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We are interested in studying the transport properties of metallic single-wall carbon nanotubes (SWCNTSs)
with isolated magnetic impurities. We consider a metallic zigzag SWCNT in the form of an infinitely long
cylinder of diameteD, connected by two metallic electrodes under a bias vol#ageith a magnetic impurity
located on its surface. To describe the Kondo resonance we employ an impurity version of the atomic model,
previously developed to study the Kondo insulator properties in the lattice case. We calculate the approximate
Green’s functions of the impurity Anderson model by employing the exact solution of the atomic limit of the
Anderson model, where we use the completeness condition to choose the position of the chemical potential. We
consider the SWCNT Green'’s functions in a tight-binding approach. We calculate density of states curves that
characterize well the structure of the Kondo peak and we also present the dependence of the conductance with
the diameter of the SWCNT.

Keywords: Transport properties; Single-wall carbon nanotubes; Magnetic impurities

I. THE ZIGZAG SINGLE-WALL CARBON NANOTUBE I. CONDUCTANCE OF A ZIGZAG SWCNT

A single-wall carbon nanotube (SWCNT) can be described The Kondo effect explains the enhancement of the low-
as a graphene sheet rolled into a cylindrical shape so that themperature resistivity shown by a metal with magnetic im-
structure is one-dimensional with axial symmetry. Dependpurities at low temperatures. The Kondo effect was experi-
ing on their chirality, that can be expressed by the real spacgentally detected in quantum dots [2] and in carbon nanotube
unit VeCtorSgl and gz of the hexagonal |attice, the SWCNT devices [3] These systems can be modeled by the Ander-
vary from being metallic ( see Fig. 2) to semi-conducting (S€&on impurity model and in this paper we employ an impurity
Fig. 3). Inthis paper we are interested in studying zigzag SWyesjon of the atomic model, previously applied to study the
CNT's that correspond to the chiral vectdrs0), wherenis 1 4nqg insulators [8], to describe the electronic transport prop-
an integer proportlongl to the dlamefe_rof the T‘a”m“b‘? [11 erties of zigzag SWCNT's. In Fig. 1 we represent a pictorial
thg ;ﬁj?ﬁesgx(e:rg; (Ijsis?nlgz?/(fnr?gltgilgg\(,\lgﬁg? t?]én;igf;z view of the zigzag SWCNT with an impurity laterally attached

. [4]. At low temperatures and bias voltage, electron transport
nanotube can be written as [1] is coherent and a linear-response conductance is given by the

3 Landauer-type formula [5]
E§(k) = +yo {1i 4cos< \/ﬁka> cogj+ 4005261} , (1) 7
28’2 ong
62 (-3¢ ) swde @

with (—% < ka< %) .(@=1,..,2n) , whereg = I and
the hopping energy between the carbon atoms of the nanotu

b\gherenp is the Fermi function an&®(w) is the transmission
Yo, is considered as 2.7 eV. p

robability of an electron with energyw. This probability is
given byS(w) =2 | G, |2, wherel corresponds to the cou-
Impurity pling strength of the sit® of the SWCNT conduction band
to the impurity, here represented by the ditevhich is pro-
portional to the kinetic energy of the electrons in the zigzag
SWCNT. The Green functio®g, can be rewritten in terms
of the exact Green function of the impuri@?, , calculated

by the Dyson equation witkl = [0)V (1| + |1>VFO| being the

v hybridization. The dressed Green’s functions at theGidan
be written in terms of the undressed Green’s functions local-
0 ized at the impurityg:1, and the undressed Green'’s functions
o oiasotgtatetasototsiotosasotsatonasates) of the conduction bandjyg
Zigzag carbon nanotube
GGo = 900+ 960V Gio + 961V Goo, )

FIG. 1. Pictorial view of the zigzag SWCNT with an impurity at-
tached on its surfacd/ is the hybridization between the SWCNT
conduction band and the localized impurity level. Gl = 070+ 970V Gl + 971V Ggo. 4)
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Solving the equation system above and considegiag= 0 Ill. THE ANDERSON IMPURITY MODEL
andgp; = 0, we can write

The Hamiltonian for the Anderson impurity with infinite

960 S
Glp= i, (5)  Coulomb repulsiot is given by
% (1-dgove7)
_ t
wheregg, is given by [1] H = %Ekvock-ﬁckaJrZ Ef.0Xt.00
orii (v +V; (X:,Oo'ckvc+cl.0'vaoo-> ) (9)
ik (x x,) M ,0 i
Ed“i™)e—na ©)
i = 2”\/02 2 cos( )sm(kxaz‘/é) where the first term represents the conduction electrons (
electrons), the second describes the Anderson impurity char-
andky obeys the relation acterized by a localized level E¢ g, (we employ the f let-
_ ter to indicate localized electrons at the impurity site) and
keay/3 yzz—z —1—4cog (%) the last one corresponds to the interaction betweencthe
5 =2 4 (7)  electrons and the impurity. For simplicity we consider a con-
4005( ) stant hybridization’/. We employ the Hubbard operators [6]

to project out the double occupation stafe2), from the
local states on the impurity. The identity decomposition in
6%, = M2 (2). @) the reduced space of local states at the impurity is given by
1=, X004 Xt .00+ Xt55 = | , whered = —a, and the thre&s aa
WhereMgtU(z) is calculated in Sec. IV. are the projectors into the statef, a). The occupation num-
’ bers on the impuritys 4 =< Xt aa > should then satisfy the
L ‘ ‘ ‘ ‘ “completeness” relation

and

n=9 Nio+Nig+Nfg= 1. (10)

IV. THE ATOMIC MODEL
o’ 05 -
To obtain the exact Green functionGs+ ¢(ji,2) in real
space for the impurity at sitg, one can follow a procedure
similar to the one used in [7] within the chain approximation,
but considering all the possible cumulants in the expansion as
. | L — | it was done in [8] for the Anderson lattice. As with the Feyn-
4 2 o 2 4 mann diagrams, one can rearrange all those that contribute
FIG. 2. Density of states per unit cell of the conduction band ofto the exactGst ¢(ji,z) by defining an effective cumulant
the nanotubg9, 0) which presents metallic behavior. The chemical Me”(h, z), that is given by all the diagrams &+ ¢(ji, 2) that
potential is located gt = 0 in all the density of states figures. can not be separated by cutting a single edge (usually called
“proper” or “irreducible” diagrams). We shall consider that
the impurity is at the origin, and drop the indgxrom all the
quantities. The exact G6¢¢ ¢(2) is then given by replacing
n=11 the bare cumularv ;(2) = —DJ/(z—¢¢), whereD§ =<<

Xt .00+ Xf 6o >>0, by the effective cumularﬂ/le”( z) at all
the filled vertices of the chain diagrams in [7]. The exact GF
for the f electron is then written as

a 05 |

— M54 (2) "
k J | P T v ek Y

whereGZ ;(k,z) = —1/(z—¢(k)). The exact atomid Green
‘ ‘ ‘ ‘ ‘ function has the same form of Eq. (11), and it is calculated
%4 2 0 2 4 exactly in the Appendix A (cf. Eg. 13), and we write

FIG. 3. Density of states per unit cell of the conduction band of the at
B Mz,o(z)
1-M35(2) [V 2 3k G (kD)

nanotubg11,0) which presents semiconducting behavior.

12)
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From this equation we then obtain an explicit expression forcating that the Kondo temperature decreases as can be seen in
M3';(2) in terms of Gf} ;(2). To decrease the contribution the right inset of Fig. 4.

of the ¢ electrons, whose effect was overestimated by con
centrating them at a single energy level we shall repléte

by A%, with A = TV?/W is of the order of the Kondo peak’s 0.
width, whereW is related to the nanotube hopping energy by ¢

W = 6y,. The atomic approximation consists in substituting

eff
MZO’

(12). As Mgfc(z) is k independent, we can easily obtain the
local Green function for the Anderson impurity for the zigzag
nanotube, which is given by Eq. (11) but wiig ;(k,z) given

by Eqg. (6) and in the same way we obtain the conducti@y) (
and mixed G;c) Green’s functions. One still has to decide F °

what value ofEg should be taken. As the most important re- i o

gion of the conduction electrons is the Fermi energy, we sha i °
useEg = u— 0Ey, leaving the freedom of small changésg ook .
to adjust the results in such way that the completeness relatic I S T T T T R RN
given by Eq. (10) should be satisfied. ¥

(2) in Eqg. (11) by the approximaﬂdgfc(z) given by Eq. I TE?:'??XM

£=0.01 _
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T
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FIG. 5. The normalized linear conductance as function of the nan-
otube diameter, here represented by the paramefére parameters
employed are indicated in the figure.

V. RESULTS AND CONCLUSIONS

Appendix A: Atomic solution

In Fig. 4 we plot the evolution of the density of states cor-
responding to a Kondo situation for three representativai- We assume the zero conduction bandwith= 0. There-
ues. We can see the two structures characteristic of the Kondere we eliminate from the Hamiltonian the hoping contribu-
densities of states. One non-resonant peak located &;the tions. This corresponds to consider the relationship between
position and the Kondo peak located at the chemical potentia givenk state of the conduction band and one localifed

u= 0. In the insets we represent details of each structure. ~state. In this case the analytical solution of the Hamiltonian is
known [8]. Thef atomic Green function is given by

G (w) = e Zx (13)
w—Uyi’
800 T T T
- ﬂi whereQ is the thermodynamical potential and the poles of the
wl a0 o | Green'’s functions are given by
L ] L ; ] 1
1 w=E3—E1=Eg—Es=E7—Es=_(&q+&r—4); (14)
o 400 I o 400 j — 2
o400 i i N
I q r ‘J’\ b 1
-%.09‘-0.08-0.07-0.06 -8-001 (‘)k 0.001 U2 - E5 B El - E8 B ES - E7 B E2 - E (sq + Sf +A) 1 (15)
2001~ & & -
Kondo peak detail

J 1
Jk Ug=E12—Ero=_ (eq+&1 —4); (16)
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FIG. 4. Density of states of the impurity f-electrons for= 0.014, Us=Ejp—Eg= - (gq+&; +4); (17)
with A= 0.01. In the leftinset we present a detail of the non-resonant 2
structure located at arourify = —0.08 and in the right inset we

resent a detail of the Kondo peak locategiat 0.
P P 41 Us =Eo—Ep =g —— (&~ 2); (18)
In Fig. 5 we represent the conductance of a side-coupled
impurity in the zigzag nanotube. The Kondo effect depends 1., )
on the diameter of the SWCNT and change the conductance Us = Er0— B2 =gq+ P (&'+2); (19)

of the system. The conductance varies more than two orders
of magnitude as the nanotube diameter paranmeigreases.

1
At the same time, the Kondo peak becomes more steep, indi- U7 =Eo—Es=¢q— 5 (&' +8); (20)
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Us=Ejo—Ea=¢gq+ g (A/ - A) , (21) ms = gsin2 (pcosz}\[e*%B(Serﬁq*A) + e*%B(£f+3sq—A’)]; (26)
where the residues are

= cod i1 1 e BT 8y , 1 ——
Mg = - sir? @sir? A[e~ 2PEr+8a—8) | g~ 3BE+38q+0)], (27)
2

ze,%g(strqurA) + zefﬁ(sf%q)]; (22)

1 _1 ~-1 3eg—A')1.
M, = sirP g1+ 2PErteath) My = ECOSZ(PCOSZ)‘[e 2Blerreath) g ablert3aA] (28

e aherte D)y SgBlerte)) (23)
me = — co@ psir? A[e~ B +eatd) | g 3B(Er+35ata)] - (29)
2

g — cofA[e BBE3eatt) | g 3BEI+20)]  (24)

where A = \/(geq—&1)>+4V2, A = /(gq—€1)*+8V2,
. _1 A 1
my = s|n2)\[e 3B(er+3eq—0) | g 23(8f+2€q)]; (25) tang= ﬁ andtan\ = (%3\[7‘2\4&_
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