

(√
2
3
nη

)}
+C3 , (18)

d

whereKν(x) andIν(x) are the modified Bessel’s functions
and theCi are integration constants. The complete solu-
tion for (15), including the non-homogeneous term, adds to
the homogeneous solution a constant term that depends in-
verselly on the wavenumbern. However, this is not valid in
the limit n → 0. In this case, which represents large scale
perturbations, the complete solution is given by

∆ω = C4η
2 + C5η

−5 , (19)

exhibiting a growing mode which evolves exactly like the
growing mode for ordinary matter, in agreement with the

general result given in reference [22].
In the other asymptotic limit, the domain wall fluid dom-

inate and the scale factor behaves asa ∝ η−2, wheret →∞
meansη → 0−. The coupled system (15,16) reduces to

∆′′
d − 6

∆d

η
= 3∆′′

w − 18
∆′

w

η
− 2n2∆w , (20)

∆′′
d − 2

∆′
d

η
= −6

∆ω

η2
, (21)

which can be expressed in terms of a single third order equa-
tion:

c

∆′′′
w − 7

∆w

η
+

[
− 2

3
n2 +

14
η2

]
∆′

w+
[
2
3

n2

η
− 14

η3

]
∆w = 0 . (22)

This equation can be solved remembering that the synchronous coordinate condition has a residual coordinate freedom [23].
Using this fact, it is easy to see that∆w ∝ η is a solution of the third order differential equation. Hence, it is possible to reduce
the order of the equation obtaining the final solution

∆w = η

{ ∫
η

5
2

[
D1I5/2(

√
2
3
nη) + D2K5/2(

√
2
3
nη)

]
+D3

}
, (23)
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where theDi are again integration constants.
We are now able to analyse the results obtained. The first

important point is that in the begining of the dust dominated
phase, the domain wall fluid plays no important role: the
dust density contrast evolves exactly as in a pure dust model.
Since, it is at this period that galaxies form, it is possible
to state that the presence of the domain wall fluid will not
spoil this scenario. The density contrast for the domain wall
fluid exhibits, on the other hand, features that deserves some
comments. In the long wavelength limitn → 0, it presents
a constant mode and a decreasing mode. However, in the
small wavelength limitn → ∞, it displays an exponen-
tial increasing mode. This may lead to instabilities. How-
ever, it has been shown in [24, 25] that these instabilities
are consequence of the hydrodynamical approach employed
here. The hydrodynamical approach is a phenomenologi-
cal description, which mimics some features of this fluid of
topological defects. However, when we substitute this hy-
drodynamical approach by a field description, the instabil-
ities in the small wavelength limit disappears, keeping the
behaviour in the long wavelength limit unaltered. It has been
showed in [25] that the long wavelength limit is insensitive
to the approach used.

In the other asymptotic regime, the domain wall fluid
exhibits only decreasing modes. In fact, whenn → 0, we
find

∆w ∼ D1η
6 + D2η

2 + D3η , (24)

which goes to zero as time evolves. In this same limit, the
density contrast in the dust fluid exhibits decreasing and
constant modes:

∆d ∼ D1η
7 + D2η

2 + D3 . (25)

Hence, as the domain wall fluid dominates the matter con-
tent of the Universe, density perturbations in the ordinary
fluid do not grow anymore. This is essentially due to the
coupling of both fluids at perturbative level.

The main question that comes out from these results is
if there is other observational consequences. In fact, this
is a much more difficult question for the following reasons.
Observations today indicate that around40% of the matter
of the Universe suffers the process of gravitational collapse,
while the others60% remain a smooth component. Accept-
ing that the Universe is flat, we have thanΩc ∼ 0.4 and
Ωs ∼ 0.6 today, where the subscripts designates the clus-
tered and the smooth components of the Universe. The clus-
tered component may be not baryonic but it is quite possibly
a cold component, i.e., a pressurelless fluid, like the ordi-
nary matter introduced in the model developed above. The
smooth component must violate the strong energy condition,
as the domain wall fluid considered here. SinceΩc ∝ a−3

andΩs ∝ a−1, fixing the value of the scale factor equal
to one today, we can evaluate when the smooth component
begins to dominate the matter content of the Universe. Im-
posingΩc = Ωs and remembering that the redshift is given
by z = −1 + a0

a , we find that the domain wall fluid domi-
nated era begins atz ∼ 0.22. Accepting that the age of the

Universe ist0 ∼ 13 Gy, this happens att ∼ 11.7 Gy. This
is quite recent.

Of course, this domination of the domain wall fluid
drives an accelerated expansion, which is reflected in the
high redshift supernova measurements. For the anisotropy
of the cosmic microwave background radiation the situation
is much less clear. If we think on the integrated Sachs-Wolfe
effect, the domain wall dominate at about10% of the inte-
gration interval. But we must be cautious in saying that this
would lead to no modification at all with respect to a pure
dust Universe since we must verify how the different mul-
tipole moments are affected during the travel from the last
scattering surface to the observer today. It may happen that
for some class of multipole moments this modification at the
very end of the trajectory leads to a quite different behaviour.

However, even qualitativelly it is possible to verify that
the domain wall dominated phase will have some conse-
quences for the anisotropy of the cosmic microwave back-
ground radiation. This anisotropy is determined by the
Sachs-Wolfe formula

∆T

T
=

1
2

∫ ηr

ηe

d

dη

(
hij

a2

)
eiejdη , (26)

where we have tried to keep our previous definitions;ηe and
ηr are the emission and reception time andei is an unitary
vector defining the direction of observation. The perturbed
metrichij may be decomposed conveniently as

hij = a2

(
h1δijQ +

h2

n2
Q,i,j

)
. (27)

Hence,h = 3h1 + h2. It is possible to writte down equa-
tions governing the behaviour of these metric functions [26].
Transposing these equations for our definitions, we obtain in
particular

h′′1 + 2
a′

a
h′1 = −

[
2
a′′

a
−

(
a′

a

)2]
∆w . (28)

In the long wavelength limit this equation leads to

h′1 ∼ D1η
5 + D2η + D3 + D4η

4 , (29)

with a similar expression forh′2. Hence, a constant mode
will appear in the integral of the Sachs-Wolfe effect. In spite
of the fact that density perturbations remain constant or de-
crease, we must expect important distortions in the cosmic
microwave background radiation. It is important to note that
the constant mode is associated to the residual coordinate
freedom: but this mode may have physical meaning due to
the junction conditions between the different phases of evo-
lution of the Universe.

Domain walls are topological defects, metastable, which
could be originated in phase transitions in the primordial
Universe. It has already be argued that domain walls may
play an important role in the evolution of the Universe [12].
Indeed, some domain walls models may lead to an acceler-
ated Universe, with a value for the decelerating parameter
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compatible with the results coming from supernova type Ia
observations. We have verified here that the presence of this
fluid does not spoil the formation of galaxies process at the
begining of the dust dominated phase. However, in the deep
domain wall phase, matter perturbations do not grow any-
more due to the coupling with the domain wall fluid. Even
if the domain wall fluid would dominate for a small interval
of time, this may have important consequences.

The goal of the present paper was to develop an analyt-
ical domain wall cosmological model, verifying in particu-
lar its consequence for the evolution of density perturbations
and for the Sachs-Wolfe effect. In a preceding work [27], we
have studied a two-fluid model where ordinary matter was
coupled to a cosmic string fluid. A network of cosmic string
may be represented by an equation of statep = −ρ

3 . Hence,
in principle such fluid is outside the observational limits im-
posed by supernova type Ia observations, in opposition to
what happens in the case of domain walls. But, there are
other important differences: when the string fluid dominates
the evolution of the Universe, perturbations in the ordinary
fluid may still grow, although very slowly. In the case of do-
main walls, perturbations in the ordinary fluid simply ceases
to grow. In some sense, this is due to the fact that in the case
of cosmic string, density contrast in the cosmic string fluid
decouples from density contrast in the ordinary fluid, what
does not happen in the case of domain walls. As it has been
argued before, this may lead also to consequences in what
concerns the anisotropy of cosmic microwave background.
We intend to perform such analysis from the fundamental
definition of the Sachs-Wolfe effect in terms of the metric
functions.
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