
Brazilian Journal of Physics, vol. 34, no. 3B, September, 2004 1193

Thermodynamics of Abelian Forms in Real
Compact Hyperbolic Spaces

A. A. Bytsenko,
Departamento de F́ısica, Universidade Estadual de Londrina, Londrina, Brazil

V. S. Mendes,
Departamento de F́ısica, Universidade Estadual de Londrina, Londrina, Brazil

and A. C. Tort
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We analyze gauge theories based on abelianp−forms in real compact hyperbolic manifolds. The explicit
thermodynamic functions associated with skew–symmetric tensor fields are obtained via zeta–function regular-
ization and the trace tensor kernel formula. Thermodynamic quantities in the high–temperature expansions are
calculated and the entropy/energy ratios are established.

1 Introduction

It is known that the thermodynamics of quantum fields in
an Einstein universe for some radius is equivalent to that
of an instantaneously static closed Friedmann–Robertson–
Walker universe. The field thermodynamics of positive cur-
vature Einstein spaces was discussed by several authors be-
fore. In particular, the so-called entropy bounds or entropy
to thermal energy ratios were calculated and compared with
known bounds such as the Bekenstein bound or the Cardy-
Verlinde bound. For example, for a massless scalar field in
S3 space this was done in [1] and for a massive scalar field
in [2]. Here we wish to extend the evaluation of those type
of bounds to the case of skew symmetric tensor fields in real
hyperbolic spaces.

We shall work with aD−dimensional compact hyper-
bolic spaceX with universal coveringM and fundamental
groupΓ. We can representM as the symmetric spaceG/K,
whereG = SO1(D, 1) and K = SO(D) is a maximal
compact subgroup ofG. Then we regardΓ as a discrete
subgroup ofG acting isometrically onM , and we takeX to
be the quotient space by that action:X = Γ\M = Γ\G/K.
Let τ be an irreducible representation ofK on a complex
vector spaceVτ , and form the induced homogeneous vector
bundleG ×K Vτ (the fiber product ofG with Vτ over K)
→ M overM . Restricting theG action toΓ we obtain the
quotient bundleEτ = Γ\(G ×K Vτ ) → X = Γ\M over
X. The natural Riemannian structure onM (therefore onX)
induced by the Killing form( , ) of G gives rise to a connec-
tion LaplacianL onEτ . If ΩK denotes the Casimir operator
of K – that isΩK = −∑

y2
j , for a basis{yj} of the Lie

algebrak0 of K, where(yj , y`) = −δj`, thenτ(ΩK) = λτ

for a suitable scalarλτ . Moreover for the Casimir operator
Ω of G, with Ω operating on smooth sectionsΓ∞Eτ of Eτ

one hasL = Ω−λτ1 ; see Lemma 3.1 of [3]. Forλ ≥ 0 let

Γ∞ (X , Eτ )λ = {s ∈ Γ∞Eτ |−Ls = λs} (1)

be the space of eigensections ofL corresponding toλ. Here
we note that sinceX is compact we can order the spectrum
of −L by taking0 = λ0 < λ1 < λ2 < · · · ; limj→∞ λj =
∞. It will be convenient moreover to work with the normal-
ized LaplacianLp = −c(D)L wherec(D) = 2(D − 1) =
2(2N − 1). Lp has spectrum{c(D)λj ,mj}∞j=0 where
the multiplicity mj of the eigenvaluec(D)λj is given by
mj = dim Γ∞ (X , Eτ(p))λj

.

It is easy to prove the following properties for operators
and forms:dd = δδ = 0, δ = (−1)Dp+D+1 ∗ d∗, ∗ ∗ ωp =
(−1)p(D−p)ωp. Let αp, βp be p−forms; then the invari-
ant inner product is defined by(αp, βp) :=

∫
M

αp ∧ ∗βp.
The operatorsd andδ are adjoint to each other with respect
to this inner product forp−forms: (δαp, βp) = (αp, dβp).
In quantum field theory the Lagrangian associated withωp

takes the form: L = dωp ∧ ∗dωp (gauge field); L =
δωp∧∗δωp (co–gauge field). The Euler–Lagrange equations
supplied with the gauge giveLpωp = 0 , δωp = 0 (Lorentz
gauge);Lpωp = 0 , dωp = 0 (co–Lorentz gauge). These
Lagrangians give possible representation of tensor fields or
generalized Abelian gauge fields. The two representations
of tensor fields are not completely independent. Indeed,
there is a duality property in the exterior calculus which
gives a connection between star–conjugated gauge tensor
fields and co–gauge fields.
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2 The trace formula applied to the
tensor Kernel

We can apply the version of the trace formula developed by
Fried in [4]. First we define additional notation. Forσp the
natural representation ofSO(2N − 1) on ΛpC2N−1, one
has the corresponding Harish–Chandra–Plancherel density,
given for a suitable normalization of Haar measuredx onG
by

µσp(r) =
π

24k−4[Γ(N)]2

(
2N − 1

p

)
Pσp

(r)r tanh(πr) ,

for 0 ≤ p ≤ N − 1, where

Pσp
(r) =

p+1∏

`=2

[
r2 +

(
N − ` +

3
2

)2
]

×
N∏

`=p+2

[
r2 +

(
N − ` +

1
2

)2
]

is an even polynomial of degree2N − 2. One has that
Pσp(r) = Pσ2N−1−p

(r) and µσp(r) = µσ2N−1−p
(r) for

N ≤ p ≤ 2N − 1. Now define the Miatello coeffi-
cients (see the ref. [5])a(p)

2` for G = SO1(2N + 1, 1)
by Pσp(r) =

∑N−1
`=0 a

(p)
2` r2` , 0 ≤ p ≤ 2N − 1 . Let

Vol(Γ\G) denote the integral of the constant function1 on
Γ\G with respect to theG – invariant measure onΓ\G, in-
duced bydx. For 0 ≤ p ≤ D − 1, the Fried trace formula
[4] applied to the tensor kernel associated to the Laplace op-
erator on co-exact formsLCE

p is [6, 7]:

Tr
(
e−tL(CE)

p

)
=

p∑

j=1

(−1)j
[
I
(p−j)
Γ (Kt) + I

(p−1−j)
Γ (Kt)

+ H
(p−j)
Γ (Kt) + H

(p−1−j)
Γ (Kt)− bp−j

]
(2)

where bp are the Betti numbers. In the above formula

I
(p)
Γ (Kt) andH

(p)
Γ (Kt) are the identity and hyperbolic or-

bital integrals, respectively.

3 The spectral functions of exterior
forms

The spectral zeta function related to the Laplace operatorLj

can be represented by the inverse Mellin transform of the
heat kernelKt = Tr exp (−tLj). Using the Fried formula,
we can write the zeta function as a sum of two contributions:

ζ(s|Lj) =
1

Γ(s)

∫ ∞

0

dtts−1
(
I
(j)
Γ (Kt) + I

(j−1)
Γ (Kt)

+ H
(j)
Γ (Kt) + H

(j−1)
Γ (Kt)

)

≡ ζ
(D)
I (s, j) + ζ

(D)
H (s, j). (3)

For the identity component we have

ζ
(D)
I (s, j) =

VΓ

Γ(s)

∫ ∞

0

dtts−1

∫

R

dr µσj e
−t(r2+α2

j ), (4)

where VΓ = χ(1)Vol (Γ\G) /4π, and we defineα2
j =

b(j) + (ρ0 − j)2, ρ0 = (D − 1)/2 andb(j) are constants.
Replacing the Harish–Chandra–Plancherel measure, we ob-
tain two representations forζ(D)

I (s, j) which hold for odd
and even dimension:

ζ
(2N)
I (s, j) =

VΓC
(j)
2N

Γ(s)

N−1∑

`=0

a
(j)
2`,2N

∫ ∞

0

dt ts−1

×
∫

R

drr2`+1tanh(πr) e−t(r2+α2
j )

=
VΓC

(j)
2N

Γ(s)

N−1∑

`=0

a
(j)
2`,2N

[
Γ(` + 1)Γ(s− `− 1)

α2s−2`−2
j

+
∞∑

n=0

ξn`
Γ(s + n)
α2s+2n

j

]
, (5)

ζ
(2N+1)
I (s, j) =

VΓC
(j)
2N+1

Γ(s)

N∑

`=0

a
(j)
2`,2N+1

∫ ∞

0

dt ts−1

×
∫

R

drr2`e−t(r2+α2
j )

=
VΓC

(j)
2N+1

Γ(s)

N∑

`=0

Γ
(

` +
1
2

)

×Γ
(

s− `− 1
2

)
a
(j)
2`,2N+1

α−2s+2`+1
j

, (6)

whereBn is then-th Bernoulli number. Moreover, we de-
fine

ξn` :=
(−1)`+1 (

1− 2−2`−2n−1
)

n! (2` + 2n + 2)
B2`+2n+2. (7)

In fact, we do not need the hyperbolic componentζ
(D)
H (s, j)

since in the high temperature limit (see next section), only
the functionζ(D)

I (s, j) will present contribution.

4 The high temperature limit

Using the Mellin representation for the zeta function one
can obtain useful formulae for the non–trivial temperature
dependent part of the identity and hyperbolic orbital com-
ponents of the free energy (for details see the ref. [8, 9, 10])

F
(D)
I,H (β, j) = − 1

2πi

∫

<z=c

dz ζR(z)

×Γ(z − 1)ζ(D)
I,H

(
z − 1

2
, j

)
β−z. (8)
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A tedious calculation gives the following result:

F
(2N)
I (β, j) = −VΓC

(j)
2Na

(j)
2N−2,2N√
4π

Γ(N)ζ(2N + 1)

×Γ
(

N +
1
2

)
β−2N−1

−VΓC
(j)
2N√

4π
ζ(2N − 1)

×Γ
(

N − 1
2

) [
a
(j)
2N−4,2NΓ(N − 1)

− a
(j)
2N−2,2NΓ (N)

]
β−2N+1

+O(β−2N+3), (9)

F
(2N+1)
I (β, j) = −VΓC

(j)
2N+1a

(j)
2N,2N+1√

4π
Γ

(
N +

1
2

)

×ζ(2N + 2)Γ(N + 1)β−2N−2

−VΓC
(j)
2N+1√
4π

ζ(2N)Γ(N)

×
[
a
(j)
2N−2,2N+1Γ

(
N − 1

2

)

− a
(j)
2N,2N+1Γ

(
N +

1
2

)
α2

j

]
β−2N

+O (
β−2N+2

)
. (10)

The contribution associated to the hyperbolic orbital com-
ponent is negligible small.

4.1 The thermodynamic functions and the en-
tropy bound

In the context of the Hodge theory, the physical degrees of
freedom are represented by the co–exact forms. Thus the
free energy becomes

F (D)(β) =
p∑

j=0

(−1)j
(
F

(D
I (β, p− j) + F

(D)
I (β, p− j − 1)

)
.

However, if we perform the sum explicitly, we see that

F (D)(β) = F
(D)
I (β, p) .

In the high temperature limit(β → 0) we have

F (D)(β) = −A1(D; Γ)β−D−1 −A2(D; Γ)β−D+1

+O(β−D+3), (11)

where, for the even dimensional case

A1 (2N ; Γ) =
VΓC

(p)
2N√

4π
ζ(2N + 1)Γ (N)

×Γ
(

N +
1
2

)
a
(p)
2N−2,2N . (12)

A2(2N ; Γ) =
VΓC

(p)
2N√

4π
ζ(2N − 1)Γ

(
N − 1

2

)

×
[
Γ(N − 1)a(p)

2N−4,2N

+ Γ(N)a(p)
2N−2,2Nα2

p−j

]
, (13)

and, for the odd dimensional case

A1(2N + 1; Γ) =
VΓC

(p)
2N+1√
4π

ζ(2N + 2)

×Γ
(

N +
1
2

)
Γ(N + 1)a(p)

2N,2N+1, (14)

A2(2N + 1; Γ) =
VΓC

(p)
2N+1√
4π

ζ(2N)Γ(N)

×
[
Γ

(
N − 1

2

)
a
(p)
2N−2,2N+1

− Γ
(

N +
1
2

)
a
(p)
2N,2N+1α

2
p

]
. (15)

In fact, in the sums (12) - (15) only terms containing
the Miatello coefficientsa(p)

2`,D survive and define the co-
efficients A1 and A2. The entropy and the total energy
can be obtained with the help of the following thermody-
namic relations:S(D)(β) = β2∂F (D)(β)/∂β, E(D)(β) =
∂(βF (D)(β))/∂β. Therefore,

S(D)(β) = (D + 1)A1(D; Γ)β−D

+(D − 1)A2(D; Γ)β−D+2O (
β−D+4

)
,(16)

E(D)(β) = −DA1(D; Γ)β−D−1

−(D − 2)A2(D; Γ)β−D+1 +O (
β−D+3

)
.(17)

The entropy/energy ratio becomes

S(D)(β)
E(D)(β)

=
D + 1

D
β +

2
D2

A2(D; Γ)
A1(D; Γ)

β3 +O (
β5

)
. (18)

5 Concluding remarks

We have obtained the high–temperature expansion for the
entropy/energy ratios of abelian gauge fields in real com-
pact hyperbolic spaces. The dependence on the Miatello
coefficients related to the structure of the Harish–Chandra–
Plancherel measure starts from the second term of the ex-
pansion. In the case of scalar fields(p = 0) we have eq.
(18) with

A2(2N ; Γ)
A1(2N ; Γ)

=
2

2N − 1
ζ(2N − 1)
ζ(2N + 1)

×
(

1
N − 1

a
(0)
2N−4,2N

a
(0)
2N−2,2N

− α2
0

)
,
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A2(2N + 1; Γ)
A1(2N + 1; Γ)

=
1
N

ζ(2N)
ζ(2N + 2)

×
(

2
2N − 1

a
(0)
2N−2,2N+1

a
(0)
2N,2N+1

− α2
0

)
,

whereα2
0 = ρ2

0 + m2 (α2
0 = ρ2

0 for the massless case).
For three–dimensional hyperbolic manifolds the Miatello
coefficients reads [11]:a(0)

0 = a
(0)
2 = 1 and therefore

S(3)(β)/E(3)(β) = (4/3)β+(10/3π2)(2−α2
0)β

3+O(β5).
This formula is in agreement with result obtained in [2]
where entropy bounds have been calculated for spherical ge-
ometry and where the dependence on the geometry of the
background also starts from the second term of the expan-
sion.
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