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In this work the properties of minority games containing agents which try to winning all the time are studied
by means of computational simulations. We have considered several ways of introducing above the rules clever
players using “strategies” which try to outdo the others endowed with statistically equivalent strategies and
compared the resulting behaviors of the ensemble. It is shown that by introducing such agents the overall
performance of the system gets significantly poorer. While the introduction of a very small fraction of these
never-loosing-players may not destroys the unordered / ordered phase transition of the standard minority game
we find that even for a low concentration of their presence only a state “worse” than random coin toss choices
sets in. These special agents/players have the role of impurities or vacancies in spin systems and their presence
may lead to a critical concentration where the usual phases are washed out.

The minority game (MG) is a very simple model of inter-
acting agents. Nevertheless it shows fascinating properties
and poses novel challenging questions to statistical mechan-
ics and its methods and ideas. It is a very simple toy model
for complex systems and may come to play the same role
in science as the Ising model, applicable in many interdis-
ciplinary subjects from physics to economy and biology to
name a few (see [1] for comprehensive and actual informa-
tion). In short, its main idea is the following: an odd number
of selfish players repeatedly has to choose one out of two
possible actions. These could be for example buying or sell-
ing at the stock market, taking the bus or the metro, which
internet router is the fastest (ie. less crowded). As it will
become clearer in the examples, the players that are in the
minority side will win the game. If there are more sellers
than buyers, the price will fall and the buyers will be in ad-
vantage. If there are lots of people in the metro it would have
been much more comfortable to take the bus and so on. This
kind of game was inspired by Arthur’s “El Farol” problem
[2]. There it was an overcrowded bar that rose his interest of
how a population of heterogeneous players interacts.

In this section we give a short and necessarily incom-
plete summary of the MG and their well-known properties.
Then we shall present our modified models and compare
them with the standard model. In the MG that was intro-
duced in [3,4],N agents (or players) choose at each time
step i one out of two possible options, say 0 and 1. Agents
that belong to the smaller of both groups win. They act com-
pletely independent, without any possibility of communica-
tion or interaction. Their only available information about
the other player’s actions is a “history” (or “memory”) of
the lastm games’ winners. There are two possible values

for each of the m entries of the history, so there are2m pos-
sible different histories. Every player is equipped with a set
of S strategies to determine their next choice. As the deci-
sion depends on the current history of the last games, these
strategies contain2m values, each of them representing the
choice for one of the possible histories. All of the2m entries
can be 0 or 1, so there are22m

different strategies. After all
agents having made their choice and the winning group be-
ing determined, the agents compare the predictions that their
strategies made with the present outcome. If a strategy was
right, it will be rewarded with one point. The agents will al-
ways use the best strategy, that means the one with the most
points, to take their choice. An interesting quantity in the
MG is the standard deviation
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whereR is the total number of rounds,N
(1)
i is the number of

agents playing 1 (or 0) in roundi. The standard deviation is
a measure for the efficiency of the system at distributing the
limited resources.N2

(≈ N−1
2

)
is the maximum number of

points to be won per time step. Small variations around this
value mean therefore, that the system is very efficient. Fig.
1 shows our results for two different values ofN . Numerical
simulations as Fig. 1 or in [5], as well as analytical calcula-
tions [6] show that the system undergoes a phase transition.
The two phases are separated by the minimum of the curve.
On the left side of the minumim we observe that the value
of σ varies widely from the medium value, whereas on the
right side these variations vanish almost completely. In [7]
it is shown that all the curves for different values ofN and
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m fall on a universal curve by using aσ2/N vs. 2m/N plot,
see Fig. 2. For large values of the ratioα = 2m/N the sys-
tem displays a cooperative phase (α > αc ' 0.34), for small
values (α < αc) the coordination of the agents is worse than
the one of a “random system”. The “random system” con-
sists of agents that make their choice by coin toss, without
using any strategy.
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Figure 1. SMG:σ vs. m for N = 301 andN = 501 S = 2;
R = 10000; 100 independent runs.

0,01
 0,1
 1
 10


0,1


1


10


 


 


 N = 101

 N = 301

 N = 501

 N = 801


si
gm

a

2

 / 

N



2
m
/ N


Figure 2. SMG:σ2/N vs. 2m/N ; S = 2; R = 10000; 100
independent runs.

These general properties do not depend on the number of
available strategiesS that the agents can use. This is shown
in Fig. 3 forS = 4. In Fig. 4 we directly compare the per-
formances of two ensembles with S=2 and S=4. There we
see that four strategies are less efficient than two strategies,
as it is explained in [7]. Only for larger values ofm(almost
random choice) the results are the same.
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Figure 3. SMG:σ2/N vs. 2m/N ; S = 2 andS = 4; R = 10000;
100 independent runs.
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Figure 4. SMG:σ2/N vs. 2m/N ; S = 2 andS = 4; R = 10000;
100 independent runs.

Among many of possible generalizations the standard
minority game with two choices can be generalized to more
than just two options [8]. In fact life would be kind of
sad, if there always were only two options to choose from.
The qualitative behavior remains the same as it is for two
choices. Only the valueαc where the phase transition oc-
curs depends on the number of choices.

Here we undertake a generalization which focuses on the
effects on the system of interacting heterogeneous agents
when privileged agents take out part of the generated re-
sources available to the “honest” players. There are many
ways of trying to do so and in the next section we present
some of them and its effects, notably the suppression of
the ordered/disordered phase transition if the population of
the above-the-rules players is higher than a given threshold.
In terms of spins systems [7], these agents play the role of
impurities or vacancies and their presence naturally lead to
a concentration threshold or impurity concentration limits
where order/disorder phase transition is washed out.
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So agents which get above the average rewards no matter
the global state of the system may seems a common place.
The method for achieving this goal may vary from naturally
inherited better strategies to breaking the rules. We wanted
to introduce this idea in the minority game, specially the lat-
ter case, and analyzed several different ways of doing so:

Model M1:
in addition toN agents equipped withS normal strate-

gies like in the standard MG there arek agents which always
join the winning (minority) side thus sharing the rewards. A
penalty is introduced: if the total number of the agents shar-
ing the points in a run exceeds the available resources, they
become looser. In Fig. 5 it is shown the standard deviation
vs. memory for this model fork = 0, 4, 6, and 10 which for
the number of agents considered is approximately the per-
centage of “clever” agents in the system. Clearly the overall
performance of the adaptive system becomes worse as soon
ask is different from zero. By depriving the normal play-
ers of their reward the extra agents increase the fluctuations
in the number of agents in the minority side thus favoring
higher fluctuations and this happens for any concentration
of the extra players for model M1. At about 10% of their
presence the averaged standard fluctuation is always above
the random coin tossing case (horizontal line in the graph)
and there is no longer a optimum distribution (minima for
σ).

Figure 5. MG;σ vs. m; N = 101, S = 2; model M1; averages
over 200 realizations.

Model M2: in addition to agents equipped withS nor-
mal strategies like in the standard MG there arek agents
which always join the winning (minority) side sharing
evenly with them the rewards for that run. In Fig. 6 it is
shown the standard deviation vs. memory for this model for
k = 0, 5, 10 and 20. Clearly the overall performance of
the adaptive system is again worse as soon ask is different
from zero and again depriving the normal players of their
full reward, the extra agents increase the fluctuations in the
number of agents in the minority side thus favoring higher
fluctuations ,ie., a large spread inσ, and this happens for any
concentration of the extra players for model M2. In this case
for low memories their presence may improves somewhat
the performance (which always a bad one) but at high mem-

ory values for allk considered the system performs worse
than the random coin case.

Figure 6. MG;σ vs. m; N = 101, S = 2; model M2; averages
over 200 realizations.

In Fig. 7 it is shown the utility function (a measure of the
effectiveness of the system in distributing resources [9]) for
the above two models. Again, both models have their per-
formance decreased when compared with the standard MG
model.

Figure 7. MG; utility function vs time;N = 101, S = 2, m = 8;
averages over 200 realizations.

Metc.: in addition to agents equipped withS normal
strategies like in the standard MG there arek agents which
always join the winning (minority) side and they exclude for
rewarding thek poorest performers up to that time among
the winners; or they look like normal agents if their strate-
gies win rewards otherwise they change the reward assign-
ment; or etc.

There is an infinity of ways of implementing above-the-
rules agents as well as complexing the model by introducing
evolutionary agents and penalties. However, the above two
simple models should illustrate the point that in these adap-
tive systems agents breaking the rules of the majority do so
at the expenses of decreasing the overall performance.

In conclusion, the effect of introducing agents which
somehow gets a share of the resources available, no mat-
ter how, seems to worsen the system resources distribution
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and effectiveness. Looking around, most of the time, this
should come with no surprise. What may be wonderful is
that by studying a very simple toy model, amenable to ana-
lytical study [6,7], it arises the possibility of quantifying the
effects of such agents either by numerical simulations (ex-
periments) or analytically which we leave for future works.
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