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We analyze gauge theories based on abeliaforms in real compact hyperbolic manifolds. The explicit
thermodynamic functions associated with skew—symmetric tensor fields are obtained via zeta—function regular-
ization and the trace tensor kernel formula. Thermodynamic quantities in the high—temperature expansions are
calculated and the entropy/energy ratios are established.

1 Introduction for a suitable scalak,. Moreover for the Casimir operator
Q of G, with Q operating on smooth sectiof$° .- of E;

It is known that the thermodynamics of quantum fields in one hasC =€ —A.1 ; see Lemma 3.1 of [3]. Fox > 0 let
an Einstein universe for some radius is equivalent to that

of an instantaneously static closed Friedmann—Robertson— (X ,E,), ={s €T®E, |-Ls=\s} 1)
Walker universe. The field thermodynamics of positive cur-
vature Einstein spaces was discussed by several authors b
fore. In particular, the so-called entropy bounds or entropy . .

to thermal energy ratios were calculated and compared withVe hote that_smcé( IS compact we can o_rd.e r the spectrum
known bounds such as the Bekenstein bound or the Cardy—Of —L by takingd = Ag < Ay < Ag <---;limy00 )ty =
Verlinde bound. For example, for a massless scalar field in go.(:lltlimlllbe_conveimenj[ rBoreO\;]er o vgrk7W|thl;he norTaI-
S3 space this was done in [1] and for a massive scalar fielg'#€d -ap aciant, = —c(D)L wherec(D) = 2(00 -1 =
in [2]. Here we wish to extend the evaluation of those type 2(2N — .1)_' ) L, has spect.rurr{c(D)Aj 7mﬂ'}fj:0. where
of bounds to the case of skew symmetric tensor fields in realth® multiplicity m; of the eigenvalue:(D)); is given by
hyperbolic spaces. m; = dim I'* (X 7Er(p>),\j-

Be the space of eigensectionsb€orresponding ta. Here

We shall work with aD—dimensional compact hyper- It is easy to prove the following properties for operators
bolic spaceX with universal coveringy/ and fundamental — and forms.dd = 66 =0, § = (—1)PP+DH s s, 5w, =
groupl’. We can represe/ as the symmetric space/ K, (—1)”(D*P)wp. Let oy, B, be p—forms; then the invari-

whereG = SOi(D,1) and K = SO(D) is a maximal  ant inner product is defined byy,, 8,) := [, & A *3,.
compact subgroup off. Then we regard” as a discrete  The operatorg and¢ are adjoint to each other with respect
subgroup of7 acting isometrically or/, and we takeX to to this inner product fop—forms: (dcy,, 5,) = (o, dBy).

be the quotient space by that actioti:= T'\M = T'\G/K. In quantum field theory the Lagrangian associated with

Let 7 be an irreducible representation &f on a complex  takes the form: L = dw, A *dw, (gauge field); L =
vector spacé’., and form the induced homogeneous vector dw,A*dw, (Co—gauge field). The Euler-Lagrange equations
bundleG x i V., (the fiber product of7 with V. over K) supplied with the gauge givé,w, = 0, dw, = 0 (Lorentz

— M over M. Restricting the& action toI" we obtain the  gauge); L,w, = 0, dw, = 0 (co—Lorentz gauge). These
quotient bundlel, = I'\(G xx V;) — X = I'\M over Lagrangians give possible representation of tensor fields or
X. The natural Riemannian structure dh(therefore onX) generalized Abelian gauge fields. The two representations
induced by the Killing form( , ) of G givesriseto aconnec- of tensor fields are not completely independent. Indeed,
tion LaplacianC on E;.. If Qx denotes the Casimir operator there is a duality property in the exterior calculus which
of K —thatisQg = — ny-, for a basis{y; } of the Lie gives a connection between star—conjugated gauge tensor
algebrak, of K, where(y; ,y¢) = —0;¢, thent(Qx) = A, fields and co—gauge fields.
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2 The trace formula applied to the  For the identity component we have

tensor Kernel B Vo [ .
(i) = [ [ et @)
We can apply the version of the trace formula developed by () Jo R

Fried in [4]. First we define additional notation. the .
natural r[e;])resentation FO(2N — 1) on A”CQfolrone where Vi = x(1)Vol(I'\G) /4w, and we deflneajz =

has the corresponding Harish—Chandra—Plancherel density?””’ + (po — 7)* po = (D — 1)/2 andbV) are constants.
given for a suitable normalization of Haar measdireon G Replacing the Harish—Chandra—Plancherel measure, we ob

by tain two representations f(zgrf,D)(s,j) which hold for odd
and even dimension:

T 2N -1
Hop(r) = sir—iror s Py, (r)rtanh(nr) , (j) N—1 0o
")~ o 4[F(N)]2< P ) oMy = O S o / gt o1
I'(s) —o 262 Jo

for0 <p < N — 1, where

p+1 3 2
P = I1 |+ (v-e+3) =
=2 _ Vrlon Z o)
N F(S) ~ 2(,2N

X / drr2Htanh(nr) et e)
R

T+ 1)I(s—t—1)

2 a2572€72
1 J
2
X r° 4+ | N -0+ - oo
E:l_!rz < 2> F(S + n)
’ + D b | (5)
is an even polynomial of degre&V — 2. One has that n=0 ’
ng(r) = PUZN—l—p(r) and /’Lgp(:,.) = M021\_f—1—p(r) fOF-
N < p < 2N — 1. Now define the Miatello coeffi- VFC(J‘) N oo
cients (see the ref. [5p{Y for G = SO;(2N + 1,1) ¢V (g ) = #f\)’“ ag’;,QNH/ dt 5"
by B, (r) = S0 a2 | 0 < p < 2N —1. Let (=0 0
Vol(T'\G) denote the integral of the constant functibion % / drr2le—tr?+ad)
I'\G with respect to th& — invariant measure of\G, in- R
duced bydz. For0 < p < D — 1, the Fried trace formula Vol N 1
[4] applied to the tensor kernel associated to the Laplace op- — IeNHINTp (g + )
erator on co-exact form8$'# is [6, 7]: I(s) = 2
(©m) 1 a%)QNH
r:[\r (e—tﬁp ) — XF (S—K—Q) W, (6)
J
p

> (-1 {Iép_j)(lct) +IPT(K) whereB,, is then-th Bernoulli number. Moreover, we de-

j=1 fine

+H T (K) + BT K) ~ by @

(=1)** (1—2-26-2n-1)

Snt = TRl I+ 2)

B2£+2n+2~ (7)
where b, are the Betti numbers. In the above formula
Il(f’) (K:) and Hﬁp)(/ct) are the identity and hyperbolic or-

bital integrals, respectively. In fact, we do not need the hyperbolic compor@}fﬁ (s,7)

since in the high temperature limit (see next section), only
the function@m (s, 4) will present contribution.
3 The spectral functions of exterior

forms 4 The high temperature limit

The spectral zeta function related to the Laplace opei&tor  sing the Mellin representation for the zeta function one
can be represented by the inverse Mellin transform of the ¢4 gptain useful formulae for the non—trivial temperature
heat kernekC; = Tr exp (—¢L;). Using the Fried formula,  gependent part of the identity and hyperbolic orbital com-
we can write the zeta function as a sum of two contributions: ponents of the free energy (for details see the ref. [8, 9, 10])

1 > i j—
L - - dtts_l I(J) K ](J 1) K . 1
C(Sl ]) F(S)/O ( r (Ke) + r (Kt) F;%(ﬁ,]) = o dz(r(2)
+ ngj)(lct) +H1£j*1)(lct)) Rz=c

o) (21 .\ .
P (s, 5) + P (s, ). 3) xI'(z — 1) f;( 5 J)ﬁ . ®
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A tedious calculation gives the following result:

Vrcéi\)za%_z,zw

FYV @) = - e TGN + 1)
1 _oN_
r (N + 2) [Nt
VG o
TN 1)

1
xT (N - 2) [0SR _g2n TV = 1)

ag]\), 2aNT (Nﬂ BNt

+O(6 21\/'4*3)7

)
B VFC2%+1‘1§J\)/ 2N+l

1
Vir (N ! 2)
xC(2N +2)I'(N +1)372N =2
VFC(j)

_ IN 41
; 1
- aéjl\)f,QN-HF (N + 2) 0‘32} B2

Var
+0 (872N *2). (10)

FPN (6.5 =

C2N)I(N)
1

()
X [azJN—z,zN-HF (N 5

The contribution associated to the hyperbolic orbital com-
ponent is negligible small.

4.1 The thermodynamic functions and the en-
tropy bound

In the context of the Hodge theory, the physical degrees of
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o (- 2)

(13)

VO

——=2((2N
Jir

X [F(N - 1)‘1%1;\)/—4,21\/

+F(N)a$\)f 221\/04;27 ]:| ,

A;(2N5T) =

and, for the odd dimensional case
VFC&)\;-H

Var

1
xT (N + 2) D(N + 1)ady nsrs

Aj(2N +1;T) = C(2N +2)

(14)

Vr CQ%H
vamr

(p)
AoN—22N+1

As(2N +1;T) =
F(N‘z)
-T (N+ ;)

In fact, in the sums (12) - (15) only terms containing
the Miatello coeﬁlmentmé’;)D survive and define the co-
efficients 4; and 4,. The entropy and the total energy
can be obtained with the help of the following thermody-
namic relations:S(?)(3) = 20FP)(B) /08, EP)(3) =
d(BFP)(3))/9p3. Therefore,

((2N)I(N)

(p)

AoN 2N+10‘2] . (15)

SPIB) = (D+1)A(D;T)BP
+(D —1)Ay(D; )3~ P+20 (B~ P*1) (16)
EP(B) = —DA(D;T)p P~

—(D = 2)Ax(D; )~ + 0 (6777%).(17)

freedom are represented by the co—exact forms. Thus the

free energy becomes

=2 (-

J=0

i

(D)

However, if we perform the sum explicitly, we see that
FPNB) = F{”) (8,p).

In the high temperature lim{{3 — 0) we have

FPB) = —Ay(D;D)B~P — Ay(D;T) g~ P
+0(B7P*3), (11)
where, for the even dimensional case
Vrc(P)
A (2N:T) = —=2N(¢(2N + )T (N
1NT) = RN + I (V)
1

xI' (N—|— 2) aé’;\)[ 22N (12)

(F(D B,p—j) + F” (ﬁ,p—j—l))-

The entropy/energy ratio becomes

SPB) _
ED)(5)

D+1
D

2 Ao(D;T)
D? 4,(D:T)

B+ =5 B*+0(8%). (18)

5 Concluding remarks

We have obtained the high—temperature expansion for the
entropy/energy ratios of abelian gauge fields in real com-
pact hyperbolic spaces. The dependence on the Miatello
coefficients related to the structure of the Harish—Chandra—
Plancherel measure starts from the second term of the ex-

pansion. In the case of scalar fielg}s = 0) we have eq.
(18) with
As(2N;T) 2 (2N -1)
A(2N;T) 2N —1¢(2N +1)
0
" 1 afy 42N _ o
N—-1,0 o
2N—-22N
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AN+ 1,T) 1 ((2N)
A1 (2N + 1;T) N C(2N +2)
0
o 2 a(21\)172,2N+1 2
2N -1 40 o
N, 2N+1

wheread = p3 + m? (o = p§ for the massless case).
For three—dimensional hyperbolic manifolds the Miatello

1 and therefore

coefficients reads [11]a)” = o) =
S@(B)/E®(B) = (4/3)8+(10/31%)(2—af) °+O(5).

This formula is in agreement with result obtained in [2]

A. A. Bytsenko, V. S. Mendes, and A. C. Tort

References

(1]

(2]
(3]
(4]
(5]
(6]

I. Brevik, K. A. Milton, and S. D. Odintsov, Ann. of Phys.
302 120 (2002).

E. Elizalde and A. C. Tort, Phys. Rev. &Y, 124014 (2003).
N. Wallach, J. Diff. Geom11, 91 (1976).

D. Fried, Invent. Math84, 523 (1986).

R. Miatello, Trans. Am. Math. So@60, 1 (1980).

A. A. Bytsenko, L. Vanzo and S. Zerbini, Nucl. Phys5B5,
641 (1997).

where entropy bounds have been calculated for spherical ge-[7] A. A. Bytsenko, A. E. Gongalves and F. L. Williams, Int. J.
ometry and where the dependence on the geometry of the
background also starts from the second term of the expan- [g]

sion.
Acknowledgements

A.A.B. would like to thank Fundd&ip de Amparo a

Pesquisa do Estado dé&Paulo (FAPESP/Brazil) and the
Conselho Nacional de Desenvolvimento Ciéob e Tec-

El

(10]

Mod. Phys. A18, 2041 (2003).

E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko and
S. Zerbini,Zeta Regularization Techniques with Applications
(World Scientific, Singapore, 1994).

A. A. Bytsenko, G. Cognola, L. Vanzo and S. Zerbini, Phys.
Rep.266 1 (1996).

A. A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti and S.
Zerbini, Analytic Aspects of Quantum Fiel@#/orld Scien-
tific, Singapore, 2003).

noldgico (CNPg/Brazil) for partial financial support, and the [11] A. A. Bytsenko, E. Elizalde and M. E. X. Guintses, Int. J.

Instituto de Ksica Térica (IFT/UNESP) for kind hospital-

ity.

Mod. Phys. A18, 2179 (2003).



